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FAST PROJECTION METHOD
FOR A SPECIAL CLASS OF POLYTOPES

WITH APPLICATIONS (#)

by P. D'ALESSANDRO (X) and M. DALLA MORA (*)

Abstract. — In this paper some known resutts of convex analysis are exploited to dérive a fast
method to project a point of Rn onto a polytope of a special cîass. As an application a new
technique of smoothing is illustrated. Numerical results are included.

Keywords : Optimization; convex analysis; polytopes.

Résumé. — Dans ce document, certains résultats biens connus d'analyse convexe sont exploités
pour dériver une méthode rapide qui permet de projeter un point de Rn sur un polytope d'une
certaine catégorie. Comme application, une nouvelle technique de "smoothing" est illustrée*
Quelques résultats numériques sont également inclus.

Mots clés : Optimisation; analyse convexe; polytopes.

1. INTRODUCTION

There are already many methods to solve the problem of projecting a point
onto a polytope (see [1], [2]). In this paper a special class of polytopes is
eonsidered, and it is remarked that they allow the application of a fast
projection method. This method has some practical applications. In [3] it is
exploited to introducé a new technique of smoothing, called optimal smooth-
ing5 which is briefly recalled hère. Beside the interest on its own right, optimal
smoothing is the main ingrédient of a new technique of seasonal adjustment,
which is introduced in [4].

The numerical performance experienced so far in the use of the fast
projection method is excellent.

(*) Received in November 1987.
(J) Department of Electrical Engineering, University of L'Aquiïa, Monteluco, 671001/Aquila,

Italy.

Recherche opérationnelle/Opérations Research, 0399-0559/88/04 347 15/$ 3.50
© AFCET-Gautfaier-ViHars



348 P. D'ALESSANDRO, M. DALLA MORA

2. PROJECTIONS AND POLYTOPES

Let H be a real Hubert space with inner product (., .) and norm || . ||.
For any set A in H dénote by <?0 (A) the convex conical extension of A,
^Q (A) the closed convex conical extension of A; % (A) the convex extension
of A and c€~ (A) the closed convex extension of A and finally by A f (A) the
affine extension of A.

For a closed convex set A and x in the boundary of A define:

(which is called the support cône to A at x) and

(which is called the normal cône to A at x) where if B c H, B° dénotes the
polar of B defined by:

B° = {h: heH, (h, x) S 1 for ail xeB}

(see e. g. [5]) A vector h is in N(x, A) if and onîy if

Ac{z: ZGH and (h, z) S (k x)}.

They are called normals to A at x.
If A is closed and convex, PA dénotes the projection of H onto A. Some

major properties of this function are collected in the following theorem
(see e. g. [6]).

THEOREM 1: Let A be a closed convex subset of H. Then

(i) If x is any point in H, there exists a unique element PA (x) in F such that
\\x-PAx)\\ = M{\\x-z\\: zeA}.
(The map PA is called the projection ofH on A).

(ii) zsAis the projection ofx onto A if and only if

for each y in A.

(iii) For ail x and y in H
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FAST PROJECTION METHOD 349

It is clear for Theorem 1 (ü) that

PA(x + h)=xfor allxeA and heN(x, A).

In what follows it is assumed that H = Rtt.

À polytope is the convex extension of a finite set [7], consequently [8] it is
compact and hence closed, Any convex set has nonvoid relative (in the sense
of [7]) interior and a polytope is a convex body if and only if the dimension
of the affine extension of the finite set is n.

The description of compact convex sets by means of convex extensions can
be reduced to minimal form. In fact it is immédiate conséquence of définitions,
that if any such set C is given by ^ (A), for some set A, then A contains the
set of extreme points of C (for the définition of extreme point see e. g. [6])
and, on the other hand» the celebrate Krein-Milman theorem [6] insures that
any compact convex subset of a locally convex linear topological Haussdorff
space is the convex extension of the set of its extreme points. It follows in
particular that it admits a unique minimal generating set which is precisely
the set of its extreme points (and is obviously finite, in view of the above
argument, if the set is a polytope).

Recall that a set is symmetrie if the opposite of any member of the set is a
member of the set. It is ciear that a convex compact set is symmetrie if and
only if such is the set of its extreme points.

Notice also that if A is any set and t any vector then <$ (t + A) = t + <$ (A);
and if A is convex and S is the set of its extreme points, t+A is convex and
its set of extreme points is t + S.

Sometimes polytopes are sphères of some norm (pseudonorms may be
handled in similar fashion, see [9]). More precisely, denoting by b(.) the
barycentre of a finite set, the following theorem can be stated.

THEOREM 2: Let P be a polytope and S the set of its extreme points, then P
is the closed unit sphère of a norm if and only if S contains a set of n -f 1
affinely independent points and S-b (S) is symmetrie.

Proof: Sufficiency: because P - b (S) = V (S) - b (S)=V (S - b (S)) and transl-
ation is an homeomorfism, P—b(S) has the following properties: it is a
compact convex set and it is symmetrie, Since in a real space a set is convex
and circled if and only if it is convex and symmetrie, P~b(S) is convex and
circled. It is now shown that P [and hence P — b(S)] are convex bodies: for
example b(S) is an interior point of P, so that 0 is an interior point of
P—b(Sy To this purpose it is convenient to invoke a powerful topological
principle beeause it makes the point immédiate (without obsuring the ideas
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350 P. D'ALESSANDRO, M. DALLA MORA

involved in this matter). Let S be {xl9 . . ., xm} and, without any restriction
of generality, assume that xm belongs to the affinely independent subset of S.

Then P is the image of the closed unit sphère in Rml relative to the norm
H . Ui intersected with the nonnegative orthant under the composed map
TXm o T where T is a linear map defined by

for each X in Rm~1 and TXm in the translation by xm. In view of the Open
Mapping Theorem ([6], pp. 99), Tis open (because its range is Rn, which, by
the Baire theorem, is of the second category) so that being the translation an
homeomorphism, TXm ° T is open, whence the desired conclusion is imme-
diately shown.

It follows that P—b(S) is also radial at zero. The proof of sufficiency can
be therefore concluded showing that the Minkowski functional p of P — b(S)
is a norm and the corresponding closed unit sphère about the origin coincides
with P—b(S). Dénote by Bp this sphère. Since P—b(S) is a bounded neigh-
borhood of 0, its positive multiples form local base for the topology of Rn.
On the other hand for each real s > 0

P~-b(S) c Bp c (1 +&)(P-b(S)) c (P

hence

(where an elementary computation for vector topoiogies has being applied),
Because (l+z)(P—b(S)) is compact p cannot be a pseudonorm thus it is a
norm and the latter relation concludes the proof of sufficiency.

Necessity: By hypothesis for some norm p and some vector t> Bp=P—t so
that the set of extreme points of Bp is S —t. But this set is symmetrie and
therefore

m

£ Xf-mt=Q or t = b(S).
i=i

Thus S — b(S) is actually symmetrie. If there were at most N affinely indepen-
dent points in S then because <ë (S) c A ƒ (S) it would follows

Bp e Af{S)-b(S).

Recherche opérationnelle/Opérations Research



FAST PROJECTION METHOD 351

But then OeAf(S) — b(S\ or this latter set is the linear subspace parallel
to Af(S) and has at most dimension N—l. This contradicts the assumption
that p is a norm. <

Note that for the case of sphères about the origin the condition would be
that S be symmetrie and contains a subset of n linearly independent points.
Thus it is clear from the theorem that there is no hope of describing the
topology with less then 2N points because it is impossible to specify a
symmetrie set containing a base with less that 2 TV points. For future référence
we state the following.

THEOREM 3: Let B any base for Rn and let S be the set B U (-#)• Then the
polytope ̂ (S) is the closed unit sphère about the origin of a norm and S is the
set of its extreme points, Conversely if the closed unit sphère about the origin
of a norm has 2 N extreme points, then the set of its extreme points has the
farm B{J(-B) where B is a base for Rn.

The proof is rather straightforward in view of the preceding work and is
therefore omitted. Of course the norm in question is the Minkowski functional
of #(S). Any norm whose closed sphères are polytopes with 2N extreme
points is called a M-norm.

Note that if p is any norm for Rn and T any linear isomorphism of Rn

onto itself, then p ° T is also a norm, moreover if Bp is the closed unit sphère
(about the origin) of p then T"1 (Bp) is the closed unit sphère of po T. If S
is the set of extreme points of a convex set C, T~1 (S) is the set of extreme
points of the convex set T~1(C), as is immediately verified. Two norms p1

and p2 are called linearly equivalent if for some linear isomorphism T,
pl=p2° T(of course this is an équivalence relation for the set of all norms).
Note also that if C is a polytope i. e. C = <€ (A) for some finite set A, and T
is a linear isomorphism then T(C) = e$(T(A)). At this point, in view of the
invariance of the cardinal of the set of the extreme points of a convex set
under a linear isomorphism, the existence of norms, that are not linearly
equivalent, is obvious. In view of Theorem 3 the set of M-norms for Rn is
an équivalence class under linear équivalence.

Faces of convex sets are defined as in [7]. However to avoid repeated
exclusion of trivial cases it is stipulated that the whole convex set in question
is not a face. Trivially the singletons of extreme points are faces. Any convex
subset of Rn contains a polytope with the same affine extension. Recall that
any convex subset of Rn has relative interior (Theorem 6.2 in [7]), thus in
view of Theorem 18.1 in [7] a face in the present sense is a face in the sense
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352 P. D'ALESSANDRO, M. DALLA MORA

of [7], if and only if it is contained in the relative boundary of the convex set
in question (which is Corollary 18.1.2 in [7]).

Note that, since the union of a chain of faces is a face, each face is
contained in a maximal face. In view of the Theorem 18.3 in [7], any face of
a polytope is the convex extension of a subset of the set of the extreme points
of the polytope. Thus any face of a polytope is in turn a polytope. A direct
vérification shows that any face of a face is also a face of the original
polytope. The relative boundary of a polytope is entirely made up of faces:

THEOREM 4: The relative boundary of any polytope is the union ofthe family
of its faces.

Proof: Because translation is a homeomorphism it is easy to see that is
suffices to make the proof for the case where the affine extension of the
polytope, say P, is a linear subspace, say F, of Rn. With référence to the
topological subspace F, P has nonvoid interior P\ which in addition is convex
and coïncides with its radial kernel (Theorem 13.1 in [6]), so that, if x belongs
to the boundary of P in F, by Theorem 3.8 in [6] the existence of a linear
functional, necessarily of the form (h, . ) |F for some h in F, separating x and
P is ensured. Thus (h, .) séparâtes x and P in Rn. The rest of the proof
amounts to the straightforward vérification that the intersection of the hyper-
plane {z: zeRn, (h, z) = (h, x)} with P is a face of P. <

A further important resuit is immediately scored arguing similarly to the
last proof.

THEOREM 5: For any face of a polytope there exists a hyperplane containing
the face and such that the polytope is contained in a closed half space defined
by the hyperplane.

Proof: Again it is readily seen that it suffices to make the proof for the
case where the affine extension of the polytope P is a linear subspace F of
Rn. Let D be a face of P. Then in the topological space F, D is disjoint from
P' and therefore there exist heF such that (h, . ) séparâtes P and D.

Still reasoning in F and again by Theorem 13.1 in [6] P1 —P. Therefore if
x belongs to D and hence also t o ? " there exists a séquence {xn} in P' that
converges to x in F and therefore also in Rn. But this implies that (h, . ) is
constant in D9 thereby concluding the proof.

It is convenient at this point to introducé some terminology. The extreme
points forming the generating set of a face are called vertices of the face.
Varying slightly the terminology of [7] if x is in the relative boundary of a
convex set C, and, for some h in Rn, the convex set is contained in the half
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FAST PROJECTION METHOD 353

space {z:zeRn, (h, z) ^ (h, x)} then h is called a normal to C at x, and also
normal to any face F of C which is contained in the hyperplane {z: zsR",
(h, z) = (h, x)}. This hyperplane is called tangent hyperplane to C at x or
tangent hyperplane to F. Moreover the following obvious remark is neverthe-
less particularly useful: if the éléments of a set A are normal to C at x, such
are the éléments of ^0{A). Finally it is easy to verify that all points in the
relative interior of a face have the same normal cone, that will be called the
normal cone of the face. Furthermore if a face D1 contains a face D2> then
the normal cone of D2 contains that of Dv

Before concluding it is stated a resuit that exploits the properties of
M-norms to characterize boundary points of their unit (without restriction
of generality) closed sphères, and that is particularly useful in applications.

THEOREM 6: Let P be the closed unit sphère of a M-norm about the origin
and S the set of üs extreme points. Then a point x belongs to the boundary of
the sphère if and only if it can be expressed as a convex combination of a
subset of S, where there are no pairs of opposite points.

Proof: The already mentioned fact that JVf-norms form an équivalence class
under linear équivalence is first exploited to reduce the proof to a most easy
case.

As proved earlier P=<$(B{J(—B)) for some base B, Now if with selfex-
planatory notations B is the base {(1, . . . , 0) . . . (0, . . ., 1)} there exists a
linear isomorphism T that takes B onto B. Thus

where clearly f ( l l j ( - S)) is just the closed unit sphère of the norm || . \\v

Since in R" a linear isomorphism is a topological isomorphism it suffices to
make the proof for the polytope ? = f ( B U (—5)). Now let bx... bn dénote
the éléments of B. If

with a£e(0, 1],

Vi,
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then clearly |j x\\x = 1. Conversely if it is not possible to express x in this way
then x will have the form

1=1 j=l

where:

5J H {F,} is void, a}
+ # af, Vj,

"1 «2 "2

«! and n2
 a r e nonnegative integers with n2 > 0 and nx-\-2n2^2N, It

follows that || x Id < 1, and hence the proof is concluded. <

It is obvious that the convex extension of each subset of S, made up of N
points and satisfying the condition of the theorem is a maximal face of P
and hence the number of such maximal faces is 2N. Notice also that the
vertices of any face form a linearly independent set and those of a maximal
face a base.

3. FAST PROJECTIONS

It is considered the following special class 9 of polytopes. A member of ï?
is the closed unit sphère about the origin of a M-norm (in this respect notice
that if the center of the sphère is not the origin and/or the radius is not 1 by
the translation and/or scaling the projection problem can be reduced to the
case considered here), Moreover it is assumed that each face of P admits a
nonzero normal belonging to the convex cone generated by its vertices. An
example of M-norms for which this condition hold (that will also be called
of class tP) are || . \\t and | j . (j^. A less trivial example is given in the next
section.

Now consider any such polytope P and let p the corresponding norm.
Consider xeH with p(x) > 1 (to avoid trivial cases). Because x/p(x) is in
the boundary of P, it belongs to a face Fx and actually it may be assumed it
is in the relative interior of Ft, for otherwise it would be in a face of Ft

which is a face of F.

Recherche opérationnelle/Opérations Research
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Let {Ü1? . . . > vK} be the vertices of Ft and n1 be a normal to Ft in
). Thus

thus the following two positive real numbers can be defined

The meaning of these two parameters is as follows. If a <i $x then
x - a ^ G ^ o ({uj) and if a > $t then I - a n 1 ^ 0 ( { i ; l . } ) . If a < ôj then
|| je — otwi ||i > 1; if a = 51 then ||x — an 1 | | = l.

Let otj be min ({pl5 Si}) and xt be x—a4 nv

If aA — 5i then p (x^ = 1 and the procedure is arrested.

Otherwise ^ ( x j > 1 and x1jp{x1) is in the relative boundary of Fx and
hence in the relative interior of a face F2 <= Fx. Now repeat the above step
with xt in lieu of x.

By construction the procedure stops in at most k S « steps, at a point xp

) = l and

i-i

Because by construction J] aIn ieiV(xJ, P), x7 is the projection of x onto

P.

In the example of the next section, the algorithm will be applied to a
sphère for which the linear isomorphism transforming the sphère into that
of the norm | | . ||j is known. In this case the extreme points are known
a priori and hence the speed of the algorithms dépends essentially on the
method used to compute normals, that belong to the cone defined by the
vertices of the face. In the example we use an ad hoc method that takes
advantage of the special structure of the problem.

vol 22, n° 4, 1988



356 P. D'ALESSANDRO, M, DALLA MORA

Regarding the computation of normal cônes to a face the following gênerai
observation may turn out to be suseful

Consider a sphère Be0>, a linear isomorphism T and a face F of B. Then
if N is the normal cône of F, T* N is the normal cône to the face T1 F oî
T~lB.

4 OPTIMAL SMOOTHINGS

The optimal smoothing approach is recalled briefly. For a complete discus-
sion and details the interested reader is referred to [3].

Consider a finite time series of signal ƒ e JRW. Let v a f unctional on JR", such
that v (f) represents the variation of the time series and, in addition, assume
that v is a norm.

To smooth the signal one should seek another signal/with lower variation
v(f) < v(f) that approximates ƒ Suppose that for some c < 1, v(f) ^ cv (f)
is adequate, then the following convex programming problem define the
optimal smoothing problem

find ƒ such that || ƒ—ƒ | |= minimum, under the constraints feS"v{f)

where S"v if) is the closed sphère centered in the origin defined by the norm v
and with radius cv ( ƒ).

If the sphère is in the class 9 then the fast projection method can be used,
since the solution/is the projection of ƒ onto S^v{fy

The role of v will be played by the norm wt defined by

n-X

Wit/H ƒ ( i ) |+ i |/o*+i)-/<o|.

Dénote by et the vector in il" with the ith component equal to one and
the other components equal to 0.

Let E be the set

Consider the n x n matrix

1 0 . .

0 0 . . . -
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FAST PROJECTION METHOD 357

Then clearly, if, to simplify notations, we dénote | | . ||i by pXi

wx=PloT

and hence

where the matrix T~1 is given by

0 . . . 0

T 1 J ï ï ... o

\l 1 . . . 1 \j

The norm wx is a non-trivial example of norm with sphères in class ^ .
Actually it is possible to state the following

THEOREM 7: The sphère S ^ belongs to class 0*.

Proof: Constructive proofs are usually deemed to be more valuable. In the
present case the proof consists essentially of a M O D U L A - 2 procedure,
called normal, that given the signal and hence a face that générâtes a cône
containing the signal in its relative interior, produces a normal to the face,
that belongs to the same cône. For the sake of brevity we only outline the
ideas underlying the algorithm. This should make easy to understand how
the code works and hence how a proof of the theorem is obtained.

The signal should be viewed as combination of the above vertices of S ^
(that are the column of the matrix T~1 given right above, each column is to
be taken with a plus and a minus sign), in the same order as they appear in
the matrix. Each vertex corresponds to a variation in level of the signal and
appears with a plus sign if the variation is positive, a minus sign if it is
négative, or does not appear at all if the signal remains constant. The
normality condition is equivalent to the fact that the normal is orthogonal
to each différence of two subséquent vertices (having the matrix of these
différences handy for various examples of signais is helpful to understand
the arguments of this proof). This condition is satisfied starting with the last
of these différences and going on in decreasing order determining, (also in
decreasing order and starting from the zero normal) the components of the
normal This is a diagonalization technique because once each of these
conditions is satisfied, it remains true (thanks to the zero's appearing in the
différences of each pair of subséquent vertices) for whatever détermination
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of the other entries of the normal. Àt each step the component corresponding
to indices between two variations of the signal are settled via normality to a
new différence of vertices. If the inner product of this différence with the
already determined normal is zero, those components are left to zero, other-
wise they are determined by the two required conditions that

(a) The inner product be zero, and hence the new component must compen-
sate a possible value given by the already determined components.

(b) The normal be in the cone of vertices.

The procedure normal is now appended below with some explicative com-
ments.
MODULE timse;
TYPE rve=ARRAY [0.. .nvmax] OF REAL;
VAR fve, dve» nrl : rve;
PROCEDURE normal;
VAR c, i, pi, p2, p3, d : INTEGER;

som, en : REAL;
BEGIN
c:=0; WHILE fve [nv~e]=0. DO c:=c+l END; pl:=nv-e;
c:-0; WHILE fve [p i - e~ l ]=0 . DOc:=c+l END; p 3 : = p l - c - l ; p2: = l; d:=p2-p3;
FOR i;=pl TO nv DO nrl [i]: «fve [pi] END;
IFp3-0THEN
IF pi > 1 THEN FOR i: - 1 TO pi - 1 DO nrl [i]: =0. END END
ELSE
WHILE p3 > 0 DO
FOR i: =1 TO p3 - 1 DO dve [i]: «Ü. END;
FOR i: =p3 TO pi - 1 DO dve [i]: =fve [p3] END;
FOR i: =pl TO nv DO dve [i]: «fve [p3]-fve [pi] END;
som: = 0.; FOR i: = p2 TO nv DO som: = som+nrl [i] * dve [i] END;
en: = - som * fve [p3]/FLOAT (d); FOR i: = p3 TO p2 - 1 DO nri [i]: = en END;
P2: = p3; c: = 0; WHILE fve [ p 2 - c - l ] = 0. DO c:=c+l END; p3 :=p2-c - l ; d: = p2-p3
END;
IF p2 > 1 THEN FOR i: = 1 TO p2-1 DO nrl [i]:=0. END END
END END normal;

Remarks on the procedure

nv is the dimension of the space Rn, The vector nrl is the sought normal.
Note that the veetors have a component of index zero which is added for
coding reasons and has no role in the problem. Such component is always
equal to 1.

The only variable which is essentially external to the procedure normal is
the variable fve. Let the vector f si represent the current point. Let the vector
v be defined as follows:

v(l)=fsi(ll v(ï)=fsi(i)-fsi(i-ll i = 2 , ...,nv

Recherche opérationnelle/Opérations Research



FAST PROJECTION METHOD 359

then

fve(i) =
- 1 if v(ï)<0

0 if Ü(0 = 0

1 if v(i)>0

fve represents the sign of the variations in the signal. The vector dve is
used to represent différences of subséquent vertices (to which the normal
must be orthogonal).

It may be helpful to give the picture of the unit sphère of wt in the two
dimensional case. Such a spher is represented in figure, where it is also

n •. normal to F1 belonging t c e

n : normal to F. belonging toeS»(F?) cone of
vertex Vn

Paths of our algorithm

_ . Paths of Wolfe algorithm

Figure
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360 P. D'ALESSANDRO, M. DALLA MORA

depicted the path along which our algorithm obtains from two exemplar
points z atid z' their projections zs and zf

s respectively. We also give (repre-
sented by a dashed line) the path that Wolfe's algorithm détermines. The
path of Wolfe's algorithm is understood to be the séquence of x points (see
[2]) to which the stop condition is referred. Note that the path defined by
Wolfe algorithm are not unique in gênerai» and for the case of z' ail possible
paths are shown. These examples show that Wolfe algorithm and ours are
not equivalent.

However the major différence between the algorithms is not much in the
path followed to reach the solution but rather in the numerical computations.
The reader will notice how trivial are the computations required to obtain
the solution, in our spécifie example, for our algorithm compared to that of
Wolfe. This speed si obtained in trade of the lack of generality of our
aigorithm, However the class 0^ of polytopes is not believed to be the largest
class of polytopes for which algorithms based on a similar technique might
be developed.

Of course wx is not an idéal norm to represent variation in view of the
présence of the first term in its définition, which is added to the variation
just for the convenience of obtaining a norm of class 0*. However there is
some practical évidence that such term is not much disturbing and the ensuing
filter work satisfactorily as seen from the numerical example below and in
particular from the graphs of the given signal vs the filtered signal (this
example is reproduced from [3]). In the table Filsig stands for filtered signal.
Hère the percents refer to the eut in the variation term of the functional wv

Finally in [4] it is illustrated how the optimal smoothing approach can be
exploited to dérive new techniques of seasonal adjustment, with a numerical
example.
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