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OPTIMAL NUMBER OF SPARE CASHBOXES
FOR UNMANNED BANK ATMS (*)

by S. NAKAMURA (*), T. NAKAGAWA (2) and H. SANDOH (3)

Communicated by Naoto KAIO

Abstract. - There are many unmaned ATMs (Automatic Tellers Machines) where customers can
withdraw even on holidays. When all the cash in the ATM has been drawn out, the cashbox is
replaced by the new spare one. This paper proposes a stochastic model of ATM and considers
the problem how many number of cashboxes should be provided. Using the theory of probability,
the expected total cosî is derived and an optimal number which minimizes it is discussed. Finally,
numerical examples are given when the distribution function of the total cash drawn a day is
exponential and normal. © Elsevier, Paris

Keywords: ATM of bank, Spare cashboxes, Expected cost, Optimal number.

Résumé. - UN DAB (Distributeur Automatique de Billets) est une machine automatique d'où, en
l'absence de tout employé, les clients peuvent à tout moment retirer des billets de banque. Quand
tout l'argent du DAB est épuisé, la boîte à billets est remplacée par une nouvelle boite tenue en
réserve. Nous proposons dans cet article un modèle stochastique de DAB, et considérons la question
de savoir combien de boîtes à billets doivent être fournies pour la réserve. Utilisant la théorie des
probabilités, nous donnons une formule pour Vespérance du coût et nous examinons le nombre
optimal qui la minimise. Finalement, nous donnons des exemples numériques lorsque la fonction de
distribution de Vargent total retiré dans la journée est exponentielle ou normale. © Elsevier, Paris

Mots clés : DAB bancaire, boîtes à billets en réserve, espérance de coût, nombre optimal.

1. INTRODUCTION

Banks offer many kinds of services for customers. Recently, most banks
have set up many unmanned ATMs where customers can deposit or withdraw
money even on Saturdays, Sundays and holidays. There are some small
cashboxes which hold cash in an ATM.
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There are usually two different types of boxes in an ATM. One is a box
only for deposit and the other is a box only for withdrawing. According to
customers' demand, a constant amount of cash is kept beforehand in each
cashbox. If all the cash in a box has been drawn out, the opération of the
ATM is stopped. Then, the service of the ATM is restarted by replacing an
empty box with a new one.

When a cashbox becomes empty on weekdays, a banker can usually
replenish it with cash. However, when all the cash in an ATM has been
drawn out on holidays, a guard company receives the information from
the control center which continuöusly monitores the ATMs, and replaces it
quickly with a new one. Thereafter, the service for drawing cash begins
again. This company provides in advance some new spare cashboxes for
such situations. Such replacements may be repeated during a day.

One important problem arising in the above situation is how many spare
casboxes per each branch have been previously provided to the guard
company. As one method of ans wering this question, we introducé some
costs and propose a stochastic model. This is one modification of discrete
replacement models [1, 2]. We dérive an expected cost, using the théories
of probability, and détermine an optimal number of spare cashboxes which
minimizes it.

Finally, we give numerical examples and compute the optimal number
under suitable conditions.

2. EXPECTED COST

We examine an ATM in the branch of Bank N. In this paper, we consider
the model with only one ATM. However, in the case where there are several
ATMs in the branch, when all the cash of the boxes has been withdrawn
from ail ATMs, the company replaces them with only one new box. Thus,
we use the word "ATM" in this paper without "ATMs".

The costs might be mainly incurred in the following three cases for the
continuous opération of the ATM:

1) The cash in spare cashboxes is surplus funds and brings no profit if
it is not used.

2) When all the cash in the ATM has been drawn out, customers would
draw cash from other ATMs of Bank N or other banks. In this case, if
customers would use an ATM of other banks, not only they have to pay the
extra commission, but also Bank N has to allow some commission to other
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banks. Conversely, if customers of other banks use this ATM, Bank N can
receive a commission from both customers and other banks.

3) Bank N has to pay a fixed contract deposit, and also, pay a constant
commission to the guard company, whenever the company delivers a spare
cashbox and exchanges it to an empty one.

From the above viewpoints 1), 2) and 3), we introducé the following three
costs: All the cash provided in spare cashboxes incurs an opportunity cost c\
per unit of cash, and when customers use other banks, this incurs a cost C2
per unit of cash. Further, a cost es is needed for each exchange of one box,
whenever the guard company delivers a spare cashbox.

It is assumed that A is the first amount of cash which is stored in the
ATM of the branch, and a is the amount of cash which is stored in one
cashbox. Evidently, if there are j ATMs in the branch, then we have that
A = ja (j = 1,2,...).

Next, we define that F (x) is the distribution fonction of the total amount
of cash which is drawn a day from the ATM in the branch, and its mean is
{x = Jo°° F (x) dx. Let a (0 < a < 1) be the rate that customers of other
banks have drawn cash from the ATM in the branch, and / 3 ( 0 < / 3 < l ) b e
the probability that customers of Bank N give up drawing cash or use other
ATMs of Bank N, Le., 1- /3 is the probability that they use the ATM of
other banks, when ail ATMs in the branch were stopped.

Suppose that n is the number of spare cashboxes for the ATM in the
branch. Then, the total cost required for providing n spare cashboxes is

ci na. (1)

The cost for the case where customers use the ATM of other banks, when
the ATM in the branch was stopped, is

c2 (1 - a) (1 - p) f (x - A - na) dF (x). (2)
JA+na

Conversely, the profit that customers of other banks use the ATM in the
branch is

rA+na
na

pA+na n

) + / xdF (x)
h JrA+na

- -c2a / ~F(x)dx, (3)
Jo
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where F = 1 — F. This also includes the commission that customers pay
to the branch. The above formulations of (1), (2) and (3) are cost functions
similar to a "Newspaper sellers' problem" [3-7],

Further, the total cost required for the guard company which delivers
spare cashboxes is

c 3 [ y > + l) / + * a dF(x) + n f°° dF(x)]
L 2 - _ Q JA+ia JA+na J

n-l

F(A + ia), (4)

where £7Jo = 0.
Summing up the équations (1), (2), (3) and (4), and arranging it, the

expected total cost C (n) is given by

C ( n ) = n c i a + C 2 < [ l - ( l - a ) / 3 ] / ~F{x)dx-aA
l J-A+na J

ra-1

ia) (n = 0, 1, 2,...). (5)

3. OPTIMAL NUMBER

We find an optimal number n* of spare cashboxes which minimizes C (n)
in (5). It is seen that

ƒ (6)

C(oo) = lim C(n) = oo. (7)
71—+OO

Thus, there exists at least one finite n* which minimizes C(n).
Forming the inequality C ( n + 1 ) — C(n) > 0 to seek an optimal

number n*, we have
ci a + C3 F (A + na)

F (x) dx
ÏA+na

where 7 = 1 — (1 — a) (3.
1

>C2 7, (8)
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Assume that a density ƒ (x) of the distribution F (x) exists, Le.,
f (x) = dF{x)/dx. Let dénote the left-hand side of (8) by L(y) where
y ~ A + na, and investigate the properties of L (y). From (8),

(9)

Evidently,

/

y+a _
F (x) dx

F (x) dx

(10)

L (oo) = \ixnL(y)— oo, (11)

ra
 F(X)

Jy
dx

c\ a + C3 F (y)
ry+a

Jy
F (x) dx

If F(x) has the property of IFR [1], then

ƒ (*) ^ f (y)

Hence, we have

< ^ <

ƒ (y)
a)-F(y)

(12)

(13)

ci a + c3

r a F(x)dx
Jy

:ia

ci a + C3 F (y)

H ) f (y)

C3 ƒ (y)
(y + a) - F (y)

(14)

Thus, if F (x) is IFR then L(y) is strictly increasing from L(A) in (10)
to infinity.
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Therefore, we can give the following optimal number n* when F (x)
is IFR:

(i) If L{A) < C27 then there exists a unique minimum n* (n* > 1)
which satisfies (8).

(ii) If L (A) > C2 7 then n* = 0, Le.t we should provide no spare cashbox.
We can explain the reason why the distribution F (x) has the property of

IFR in reliability theory: The total amount of cash on ordinary days is almost
constant, however, a lot of money is drawn out at the end of the month
just after most workers have received their salaries. It is well-known that its
amount is about 1.75 times more than that of ordinary days. Thus, we might
consider that the drawing-rate of cash is constant or increases with the total
amount of cash. It is noted that exponential and normal distributions given
in numerical examples have the property of IFR.

4. NUMERICAL EXAMPLES

We consider two cases where distribution fonction F (x) is exponential
and normal.

4.1. Exponential case

Suppose that F (x) = l~e~Xx(x > 0). Since ƒ (x)/~F (x) = A fora: > 0,
it follows that F (x) is IFR [1]. Then, équations (5) and (8) are rewritten
as, respectively:

C (n) =nci a + ^ [7 e"A (A+na^ - a]
À

+ C3e T =

°. (16)c1ae + c3>C2y .
A

Therefore, the optimal policies are:
(i) If ci aeXA + C3 < C2 7 1 ~^ then there exists a unique minimum n*

which satisfies (16).

(ii) If ci aeXA + c3 > C2 7 1~A"^°
 t h e n n* = °*
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In case of (i), sol ving (16) with respect to n, we get

„•=
A a c\ a ci a

(17,

where [x] dénotes the greatest integer contained in x. Further, it is evidently
seen from (16) or (17) that an optimal n* is increasing with C2/c\, and
inversely decreasing with c$/c\.

In case of (ii), it is noted that if

ci a ( l + \A) + C3 > C2 a 7 (18)

then n* = 0.

TABLE I
Optimal number n* and expected total cost C (n* ) for c\ and C2

whenA = a = 20.0, a = 0.4, /? = 0.6, 1/A = 25.0 and c3 - 0.01.

C2

0.001

0.002

0.003

0.004

0.005

Cl

0.000068

n*

0

1

2

2

3

C(n*)

-0.00325

-0.00753

-0.01456

-0.02205

-0.02983

0.000164

n*

0

0

1

1

2

-0.00325

-0.00650

-0.01194

-0.01828

-0.02572

It is assumed that A = a = 20.0 where a denominator of money is
1 million yen = $9,000. The yield on investment c\ — 2.5 or 6.0 percents
per one year, Le., a = 0.025/365 = 0.000068 or 0.06/365 = 0.000164 per
one day, and c3 = 10,000 yen= 0.01.

Further suppose that the mean of the total cash a day is 1/À = 25.0.
Then, from (18) and (16), we can compute n* and the resulting cost
C (n*) for given C2, respectively. Table I shows the Computing results
for c2 = 100 - 500yen per 100,000yen, Le., c2 = 0.001 - 0.005. For
example, when ci = 2.5% per a year, C2 = 300 yen and C3 = 10,000 yen,
n* = 2 and C (n*) = —14,560yen. In this case, we should provide two
spare cashboxes and the branch of Bank N gains a profit of 14,560 yen a
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day. Further, the probability that the total cash has been drawn out is given
b y e-(20.0+2x20.0)/25.0 -_ Q.0907.

It is evidently seen that n* is increasing with C2, and C (n*) is négative
and decreasing with C2, because it yields a profit for customers of other
banks to use the ATM. If c\ is large, C (n*) increases, Le., the profit of
Bank N decreases.

TABLE II
Upper number nfor e and 1/À when A — a — 20.0.

e

0.20

0.10

0.05

1/A

25.0

n

2

2

3

30.0

n

2

3

4

Moreover, we are also interested in an upper spare number n in which the
probability that the total cash has been drawn out a day firom the ATM is
less than or equal to a small e. This upper number n is given by

F (A + na) = e~^A+na) < e, (19)

Table II gives the upper number n for 1/À = 25,0, 30.0 and e — 0.20,
0.10, 0.05 when A — a ~ 20.0. It can be seen from this table that how many
number of spare cash boxes should be provided for given e.

4,2. Normal case

Suppose that 1 - F (x) = - J — f°° e~(J^~ dt. Then, from (8), an
optimal number n* is given by a minimum number which satisfies

27TCT L dt
A-\-na

/>A+(n+l)a pc

J A-\-na Jx

> C2 7- (20)

dtdx

Table III gives the optimal number n* and the resulting cost C (n*) for
Cl = 0.000068, 0.000164 and c2 = 0.001 ~ 0.005 when A = a = 20.0,
a = 0.4, P = 0.6, fj, = 25.0, a = 20.0 and c3 = 0.01.
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It can be seen that the values of n* in Table III are greater than those in
Table I and the resulting costs C (n*) are greater when C2 is small and are
less when C2 is large than those in Table I. However, two tables have the
similar tendencies. It should be estimated from actual data which distribution
is suitable for the distribution F(x).

We can compute an upper spare number n by the method similar to
Table IL This upper number n is given by

F (A + na)) = — /
V2^a JA

dt<e. (21)
A+na

Table IV gives the upper number n for /z = 250, 30.0 and e = 0.20, 0.10,
0.05 when A = a = 20.0 and a = 20.0.

TABLE ni
Optimal number n* and expected total cost C (n* ) for c± and C2 when

A = a = 20.0, a = 0.4, /? = 0.6, fi = 25.0, a = 20.0 and c3 = 0.01.

0.001

0.002

0.003

0.004

0.005

Cl

0.000068

n*

0

3

3

3

4

C(n*)

0.16163

-O.00666

-0.01637

-0.02608

-0.03580

0.000164

n*

0

3

3

3

3

C(n*)

0.16163

-0.00090

-0.01061

-0.02033

-0.03004

TABLE IV
Upper number n for e and fj, when A = a = 20.0 and a = 20.0.

e

0.20

0.10

0.05

25.0

n

2

2

2

30.0

n

2

2

3
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The values of n in Table IV are not greater than those in Table IL This
would be probably from the reasons that an exponential distribution has
a randomness property and its standard déviation is greater than that of a
normal distribution.

5. CONCLUSIONS

We have proposed the stochastic model of ATM in Bank N. We have
considered the cost provided for spare cashboxes, the loss cost at which
customers use ATMs of other banks and the cost required for exchanges of
spare cashboxes, and have derived the expected total cost. Using the theory of
probability, we have obtained the optimal number of spare cashboxes. Finally,
to understand the results easily, we have given the numerical examples.

We have defined the total amount of cash a day as the distribution function
F (x) and assumed that F (x) is exponential and normal. In this paper, we
did not touch on how to estimate a distribution function and its parameters.
In future, it would be necessary to gather sufficient data and to analyze it,
using the statistical theory. Further, we need to examine from actual data
why F(x) is IFR.

Actually, the opération of an ATM is sometimes stopped by mechanical
failure or human error. It would be important to consider such failures and
to formulate a stochastic model. Further studies for such cases would be
expected.
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