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Abstract. A concept of an Orderly Colored Longest Path (OCLP)
refers to the problem of finding the longest path in a graph whose
edges are colored with a given number of colors, under the constraint
that the path follows a predefined order of colors. The problem has
not been widely studied in the previous literature, especially for more
than two colors in the color arrangement sequence. The recent and rel-
evant application of OCLP is related to the interpretation of Nuclear
Magnetic Resonance experiments for RNA molecules. Besides, an em-
ployment of this specific graph model can be found in transportation,
games, and grid graphs. OCLP models the relationships between con-
secutive edges of the path, thus it appears very useful in representing
the real problems with specific ties between their components. In the
paper, we show OCLP’s correlation with similar issues known in graph
theory. We describe the applications, three alternative models and new
integer programming algorithms to solve OCLP. They are formulated
by means of max flow problems in a directed graph with packing con-
straints over certain partitions of nodes. The methods are compared
in a computational experiment run for a set of randomly generated
instances.
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1. Introduction

In the following paragraphs we assume basic knowledge of both, standard graph-
theoretical terminology and network flow problems (see [3,13,15]). All graphs and
digraphs considered in the paper are finite and simple.

Let us consider an undirected graph G = (V, E), where V is a set of vertices,
|V | = n, E is a set of edges, |E| = m. Let C be a set of colors (labels), where
|C| = c, c ≥ 2. G is called a c-edge-colored graph if its edges are colored in c colors
by means of function f : E → C. If every two adjacent edges of G have different
colors, the graph is properly colored (or properly edge-colored, PEC) [24].

A sequence P = 〈v0, v1, . . . , vk〉 of vertices of graph G = (V, E) is called a walk
from s to t, if v0 = s, vk = t, and (vi−1, vi) ∈ E, for i = 1, . . . , k. A path from s to
t in G is a walk without repeated edges, i.e. ei, ej ∈ P if ei �= ej for i �= j. A length
of the path, denoted here by |P |, is the number of its vertices, or – alternatively –
a weighted function of its edges and/or vertices (in the following paragraphs path
length is calculated as the number of involved vertices). If the path traverses each
edge e ∈ E exactly once it is called Eulerian path. A simple path from s to t in G
is a path without repeated vertices, i.e. vi, vj ∈ P if vi �= vj for i �= j. A simple
path P in G is called a Hamiltonian path if every vertex v ∈ V is traversed by P
exactly once, i.e. |P | = n.

We say, that path P in graph G is properly colored if |P | ≥ 3 (path crosses at
least two edges) and every two consecutive edges ei, ei+1 ∈ P of this path have
distinct colors: f(ei) �= f(ei+1). Let us note, that a properly colored path can
exist also in non-properly colored graph. If the path is properly colored in two
colors, then we call it an alternating path [14]. Every alternating path is properly
colored [5].

Let us now consider a c-edge-colored graph G, and a sequence O = 〈ci, ci+1,
. . . , ck〉 of colors from C that defines a color ordering (color pattern). Path P in
G is orderly colored, if |P | ≥ 3 and the colors of consecutive edges in P follow the
defined color sequence O. If path P is orderly colored due to the color sequence O,
where the length of O – here denoted by |O| – equals 2, and colors in O are distinct,
then the path is alternating. It should be noted, that in general the orderly colored
path may or may not be properly colored, depending on what is the predefined
color sequence: e.g. O1 = 〈green,red,blue〉 is properly colored and so is the path
following this color sequence, but if the path follows O2 = 〈green,red,red,blue〉 it is
improperly colored. In what follows, we analyse problems, where colors in sequence
O are distinct and |O| = c.

The Orderly Colored Longest Path problem (OCLP) is the problem of finding
the longest orderly colored path or the longest orderly colored simple path in a c-
edge-colored graph (see an example in Fig. 1). The example orderly colored simple
path P1 = 〈1, 2, 3, 4, 5, 6〉 from Figure 1c is a Hamiltonian path, since |P1| = n and
each vertex v ∈ V is traversed by P1 exactly once. Figure 1d shows the orderly
colored longest path P2 = 〈1, 2, 3, 4, 5, 6, 3, 5, 1〉 in G. Its length, calculated as the



THE ORDERLY COLORED LONGEST PATH PROBLEM 27

b) 

c) 

2 3 

1 

6 5 

4 

a) 

O: color sequence 
for paths 

  1 
  2 
  3 

d) 

2 3 

1 

6 5 

4 

2 3 

1 

6 5 

4 

Figure 1. (a) An example of 3-edge-colored graph G, (b) pre-
defined color sequence O, (c) the longest orderly colored simple
path P1 in G, and (d) the longest orderly colored path P2 in G.
Both paths, P1 and P2, follow color sequence O.

number of traversed vertices, equals |P2| = 9 (let us note, that P2 is not simple,
thus, some vertices of G are traversed more than once).

Path problems in edge-colored graphs have been addressed by many researchers
(see [1, 2, 4, 5, 7, 20, 27, 28, 36, 43, 44, 49]), who discussed their different variants
and computational complexity. Yeo [49] has designed an algorithm for deciding
whether the given c-edge-colored graph contains an alternating simple cycle(s) of
any length. He has proved that this decision problem is computationally easy for
any number c of colors. In the same paper, Yeo considered the problem of alter-
nating cycles (of any length) passing through two given vertices of the graph. The
decision version of this problem has been shown to be NP-complete. Alternating
and PEC (properly edge-colored) paths that cross a predefined subset of nodes
have been addressed in a number of papers. In particular, [1, 28, 33, 44] have been
focused on s − t paths in edge-colored graphs, i.e. paths starting in node denoted
by s, and ending in the t node. In [33], Manoussakis has proved that the question
of the existence of two disjoint s − t alternating simple paths in the edge-colored
graph constitutes an NP-complete decision problem. Moreover, he has shown that
the problem of the existence of two disjoint orderly colored s − t paths in the
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c-edge-colored complete graph is also NP-complete when c ≥ 4. On the other
hand, Szeider [44], and Abouelaoualim et al. [1] have dealt with the properly edge-
colored s− t paths. Szeider [44] has proved that the decision version of a properly
colored s − t path in c-edge-colored graph is easy. Abouelaoualim et al. [1] have
shown that the question of the existence of k pairwise vertex/edge disjoint PEC
s − t paths in a c-edge-colored graph is an NP-complete problem for k ≥ 2 and
c = Ω(n2) (where n is the number of graph vertices). It remains NP-complete if
the graph has no properly edge-colored cycles and c = Ω(n). In [1], it has been also
shown that the following problems: the shortest PEC path, the shortest PEC path
with forbidden pairs, and the shortest PEC cycle, can be solved by polynomial
time algorithms for a particular class of instances (see [1] for details). Following
the results presented in [1], Gourves et al. [28] have shown that, given a c-edge-
colored graph without PEC cycles, it is possible to find – in polynomial time –
the properly edge-colored s − t paths, which visit all vertices of the graph a pre-
scribed number of times. In a consequence, it has been proved, that PEC Eulerian
s − t path problem is polynomially solvable for c-edge-colored graphs, which do
not contain PEC cycles. Another study on Eulerian and Hamiltonian problems in
edge-colored graphs is given in [7]. Benkouar et al. [7] have focused on simple paths
and cycles in complete graphs. They have shown the NP-completeness of several
variants of the Hamiltonian path/cycle problem: (i) the existence of a Hamilto-
nian (123) cycle in 3-edge-colored complete graph; (ii) the existence of (x1, x2, x3)
cycle containing 6 selected vertices of the 3-edge-colored complete graph; (iii) the
existence of a Hamiltonian x1x2 . . . xk cycle in a k-edge-colored complete graph,
where k ≥ 4 and n = kp (n is the number of graph vertices, p is a positive inte-
ger); (iv) variant similar to (iii) but for n = kp + 1; (v) the existence of orderly
colored cycle of length pk, repeating the order of colors p times, in a complete k-
edge-colored graph. On the other hand, a proof of NP-hardness of the Hamiltonian
path problem in 2-edge-colored simple graph has been presented in [2]. It has been
based upon the transformation of the Hamiltonian path in non-colored graphs to
the considered problem. Another problem, focusing on finding the longest orderly
colored simple path, first announced in [41], has been discussed in detail in [43]
where the proof of its NP-hardness has been provided. Finally, path problems in
the edge-colored multigraphs have been analysed in [4]. As shown by Bang-Jensen
and Gutin [4], the problem of existence/finding a longest alternating simple path
in a 2-edge-colored complete multigraph is computationally easy.

Various issues can be modelled as the orderly colored path problem. Some have
been already studied in the literature, especially those related to colored Eulerian
paths. Here, we focus our attention more on questions that require routing through
graph nodes, in particular on colored Hamiltonian paths. Considering such prob-
lems, we show three formulations for OCLP where an edge-colored graph is trans-
formed splitting the vertex set in k partitions (a k-partite digraph) and addi-
tional constraints are imposed over these partitions. The presented formulations
share some characteristics with the Shortest Path Tour Problem (SPTP) described
in [25], shown to be solvable either with the Shortest Path algorithms (see [3,19,26])
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or with dynamic programming [8]. Indeed, SPTP is a polynomial-time transforma-
tion into a single source destination shortest path problem of a multi-stage digraph
with nonnegative arc lengths, subject to constraints on the partite sets of vertices.
Nevertheless, the substantial difference between SPTP and OCLP is to be found in
the formulation of constraints on the partition sets: in the former problem they are
the covering constraints, while in the latter one they serve as packing constraints.
This constitutes a main difference, that results in computational hardness of the
latter problem.

The paper is structured as follows. In Section 2 we look through varius applica-
tions of the orderly colored longest path in modelling different real-world problems.
Section 3 deals with three integer programming solutions to the problem in ques-
tion, in particular: longest path in an acyclic n-partite graph (3.1), longest path in a
cyclic c-partite graph (3.2) and longest path in a cyclic c-connected graph (3.3). In
Section 4, we provide the results of some experimental runs over a set of simulated
problems aimed to compare the presented algorithms. In Section 5 we summarize
the results of previous research concerning edge-colored paths and we propose the
directions of future study.

2. Applications of OCLP

Graphs with colored edges and/or vertices can be used to model search and
decision problems. Here we focus on edge-colored graphs which have been found
useful in modelling a variety of issues, for example when a certain subset of edges
– a spanning tree or a matching - is required to use the minimum number of
colors/labels (see [16–18]). We look at problems whose solution involves finding
an orderly colored path (or simple path) in such graphs. In particular, we are
interested in solutions with the maximum length. Since the longest path problem
can be considered in terms of edges or nodes included in the solution, we provide
examples for both cases. However, our interest lies basically in simple paths whose
lengths are calculated as the the number of traversed nodes.

Let us first analyse a general class of problems that are modelled using grid,
lattice or Mesh graphs. A grid can be transformed into c-edge-colored graph if node
coordinates are not relevant when the modelled problem is solved. Then c equals
the grid dimensionality. For example a rectangular grid can be represented with
a 2-edge-colored graph, where color c1 represents horizontal edges and color c2 is
for vertical edges of a grid (Fig. 2). A similar rule applies to a transformation of
lattice and Mesh graphs. Now, a problem of constructing a path going alternately
through horizontal and vertical edges of a grid is represented by the alternating
path problem in 2-edge-colored graph. A great advantage of edge-colored graph
representation over grid is that we always deal with two-dimensional model of a
problem (irrespectively of the grid dimension), which can be easily pictured and
analysed even manually. Extending the number of grid dimensions results only in
addition of yet another hue to paint the graph edges.
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Figure 2. (a) An example grid graph G, and (b) its representa-
tion as 2-edge-colored graph G′ (red edge in G′ represents vertical
edge from G, blue edge in G′ is for horizontal edge from G).

Grid graphs, and hence also edge-colored graphs, are used to model city blocks
where intersections are vertices and streets are edges [34]. Grid is also a straight-
forward representation of the Manhattan topology. Considering the problem of a
traveling salesman in the city, provided that his points of interests are located at
the intersections, we solve the Hamiltonian path problem in the city-block graph.
If additional constraints are given for a graph (e.g. some edges represent one-way
streets) and/or for a required salesman route (e.g. there are some preferences ac-
cording to which points of interest must be visited before the others), the problem
can be modelled using the edge-colored graph. Then, solving the TSP requires
searching for the orderly colored simple path in the edge-colored graph.

Similarly, the edge-colored graph may represent a two-dimensional memory ar-
ray where memory is accessed moving down or across from each cell. In this prob-
lem each vertex of a graph corresponds to one memory cell and edges connect
adjacent cells. A color of an edge corresponds to the direction of transition be-
tween the two cells. Finding the longest simple path in the graph modelling this
problem corresponds to accessing all the data stored in the memory array [32].

Edge-colored graphs are also applied to represent grid graphs with obstacles
(e.g. forbidden vertices). An example of such a problem is the longest path routing
discussed in [45]. It concerns the process of designing the printed circuit boards
(PCB) and printed wiring boards (PWB). PCBs and PWBs are found in many
commercially produced electronic devices, where they are used as platforms to
connect electronic components via conductive paths, tracks and signal tracing.
Although their production and soldering is automated, it must be preceded by
the initial design and layout, which involve separate algorithms supporting circuit
and/or wire placement. One of the crucial problems to be solved in this initial stage
is bus routing within tight minimum and maximum length bounds. The issue is
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formulated as a gridded longest path routing with obstacles and can be optimally
solved for example by a mixed integer linear programming procedure.

There are other interesting examples of routing problems which can be mod-
elled using edge-colored graphs and orderly colored paths, e.g. pick-up and de-
livery, where different types of pick-up and deliveries must follow a predefined
scheme, electric vehicles routing, where loading and discharging arcs must alter-
nate, or separated waste collection routing. Some applications are also found for
routing in colored graphs modelling fibre-optic networks. Recent developments in
optical technology have resulted in the rapid growth of fibre-optic networks ap-
plying wavelenght division multiplexing (WDM) in the physical layer. The WDM
technology allows for simultaneous transmission within a single optical fibre on a
certain number of wavelengths, and the capacity n of the link may even exceed one
hundred wavelengths. Whereas in theory this could result in the increase of the
bandwidth of a single link even by a factor of n, in practice utilizing such a gain is
difficult and requires the application of efficient routing and switching algorithms.
This problem can be solved as a minimum cardinality wavelength routing problem.
Thus, given now the set of routes in a given network, the problem of assigning a
minimum number of wavelengths is simply to find such a coloring of routes (ev-
ery route receives one color) that a maximum number of colors assigned to any
edge (belonging to different routes) is at its minimum. In general, this problem is
NP-hard but some polynomial time algorithms maybe also given [6, 9, 29, 30, 35].

Edge-colored schemes are also useful in modelling homogeneous faults in net-
works [46]. This problem refers to the area of communication networks. In such a
network, a broken node or edge causes a communication failure, if it takes place
along the route passing the damaged component. In fact, a failure of a node (e.g.
representing a router/a modem) can be modelled as a failure of a communication
link attached to this node (i.e. an edge). Thus, a problem of network robustness
against faults can be studied in the context of edge failures in the communication
network. While preparing a graph model of the network, one can use colors to
mark the devices according to their failure probability, e.g. all routers of brand
K have the same failure probability, so the corresponding edges obtain the same
color. It seems reasonable to assume that edges with the same color, i.e. all brand
K devices, can fail at the same time, because of some platform dependent virus
attack. Such failures are called homogeneous. The number of different probability
values imposes the number of colors used in the graph. Communication networks
should be robust agaist homogeneous faults, what can be achieved in several ways
– each of them defines the other network problem. One should study the number
of colors (i.e. the number of non-homogeneous devices in the network) necessary
to provide survivable communication. But this is equally important to ensure the
communication in case of some local failure. The latter issue can be modelled as a
problem of routing through the edge-colored graph with restraints (e.g. avoiding
some colors during communication route or following some pattern of colors – i.e.
passing through specified devices in the required order).
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The other application of edge-colored graphs and properly/orderly colored paths
can be found in modelling secure transmission of messages in networks. In the
graph model of this problem, a color assigned to an edge represents a transmission
code. When the encoded message is propagated through a network (represented
by the edge-colored graph) along a monochromatic path, then it may be easily
decoded in any local decoding spot. But if the same message is passed through a
properly edge-colored path the security of transmission greatly increases. Thus, a
problem of planning the secure message route between two nodes of the network
(let us denote them by s and t) is reduced to the problem of finding the properly
colored s − t path in the edge-colored graph [33].

Path constrained in edge colors can be also used to model chessboard problems.
A good example here is the problem of knight’s moves, known in recreational
mathematics as the knight’s tour problem [47]. The knight is the only chessman
that cannot move straight. It is only allowed to move along the L-shape line, i.e.
first it takes two squares in vertical or horizonal direction, and – next – one square
in a perpendicular direction. In the knight’s tour problem one tries to visit all
squares of the chessboard in a sequence of knight’s moves, and end the tour in
the starting square. A solution to this problem usually starts from proposing a
graph representation of the chessboard, where each graph node corresponds to
one chessboard square. To model the problem one can apply a grid graph or an
edge-colored graph, where edge colors represent possible moves. Finding a solution
the knight’s tour problem amounts to finding a specific Hamiltonian cycle in the
graph representation of the chessboard. However, unlike the Hamiltonian cycle
problem, the knight’s tour has been shown to be solvable in linear time [22].

Finally, in the last two decades c-edge-colored graphs have been proposed to
model various problems in genetic and molecular biology [37,41]. For instance, [23]
discusses the problem of spatial order of chromosomes in metaphase nuclei. It seems
that the chromosome order is responsible for gene expression as well as some mech-
anisms involved in the pairing processes. Bennett’s principle defining chromosome
arrangement based on similarity relation between their arms, has given rise to the
design of a multigraph containing two types of edges (2-edge-colored graph). The
authors of [23] study the chromosome order solving the problem of alternating
Hamiltonian cycles in the corresponding graph model. It is proved, that alternat-
ing Hamiltonian cycle determines the order of chromosomes in case their number
is even.

Another problem that can be modelled using edge-colored graphs concerns the
Double Digest Problem (DDP), which occurs during DNA mapping. Physical maps
that show DNA molecule with the cleavage sites, i.e. points in which DNA is
cleaved by the restriction enzymes, are basic structures used in molecular genetics.
However, a construction of such maps (DDP) is a difficult problem, even for small-
scale mapping. The number of solutions to DDP increases exponentially with the
DNA sequence length and is hard to be analysed, although a great majority of
these solutions are highly similar and easily transformable into one another. In [36],
Pevzner studies these multiple solutions from the combinatorial point of view. He
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uses 2-edge-colored graphs to represent the DDP and shows an association between
DDP solutions and alternating Eulerian cycles (which are longest orderly colored
paths in his edge-colored graphs). Based on the previous studies concerning the
transformations between similar DDP solutions, the transformations of alternating
cycles are presented for 2-edge-colored graphs.

Recently, the correlation signals occurring between the nuclei of RNA molecule
during Nuclear Magnetic Resonance (NMR) experiments have been represented
with an edge-colored graph model [2, 10, 11, 42, 43]. NMR experiments are used in
the determination and analysis of protein and nucleic acid structures, they often
complement in silico prediction [12] and are applied in the validation of computed
molecular models [48]. In [41] the authors present an enumerative algorithm that
solves the problem of NMR signal assignment in the proposed graph model. It
is assumed that each edge of a c-edge-colored graph is colored according to the
type of interaction represented as a transition between a pair of cross-peaks in
a 3D NMR spectrum. The longest orderly colored simple path along the vertices
of G is the reconstruction of a transfer pathway between the cross-peaks in the
spectrum, and - respectively – a magnetization transfer between the nuclei of RNA
molecule. Similarly, in [2,10,42], the problem of NMR signal assignment is studied
for the two-dimensional spectra. The search space in this case can be modelled as
2-edge-colored graph, and the solution to the 2D assignment problem is the longest
alternating simple path. Based on this graph problem solution, NMR experimenter
can start the process of a reconstruction of the three-dimensional shape of the
analysed RNA molecule [38–40].

It seems that graphs with colored edges can be applied to model various prob-
lems, from molecular biology and genetics to engineering. In particular, the prob-
lems with ordering restraints can be solved via construction of the orderly colored
longest paths in edge-colored graphs. Edge colors in such graphs, as well as color
patterns defined for paths are suitable to represent dependencies between graph
nodes. A variety of solutions can be proposed to solve the OCLP for both cases:
paths and simple paths. In the following section we present three methods, selected
to solve the longest orderly colored simple path problem, being recently intensively
studied in the literature.

3. Models and algorithms

In this Section, we describe three new models and algorithms for the OCLP
problem (first introduced in report [21]). In the next Section, the results of com-
putational experiments run to compare their efficiency and usability will be pro-
vided. The first model is based on the longest path problem in an n-partite graph,
in which the number of partitions equals the number of vertices in the original
edge-colored graph. The second model is a transformation of the latter one, where
the number of partite sets depends on the number of colors. The third model is
constructed upon an n-partite graph, where each partition is a c-connected sub-
graph of the original graph G. All formulations are described based on the example
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graph pictured in Figure 1a. For simplicity, in all cases we assume that a feasible
path must start from the first color in the color sequence (which is green in the
example from Fig. 1a). Such an assumption can be easily removed in the presented
models, either by the addition of zero-cost arcs, or by solving c instances of the
same model.

3.1. LPnPP: Longest path in the acyclic n-partite graph problem

In this section, we propose a formulation of OCLP as the longest path problem
in the acyclic directed graph (network) with vertex set divided into n partitions,
and we propose an algorithm to solve this problem.

Let G = (V, E) denote an original c-edge-colored undirected graph with n ver-
tices, V = {v1, v2, . . . , vn}, and m edges, which are colored with c colors. Let
O = 〈c1, . . . , cc〉 be the sequence determining the order of colors to be followed by
the orderly colored path in G. We propose to transform G into n-partite digraph
G′ = (V ′, A′) (called also a network) according to the following procedure:

1. A set of vertices V ′ is composed of n copies of V from the original graph.
The i-th copy of V in digraph G′ is called a partite set and denoted as Li.
Li = {v1

i , v2
i , . . . , vn

i } for i = 1, . . . , n. Each partite set is refered to as partition
of G′, and thus, G′ is an n-partite graph. Additionally, one source vertex s and
one sink (destination vertex) t are added to V ′: L0 = {s} and Ln+1 = {t}.
Consequently, V ′ = L0∪L1∪L2∪ . . .∪Ln∪Ln+1, where Li ∩Lj = ∅ for i �= j,
and |V ′| = n2 + 2.
We can also say, that vertex set V ′ is composed of n level sets : V ′ = V 1 ∪V 2 ∪
. . . ∪ V n, where V i ∩ V j = ∅ for i �= j. The i-th level set V i contains n copies
of vertex vi ∈ V from the original graph, i.e. V i = {vi

1, v
i
2, . . . , v

i
n}, for each

i ∈ {1, . . . , n}. Note that V l ∩ Lr = {vl
r} for each r, l ∈ {1, . . . , n}.

2. A set of arcs A′ contains weighted arcs between vertices of G′ and is created
in the following way:
• The source vertex s is connected to every vertex in L1 by an arc with zero

cost.
• Every vertex v ∈ V ′ − {s, t} is connected to the sink t by an arc (referred

to as exit arc) with zero cost.
• Every edge (vi, vj) ∈ E with color cy, y ∈ {1, . . . , c}, is replaced by arcs

with cost one in A′, (vi
r, v

j
r+1) and (vj

r , v
i
r+1), for all r = 1, . . . , n − 1: (r

mod c) = y or ((r mod c) = 0 and y = c).
Note, that all arcs connecting two neighboring partite sets, Lr and Lr+1, have
the same color. Moreover, one edge from G can correspond to more than two
arcs in G′ if n > c. The colors of arcs between consecutive partitions follow the
color sequence O (see Fig. 3).

Proposition 3.1. Let G′ = (V ′, A′) be an n-partite digraph constructed upon the
edge-colored graph G due to the above procedure. The longest simple path P from
s to t in G′, such that each level set of V ′ is touched by P only once, is the orderly
colored longest path in G.
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Figure 3. The 6-partite digraph constructed upon the 3-edge-
colored graph from Figure 1a. The green-red-blue path is marked
with thick arcs.

To clarify the procedure of network construction, let us consider the example edge-
colored graph G = (V, E) (Fig. 1a) and its transformation to n-partite digraph
G′ = (V ′, A′) with respect to the color sequence O = 〈green, red, blue〉 (Fig. 1b).
The vertex set V from the original graph contains n = 6 vertices and m = 11 edges
in three colors: red, green, and blue. The corresponding digraph G′ should have
38 vertices, i.e. 36 vertices collected in 6 partition sets and 2 additional vertices
s, t. The first level set V 1 containing 6 copies of vertex v1 is presented in grey
horizontal box. The grey vertical box represents the second partition L2 being a
copy of the whole vertex set V . Note, that – for clarity – not all exit arcs have
been displayed in the figure, but only those connecting vertices from V 1 and V 6

to node t.

An algorithm finding the longest path in n-partite digraph G′ = (V ′, A′) oper-
ates on the Integer Programming (IP) formulation of the problem. The following
variables are used in the formulation:

• xij
r – a decision variable associated with arc (vi

r, v
j
r+1) ∈ A′. xij

r = 1 if there is
a flow on the corresponding arc, otherwise xij

r = 0.
• pij

r – cost of arc (vi
r, v

j
r+1) ∈ A′. pij

r = 0 if the corresponding arc is adjacent
either to the source or to the sink, otherwise pij

r = 1.
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The Longest Path n-Partite graph Problem with packing constraints (LPnPP) is
an optimization problem formulated as follows:

Maximize
∑

(vi
r ,vj

r+1)∈A′ pij
r xij

r (OBJ)
subject to:

∑
(vi

r ,vj
r+1)∈A′ xij

r − ∑
(vj

r−1,vi
r)∈A′ xji

r = 0 ∀vi
r ∈ V ‘ − {s, t} (C1)

∑
(s,vj

1)∈A‘ x
sj
1 = 1 (C2)

∑
(vi

r ,t)∈A‘ x
it
r = 1 (C3)

∑
(vj

r−1 ,vi
r)∈A′

vi
r∈V l

xji
r ≤ 1 l = 1, 2, . . . , n (C4)

xij
r ∈ {0, 1} ∀(vi

r, v
j
r+1) ∈ A′ (C5)

(C1) is the classical flow balance constraint of a network flow problem. Its first term
represents the total flow emanating from vertex vi

r, the second term represents the
total flow entering into vi

r. From the source (s) only one unit of flow is sent to the
sink (t) as imposed by (C2) and (C3). Thus, the solution of the problem sends
one unit of flow from s to t along a path P . The flow must satisfy the packing
constraints (C4), which state that the total flow entering each level set V l equals
at most 1 (i.e. for each V l at most one vertex can be visited by the path). Thus,
(C4) ensures that only one copy of the same vertex from the original graph is
visited by P . Summing up we can formulate the following proposition:

Proposition 3.2. A feasible (optimal) solution of LPnPP is an orderly colored
(longest) path in the corresponding edge-colored graph G. An optimal solution of
LPnPP composed of n − 1 vertices is an orderly colored Hamiltonian path in G.

3.2. LPcPP: Longest path in the cyclic c-partite graph problem

Below, we propose a formulation of OCLP as the longest path problem in the
cyclic directed graph with vertex set divided into c partitions, and we propose an
algorithm to solve this problem. In relation to the previous proposition (Sect. 3.1),
this model significantly reduces the dimension of a graph, what results from its
cyclic characteristics. On the other hand, it requires an introduction of cycle elim-
ination constraints and cycle separation by the algorithm.

Again, let G = (V, E) denote an original c-edge-colored undirected graph with
n vertices, V = {v1, v2, . . . , vn}, and m edges, which are colored with c colors. Let
O = 〈c1, . . . , cc〉 be the sequence determining the order of colors to be followed by
the orderly colored path in G. We propose to transform G into c-partite digraph
G∗ = (V ∗, A∗) according to the following procedure:

1. A set of vertices V ∗ is composed of c copies of V from the original graph.
The i-th copy of V in digraph G∗ is called a partite set and denoted as Li.
Li = {v1

i , v2
i , . . . , vn

i } for i = 1, . . . , c. Each partite set is refered to as partition
of G∗, and thus, G∗ is a c-partite graph. Additionally, one source vertex s and
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Figure 4. The 3-partite digraph constructed upon graph from
Figure 1a. The green-red-blue path is marked with thick arcs.

one sink (destination vertex) t are added to V ∗: L0 = {s} and Lc+1 = {t}.
Consequently, V ∗ = L0∪L1∪L2 ∪ . . .∪Lc ∪Lc+1, where Li ∩Lj = ∅ for i �= j,
and |V ∗| = nc + 2.
We can also say, that vertex set V ∗ is composed of n level sets : V ∗ = V 1∪V 2∪
. . . ∪ V n, where V i ∩ V j = ∅ for i �= j. The i-th level set V i contains c copies
of vertex vi ∈ V from the original graph, i.e. V i = {vi

1, v
i
2, . . . , v

i
c}, for each

i ∈ {1, . . . , n}. Note that V l ∩Lr = {vl
r} for each l ∈ {1, . . . , n}, r ∈ {1, . . . , c}.

2. A set of arcs A∗ contains weighted arcs between vertices of G∗ and is created
in the following way:
• The source vertex s is connected to every vertex in L1 by an arc with zero

cost.
• Every vertex v ∈ V ∗ − {s, t} is connected to the sink t by an arc (referred

to as exit arc) with zero cost.
• Every edge (vi, vj) ∈ E with color cy, y ∈ {1, . . . , c}, is replaced by two

arcs with cost one in A∗:
– (vi

r, v
j
r+1) and (vj

r , v
i
r+1) if r = y, r ∈ {1, . . . , c − 1}.

– (vi
c, v

j
1) and (vj

c , v
i
1) if y = c.

Note, that all arcs connecting two neighboring partitions have the same color
(Lc is considered a neighbor of L1 and Lc−1). The colors of arcs between
consecutive partite sets follow the color sequence O.

Similarly as in Section 3.1, we show (see Fig. 4) how the example edge-colored
graph G (Fig. 1a) is transformed into a c-partite digraph G∗ = (V ∗, A∗) with
respect to the color sequence O = 〈green, red, blue〉. G∗ should have 20 vertices,
3 partite sets L1, L2, L3 and 6 level sets V l (see Fig. 4). Note, that green edges from
G have their arc representatives in G∗ between L1 and L2, red edges – between
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L2 and L3, and blue edges - between L3 and L1. Exit arcs are light grey, and – for
clarity – not all of them are drawn in the figure.

An algorithm to solve the above defined problem is based on the IP formulation,
which uses two types of variables: xij – a decision variable corresponding to arc
(vi, vj) ∈ A∗, and pij – cost of arc (vi, vj) ∈ A∗. The values of decision and cost
variables are calculated in the same manner as for LPnPP. Given, that s is the
source vertex, and t is the sink, the Longest Path c-Partite graph Problem with
packing constraints (LPcPP) is formulated as follows:

Maximize
∑

(vi,vj)∈A∗ pijxij (OBJ)
subject to:

∑
(vi,vj)∈A∗ xij − ∑

(vj ,vi)∈A∗ xji = 0 ∀vi ∈ V ∗ − {s, t} (C1)
∑

(s,vj
1)∈A∗ xsj = 1 (C2)

∑
(vi,t)∈A∗ xit = 1 (C3)

∑
(vi,vj )∈A∗

vi∈V l

xij ≤ 1 l = 1, 2, . . . , n (C4)
∑

(vi,vj)∈Γ xij ≤ | Γ | −1 Γ ∈ Γ̂ (C5)

xij ∈ {0, 1} ∀ (vi, vj) ∈ A∗. (C6)

Like in the previous model, (C1)–(C3) are the flow balance constraints, and the
packing constraints (C4) state that in every level set V l at most one vertex can be
visited by the path. Since the graph is cyclic, we need to enforce the elimination
of all the orderly colored cycles. In the IP formulation this is achieved due to
(C5). Cycle elimination constraints are not present in the initial stages of problem
solving, but they are iteratively added and eliminated if they appear in the current
solution. Concluding we can state:

Proposition 3.3. A feasible (optimal) solution of LPcPP is an orderly colored
(longest) path in the corresponding edge-colored graph G. An optimal solution of
LPcPP composed of n − 1 vertices is an orderly colored Hamiltonian path in G.

3.3. LPcCP: Longest path in the cyclic c-connected graph problem

Here, we introduce the third ILP model for OCLP, which represents the problem
as the longest path in the cyclic c-connected digraph. Similarly to LPcPP, this
formulation requires elimination of cycles. Again, the number of vertices in the new
representation depends on the number of colors, but the graph structure allows
for more efficient usage of color sequence in the search for optimum solution.

Let us recall that G = (V, E) denotes the original c-edge-colored undirected
graph with n vertices, V = {v1, v2, . . . , vn}, and m edges, which are colored with
c colors. O = 〈c1, . . . , cc〉 is the sequence determining the order of colors to be
followed by the orderly colored path in G. Graph G can be transformed c-connected
digraph G# = (V #, A#) according to the following procedure:
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1. A set of vertices V # is composed of c copies of the original vertex set V .
The i-th copy of V in digraph G# is denoted by Li. Additionally, one source
vertex s and one sink (destination vertex) t are added to V #. Consequently,
|V #| = nc + 2.
We can also say, that vertex set V # contains n subsets V i, where the i-th
subset contains c copies of vertex vi ∈ V from the original graph, i.e. V i =
{vi

1, v
i
2, . . . , v

i
c} for each i ∈ {1, . . . , n}. Thus, V # = V 1 ∪V 2 ∪ · · · ∪V n ∪{s, t},

where V i ∩ V j = ∅ for i �= j. Each copy of vertex vi is associated with a color,
i.e. vi

j has color cj .
2. A set of arcs A# contains weighted arcs between vertices of G# and is created

in the following way:
• For every V i ⊂ V #, i = 1, . . . , n, all vertices in V i are connected by a

directed cycle, so that the sequence of vertex colors in the cycle follows
the color sequence O. Thus, we obtain n subgraphs Gi = (V i, Ai), where
|V i| = c, and |Ai| = c for each i ∈ {1, . . . , n}. Each Gi ⊂ G# is a c-
connected subgraph.
Let A′ denote a subset of arcs composed of all Ai: A′ = A1 ∪A2 ∪ · · · ∪An.
Every arc in A′ has a zero cost.

• Every edge (vi, vj) ∈ E with color cy, y ∈ {1, . . . , c}, is replaced by two
arcs with cost one, (vi

y , vj
y) and (vj

y , vi
y), in A#.

Let A′′ denote a subset of arcs corresponding to edges from the original
graph G. A′′ contains arcs which connect vertices from different subgraphs
Gi.

• The source vertex s is connected to every vertex vi
1 ∈ V #, i = 1, . . . , n, by

arc with zero cost (these arcs belong to A′′).
• Every vertex v ∈ V # − {s, t} is connected to the sink t by an arc (referred

to as exit arc) with zero cost (these arcs belong to A′′).

Let us illustrate the above described model with an example (see Fig. 5). Again,
the original edge-colored graph G is the one from Figure 1a. G is transformed
into a c-connected digraph G# = (V #, A#) with respect to the color sequence
O = 〈green, red, blue〉. G# should have 20 vertices collected in 6 3-connected
subtraphs Gi (each original vertex from G is represented by a cycle including 3
colored nodes in G#). A directed cycle in every subgraph Gi gives the same order
of node colors as that defined in O. Two vertices of the same color are connected
by two arcs in opposite directions if they are connected by an edge with the same
color in the original graph. The source node is connected to all green vertices. For
clarity, exit arcs are not represented in the figure.

An algorithm to solve the Longest Path c-Connected graph Problem with pack-
ing constraints (LPcCP) is based on the IP model and uses the following variables:

• xij
l – a decision variable corresponding to arc (vi

l , v
j
l ) ∈ A′′;

• xi
lr – a decision variable corresponding to arc (vi

l , v
i
r) ∈ Ai, Ai ⊂ A′;

• pij
l – cost of arc (vi

l , v
j
l ) ∈ A′′.
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Figure 5. The 3-connected digraph constructed upon graph from
Figure 1a. The green-red-blue path is marked with thick arcs.

The values of decision and cost variables are calculated in the same manner as
in the previous models. Given, that s is the source vertex, and t is the sink, the
LPcCP is formulated as follows:

Maximize
∑

(vi
l ,vj

l )∈A′′ pij
l xij

l (OBJ)
subject to:

∑
(vj

l ,vi
l )∈A′′ xji

l − ∑
(vi

l ,vi
r)∈A′ xi

lr = 0 ∀vi
l ∈ V # − {s, t} (C1)

∑
(vi

r ,vi
l )∈A′ xi

rl −
∑

(vi
l ,vj

l )∈A′′ xji
l = 0 ∀vi

l ∈ V # − {s, t} (C2)
∑

(s,vj
1)∈A′′ xsj

1 = 1 (C3)
∑

(vi
l ,t)∈A′′ xit

l = 1 (C4)
∑

(vi
l ,vi

r)∈A′ xi
lr ≤ 1 i = 1, 2, . . . , n (C5)

∑
(vi

l ,vj
l )∈A′′ xij

l ≤ 1 i = 1, 2, . . . , n (C6)
∑

(vj
l ,vi

l )∈A′′ xji
l ≤ 1 i = 1, 2, . . . , n (C7)

∑
(vi

l
,vj

l
)∈Γ xij

l +
∑

(vi
l ,vi

r)∈Γ xi
lr ≤ | Γ | −1 Γ ∈ Γ̂ (C8)

xij
l ∈ {0, 1} ∀ (vi

l , v
j
l ) ∈ A′′ (C9)

xi
lr ∈ {0, 1} ∀ (vi

l , v
i
r) ∈ A′. (C10)

Let us recall that since all arcs in A′ have zero cost, the objective function contains
only variables corresponding to arcs from A′′. Next, (C1-C4) are the extended flow
balance constraints. (C1) states that whenever the flow touches one of the nodes,
it must also use one of the arcs in the connected subgraph Gi including this node.
(C2) ensures that the flow exits correctly from the visited subgraph Gi. These
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constraints determine that if the path reaches vertex vi
l ∈ Gi through l-colored

arc, then it will go to vi
r ∈ Gi and exit the subgraph via r-colored arc. (C3)

and (C4) constraints ensures that only one unit flows trough the path from s to
t. (C5-C7) are packing constraints. (C5) states that the total flow entering each
connected subgraph Gi is at most 1 (in any set Ai at most one arc can be part of
the path). From it follows that, for each i, at most two vertices in Gi can be visited
by the path (C6-C7). Graph G# is cyclic, thus we need to enforce the elimination
of all cycle solutions, by adding (C8), which for each cycle Γ ∈ Γ̂ express the
corresponding cycle elimination constraint. Summing up. we can state that:

Proposition 3.4. A feasible (optimal) solution of LPcCP is an orderly colored
(longest) path in the corresponding edge-colored grapg G. An optimal solution of
LPcCP composed by n − 1 vertices is an orderly colored Hamiltonian path in G.

4. Algorithms comparison in computational experiment

In this Section, we present computational tests that have been performed on
randomly generated edge-colored graphs in order to compare LPnPP (Model 1),
LPcPP (Model 2) and LPcCP (Model 3). To prepare test instances we have
designed and implemented an instance simulator, which generates edge-colored
graphs and stores them in DIMACS format [50] (a graph is represented as a list of
edges with their colors). Three main parameters govern graph generation: (1) the
number of vertices, (2) graph density, and (3) the number of colors. Edges, once
generated, are colored randomly, according to a uniform distribution. The instance
generator allows for an additional control related with the presence of an orderly
colored Hamiltonian path. Thus, we can generate two types of instances: type 1 –
non-Hamiltonian graphs (the longest orderly colored path is shorter than n, where
n is the number of vertices), type 2 – Hamiltonian graphs (containing at least one
Hamiltonian path).

The experiments were performed using the Mixed Integer Linear Programming
solver Cplex 12.2.0.0 by IBM Ilog with standard settings on a 8-core i7 Intel pro-
cessor 2.597 GHz with 8GB RAM. The code was developed in C programming
language and compiled with GNU CC compiler, running under Microsoft Win-
dows 7.0 with optimization option O3.

Computational experiments have been run with the purpose of enumerating
all the orderly colored paths with maximum length. In LPcPP and LPcCP, cycle
elimination constraints have been added to the formulation whenever the current
solution contained a cycle. A detailed report on the experiments is summarized in
Tables 4–7. Each table refers to a different set of tests with increasing graph dimen-
sions (20–100 vertices) and different graph density (10%, 20%, and 30%). Tables 4
and 5 concern the tests with 2-edge-colored graphs, for problems of type 1 and
type, respectively. Tables 6 and 7 report on the results for 3-edge-colored graphs
of type 1 and 2, respectively. Each table provides graph density (column #1),
instance size, i.e. number of nodes in edge-colored graph (column #2), model
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Table 1. Average computing time (seconds).

No. of vertices Model 1 Model 2 Model 3
10 0.005 0.006 0.003
20 0.013 0.011 0.016
30 0.193 0.045 0.056
50 505.822 45.359 65.915
70 3303.272 2765.605 3053.289
100 2506.478 2402.853 2404.793

All Problems 1052.631 868.980 920.679

identifier, i.e. 1-LPnPP, 2-LPcPP, 3-LPcCP (column #3), number of vertices in
the network (column #4), number of arcs in the network (column #5), number of
constraints in the associated ILP (column #6), optimum path length (column #7),
the number of paths with maximum length (column #8), number of eliminated
cycles (column #9), and computing time in seconds (column #10). When comput-
ing time exceeds 1 hour, the algorithm is stopped and the current state of solution
reported.

Looking at the results collected in Tables 4–7 we can see that the studied prob-
lem poses a computational challenge for bigger instances. We notice a relevant
difference between computing times of different models. An additional insight into
this issue is provided in Table 1, where we report the average computing times by
LPnPP, LPcPP and LPcCP algorithms run for 60 instances with different sizes.
Table shows the quick rise of computing times with the number of nodes, in par-
ticular we can see long computing times required by Model 1 (LPnPP). For bigger
instances the difference tends to reduce, because in most cases the algorithms are
stopped after an hour. The table does not report that for many instances Model 1
does not find any optimal solution, while Model 2 and Model 3 always do.

A slightly different picture surfaces when we count the number of instances
solved within an hour, i.e. graphs for which at least one optimal solution has been
found before 1 h, even if the whole computation has not finished (not all optimal
solutions were found). If we restrict the analysis to 36 large instances (with 50, 70
or 100 nodes) we see that Model 1 often fails in finding the optimal solution, in
particular when the graph is dense (for graphs with 30% density Model 1 fails in
over half of the cases).

Another comparison of the three models can be made if we consider how many
times each model was better than the others in finding the optimal solution. For
this comparison, let us declare that model A wins over model B if either model A
can find all optimal solutions faster than model B, or model A finds more optimal
solutions than model B within the given time bound. In case of a tie, both models
are considered winners. Figure 6 shows results of this comparison. One can notice
the superiority of Model 2 (LPcPP), that accounts for an increasing proportion of
wins as the instance size increases. Together with the number of wins (for the whole
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Figure 6. A distribution of (a) “wins” and (b) solved instances.

Table 2. Number of instances solved within 1 h.

Graph density Model 1 Model 2 Model 3
0.1 9 12 12
0.2 7 12 12
0.3 7 12 12

All Problems 23 36 36

set of 60 instances), a twin chart reports the distribution of 36 solved instances
for different graph sizes.

The superiority of Model 2 (LPcPP) suggested by Figure 6a is more clearly
displayed in Figure 7, where the same distribution is split up for instances with
different number of colors (Fig. 7a, Fig. 7b), and according to the problem type
(Fig. 7c, Fig. 7d). While the larger instances (100 nodes) are always “won” by
Model 2, we see that for smaller ones the distribution is significantly modified. That
suggests the absence of interactions among the adopted model and parameters that
define the instance (e.g. number of colors, problem structure).

In order to confirm the previous results, we have considered another 10 ran-
domly generated instances having the same parameters: 2-edge-colored graphs,
non-Hamiltonian, with 100 nodes, and 20% density. From the previous exper-
iments it seems, that such characteristics defines instances with an interesting
degree of difficulty. All models have then been applied to these 10 instances and
have given results presented in Table 3. Again the experiments show the superior-
ity of Model 2 and Model 3 over Model 1. In this test, processing each instance by
every algorithm consumed the whole alloted time. Model 2 seems to run slightly
longer, determining, on average, a larger number of solutions than Model 3, and
working a little harder in cutting out cycles. When the 10 problems are compared
individually, according to the number of optimal solutions and eliminated cycles
(see Fig. 8), Model 2 does not exhibit a clear dominance over Model 3.
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Figure 7. A distribution of “wins” for different instances:
(a) 2-edge-colored graphs, (b) 3-edge-colored graphs, (c) non-
Hamiltonian graphs, (d) Hamiltonian graphs.

Table 3. Models’ comparison over 10 problems.

Model No. of solved Avg. no. of Avg. no. Total no.
id. instances longest paths of cycles of “wins”
1 2 1 0 0
2 10 207.3 2855.6 9
3 10 196.1 2703.3 8

5. Summary

The Orderly Colored Longest Path is a problem of finding the longest path in the
edge-colored graph, where colors of the traversed edges must follow a predefined
color sequence. In the paper, we have presented a survey through applications
of OCLP to model various problems in engineering, routing, games, genetics and
molecular biology. It appears, that OCLP usability lies especially in modelling
problems with some geometric restraints and those with some ordering of actions
imposed in advance. Considering solution to the problem in question, we have
described three integer programming formulations, LPnPP, LPcPP and LPcCP,
which allow for efficient path search in the graph. In order to demonstrate the
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Table 4. Experimental results for 2-edge-colored non-Hamiltonian graphs.

Graph Instance Model No. of No. of No. of Path No. of No. of Comp.
density size id. nodes arcs constr. length paths cycles time (s)

20 1 402 653 423 7 1 0 0
0.1 20 2 41 64 62 7 1 0 0

20 3 41 104 141 7 1 0 0
20 1 402 689 423 7 1 0 0

0.2 20 2 41 68 62 7 1 0 0
20 3 41 108 141 7 1 0 0.02
20 1 402 827 424 7 2 0 0.02

0.3 20 2 41 82 63 7 2 0 0.02
20 3 41 122 142 7 2 0 0.02
30 1 902 1513 933 6 1 0 0

0.1 30 2 61 100 92 6 1 0 0
30 3 61 160 211 6 1 0 0
30 1 902 1949 936 7 4 0 0.08

0.2 30 2 61 130 97 7 4 2 0.03
30 3 61 190 216 7 4 2 0.06
30 1 902 2327 936 11 4 0 0.25

0.3 30 2 61 156 95 11 4 0 0.06
30 3 61 216 214 11 4 0 0.08
50 1 2502 4427 2553 9 1 0 0.03

0.1 50 2 101 176 152 9 1 0 0
50 3 101 276 351 9 1 0 0
50 1 2502 6429 2553 19 1 0 1.08

0.2 50 2 101 258 154 19 1 2 0.05
50 3 101 358 353 19 1 2 0.11
50 1 2502 8535 2660 34 108 0 553.46

0.3 50 2 101 344 366 34 108 107 24.4
50 3 101 444 564 34 108 106 36.29
70 1 4902 22 743 4972 69 0 0 >3600

0.1 70 2 141 656 211 69 325 1022 >3600
70 3 141 796 490 69 227 842 >3600
70 1 4902 22 743 4972 69 0 0 >3600

0.2 70 2 141 656 211 69 237 1418 >3600
70 3 141 796 490 69 189 1231 >3600
70 1 4902 22 743 4972 69 9 >3600

0.3 70 2 141 656 211 69 736 1996 >3600
70 3 141 796 490 69 737 1961 >3600
100 1 10 002 28 013 10 107 33 5 0 40.08

0.1 100 2 201 562 306 33 5 0 0.25
100 3 201 762 705 33 5 0 0.27
100 1 10 002 43 457 10 102 N.F. 0 0 >3600

0.2 100 2 201 874 2535 96 509 1725 >3600
100 3 201 1074 2658 96 430 1528 >3600
100 1 10 002 63 953 10 102 N.F. 0 0 >3600

0.3 100 2 201 1288 3871 99 136 3434 >3600
100 3 201 1488 4197 99 163 3334 >3600
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Table 5. Experimental results for 2-edge-colored Hamiltonian graphs.

Graph Instance Model No. of No. of No. of Path No. of No. of Comp.
density size id. nodes arcs constr. length paths cycles time (s)

20 1 402 641 423 5 1 0 0
0.1 20 2 61 94 82 5 1 0 0

20 3 61 154 181 5 1 0 0
20 1 402 725 423 5 1 0 0

0.2 20 2 61 108 83 5 1 1 0.02
20 3 61 168 182 5 1 1 0
20 1 402 881 428 8 6 0 0.05

0.3 20 2 61 132 88 8 6 1 0.05
20 3 61 192 187 8 6 1 0.05
30 1 902 1515 933 5 1 0 0.02

0.1 30 2 91 150 123 5 1 1 0
30 3 91 240 272 5 1 1 0
30 1 902 1921 933 10 1 0 0.02

0.2 30 2 91 192 123 10 1 1 0
30 3 91 282 272 10 1 1 0.03
30 1 902 2363 936 17 4 0 0.23

0.3 30 2 91 238 127 17 4 2 0.08
30 3 91 328 276 17 4 2 0.14
50 1 2502 4779 2554 5 2 0 0.03

0.1 50 2 151 286 205 5 2 2 0
50 3 151 436 454 5 2 2 0.02
50 1 2502 6765 2553 33 1 0 1.73

0.2 50 2 151 408 205 33 1 3 0.08
50 3 151 558 454 33 1 3 0.08
50 1 2502 8883 2560 44 8 0 >3600

0.3 50 2 151 536 314 44 34 79 70.03
50 3 151 686 563 44 34 79 101
70 1 4902 21 485 4972 N.F. 0 0 >3600

0.1 70 2 211 928 688 69 18 122 >3600
70 3 211 1138 1034 69 16 107 >3600
70 1 4902 21 485 4972 N.F. 0 0 >3600

0.2 70 2 211 928 688 69 28 346 >3600
70 3 211 1138 1034 69 22 229 >3600
70 1 4902 21 485 4972 N.F. 0 0 >3600

0.3 70 2 211 928 688 69 51 356 >3600
70 3 211 1138 1034 69 58 346 >3600
100 1 10 002 26 337 10 106 47 4 0 764.47

0.1 100 2 301 792 412 47 4 7 2.03
100 3 301 1092 911 47 4 7 3.23
100 1 10 002 44 619 10 102 N.F. 0 0 >3600

0.2 100 2 301 1346 1087 97 53 633 >3600
100 3 301 1646 1515 98 47 568 >3600
100 1 10 002 58 545 10 102 N.F. 0 0 >3600

0.3 100 2 301 1768 1567 99 35 1131 >3600
100 3 301 2068 2354 99 61 1393 >3600
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Table 6. Experimental results for 3-edge-colored non-Hamiltonian graphs.

Graph Instance Model No. of No. of No. of Path No. of No. of Comp.
density size id. nodes arcs constr. length paths cycles time (s)

20 1 402 783 423 19 1 0 0
0.1 20 2 41 78 62 19 1 0 0

20 3 41 118 141 19 1 0 0
20 1 402 895 423 19 1 0 0.03

0.2 20 2 41 90 62 19 1 0 0.02
20 3 41 130 141 19 1 0 0.03
20 1 402 1035 423 19 1 0 0.03

0.3 20 2 41 104 62 19 1 0 0.02
20 3 41 144 141 19 1 0 0.02
30 1 902 1923 933 29 1 0 0.02

0.1 30 2 61 128 92 29 1 0 0.02
30 3 61 188 211 29 1 0 0.02
30 1 902 2357 933 29 1 0 0.51

0.2 30 2 61 158 92 29 1 0 0.05
30 3 61 218 211 29 1 0 0.03
30 1 902 2767 934 29 2 0 0.69

0.3 30 2 61 186 97 29 2 4 0.2
30 3 61 246 216 29 2 4 0.19
50 1 2502 5737 2553 49 1 0 2.03

0.1 50 2 101 230 152 49 1 0 0.05
50 3 101 330 351 49 1 0 0.08
50 1 2502 8089 2558 49 6 0 5.16

0.2 50 2 101 326 161 49 6 4 0.53
50 3 101 426 351 0 1 4 1.2
50 1 2502 8089 2558 49 22 0 328

0.3 50 2 101 326 161 49 22 436 97
50 3 101 426 351 0 22 436 124
70 1 4902 19 937 4972 0 0 0 >3600

0.1 70 2 141 574 211 69 124 768 1425
70 3 141 714 490 69 124 894 1829
70 1 4902 19 937 4972 0 >3600

0.2 70 2 141 574 211 69 654 2276 >3600
70 3 141 714 490 69 559 2009 >3600
70 1 4902 26 783 4972 0 >3600

0.3 70 2 141 772 211 69 257 2820 2206
70 3 141 912 490 69 257 2975 2341
100 1 10 002 33 279 10 122 99 20 0 454.98

0.1 100 2 201 668 341 99 20 20 6.54
100 3 201 868 741 99 20 21 12.9
100 1 10 002 51 865 10 102 N.F. 0 0 >3600

0.2 100 2 201 1044 3412 99 151 2960 >3600
100 3 201 1244 3755 99 162 2893 >3600
100 1 10 002 66 155 10 102 N.F. 0 0 >3600

0.3 100 2 201 1332 3983 99 143 3539 >3600
100 3 201 1532 4358 99 123 3535 >3600
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Table 7. Experimental results for 3-edge-colored Hamiltonian graphs.

Graph Instance Model No. of No. of No. of Path No. of No. of Comp.
density size id. nodes arcs constr. length paths cycles time (s)

20 1 402 663 423 19 1 0 0
0.1 20 2 61 98 82 19 1 0 0

20 3 61 158 181 19 1 0 0
20 1 402 763 423 19 1 0 0

0.2 20 2 61 114 82 19 1 0 0
20 3 61 174 181 19 1 0 0.03
20 1 402 921 423 19 1 0 0.03

0.3 20 2 61 138 82 19 1 0 0
20 3 61 198 181 19 1 0 0.02
30 1 902 1669 933 29 1 0 0

0.1 30 2 91 166 122 29 1 0 0.02
30 3 91 256 271 29 1 0 0.03
30 1 902 2117 933 29 1 0 0.05

0.2 30 2 91 212 122 29 1 0 0.03
30 3 91 302 271 29 1 0 0.03
30 1 902 2643 933 29 1 0 0.45

0.3 30 2 91 266 122 29 1 0 0.05
30 3 91 356 271 29 1 0 0.06
50 1 2502 5417 2553 49 1 0 0.3

0.1 50 2 151 326 202 49 1 0 0.03
50 3 151 476 451 49 1 0 0.03
50 1 2502 7321 2553 49 1 0 2.04

0.2 50 2 151 442 202 49 1 0 0.14
50 3 151 592 451 49 1 0 0.17
50 1 2502 7321 2553 49 16 0 822

0.3 50 2 151 442 202 49 16 87 352
50 3 151 592 451 49 16 87 528
70 1 4902 23 141 4972 N.F. 1 0 34

0.1 70 2 211 1000 1330 69 1 422 8
70 3 211 1210 2516 69 1 422 2
70 1 4902 23 141 4972 N.F. 0 0 >3600

0.2 70 2 211 1000 1330 69 48 642 1824
70 3 211 1210 2516 69 23 328 >3600
70 1 4902 23 141 4972 N.F. 0 0 >3600

0.3 70 2 211 1000 1330 69 78 971 >3600
70 3 211 1210 2516 69 166 1720 >3600
100 1 10 002 30 693 10 103 99 1 0 17.08

0.1 100 2 301 924 402 99 1 0 0.45
100 3 301 1224 901 99 1 0 0.59
100 1 10 002 45 081 10 102 N.F. 0 0 >3600

0.2 100 2 301 1360 905 99 18 486 >3600
100 3 301 1660 1660 99 33 727 >3600
100 1 10 002 60 525 10 102 N.F. 0 0 >3600

0.3 100 2 301 1828 1552 99 27 1124 >3600
100 3 301 2128 2854 99 70 1884 >3600
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Figure 8. Number of (a) optimal solutions and (b) eliminated
cycles for 10 random 2-edge-colored, non-Hamiltonian graphs with
100 nodes and 20% density. Results for Models 2 and 3.

efficiency of the approaches, we have tested all the alternative network models
over a set of randomly generated test instances with different characteristics. The
obtained results have been used to compare the models, leading to the conclusions
that LPcPP and LPcCP with iterative cycle separation appear to perform much
better than LPnPP. The tests shown also that problems with reasonable size, and
up to 3 colors, can be solved in a reasonable time.

We propose that the future research can follow two main directions. The test
cases should be extended to include more problem-specific data, and some prob-
lems with the real data (e.g. experimental) should be examined. On the other
hand, the refinement of the IP formulations can be made, combined with a more
sophisticated procedure for the separation of orderly colored cycles.
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