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A BRKGA-BASED MATHEURISTIC FOR THE MAXIMUM QUASI-CLIQUE
PROBLEM WITH AN EXACT LOCAL SEARCH STRATEGY

Bruno Q. Pinto1, Celso C. Ribeiro2,∗, José A. Riveaux2 and Isabel Rosseti2

Abstract. Given a graph G = (V,E) and a threshold γ ∈ (0, 1], the maximum cardinality quasi-
clique problem consists in finding a maximum cardinality subset C∗ of the vertices in V such that the
density of the graph induced in G by C∗ is greater than or equal to the threshold γ. This problem
has a number of applications in data mining, e.g., in social networks or phone call graphs. We propose
a matheuristic for solving the maximum cardinality quasi-clique problem, based on the hybridization
of a biased random-key genetic algorithm (BRKGA) with an exact local search strategy. The newly
proposed approach is compared with a pure biased random-key genetic algorithm, which was the best
heuristic in the literature at the time of writing. Computational results show that the hybrid BRKGA
outperforms the pure BRKGA.
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1. Introduction

Let G = (V,E) be a graph defined by a vertex set V and an edge set E ⊆ V × V . G is a complete graph if
there is an edge in E connecting every two different vertices in V . A graph G′ = (V ′, E′) is a subgraph of G if
V ′ ⊆ V and E′ ⊆ E, which is denoted by G′ ⊆ G. The graph G(V ′) induced in G by V ′ ⊆ V is that with vertex
set V ′ and edge set formed by all edges of E with both ends in V ′. For any V ′ ⊆ V , the subset E(V ′) ⊆ E is
formed by all edges of E with both ends in V ′. In other words, E(V ′) is the edge set of the graph induced in G
by V ′.

The density of graph G is given by dens(G) = |E|/(|V | × (|V | − 1)/2). For any v ∈ V , the degree degG(v)
denotes the number of vertices in G that are adjacent to v. In addition, for any v ∈ V and any V ′ ⊆ V , we
denote by degG(v, V ′) the number of vertices of V ′ that are adjacent to v in G.

A subset C ⊆ V is a clique of G if the graph G(C) induced in G by C is complete. Given a graph G = (V,E),
the maximum clique problem (MCP) consists in finding a maximum cardinality clique of G. It was proved to
be NP-hard by [15].

Given a graph G = (V,E) and a threshold γ ∈ (0, 1], a γ-clique is any subset C ⊆ V such that the density of
the subgraph G(C) is greater than or equal to γ. A γ-clique C is maximal if there is no other γ-clique C ′ that
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strictly contains C. The maximum quasi-clique problem (MQCP) amounts to finding a maximum cardinality
subset C∗ of the vertices in V such that the density of the graph induced in G by C∗ is greater than or equal
to the threshold γ. This problem was proved to be NP-hard in [21]. The problem has many applications and
related clustering approaches include classifying molecular sequences in genome projects by using a linkage
graph of their pairwise similarities [8] and the analysis of massive telecommunication data sets obtained from
social networks or phone call graphs [1], as well as various other data mining and graph mining applications.
The reader is also referred to Pastukhov et al. [20] for other examples of real-life applications.

A few heuristics for MQCP exist in the literature, based on well known approaches such as greedy randomized
algorithms and their iterated extensions [18], stochastic local search [8], and GRASP [1]. Pinto et al. [23]
proposed a biased random-key genetic algorithm for finding approximate solutions to the maximum cardinality
quasi-clique problem, using two different decoders. The resulting BRKGA-IG∗ heuristic strategy achieved the
best performance and outperformed the restarted optimized iterated greedy (RIG∗) construction/destruction
heuristic of Oliveira et al. [18]. BRKGA-IG∗ was also compared with the exact algorithms AlgF3 and AlgF4 of
Veremyev et al. [31] used as heuristics with time limits on their running times. BRKGA-IG∗ applied to sparse
graphs also outperformed the mixed integer programming approaches, finding target solution values in much
smaller running times.

Ribeiro and Riveaux [25] proposed the exact enumeration algorithm QClique to solve the maximum quasi-
clique problem, based on a quasi-hereditary property. They also proposed a new upper bound that is used
for pruning the search tree. Numerical results showed that their approach is competitive with the best integer
programming formulations in [21, 31] solved by CPLEX and with the branch-and-bound algorithm proposed
by Pajouh et al. [19], in terms of both solution quality and running time. In general, algorithm QClique showed
the best performance on random instances with respect to the best existing MIP models, obtaining the best
solutions and significantly smaller running times for several instances. Again, it showed the best performance
overall for several literature instances such as hamming6-4, johnson8-2-4, brock200-2, brock200-3, keller4, and
p-hat300-1. The numerical results also showed that performed significantly better than AlgF3 for ten out of the
16 large sparse instances, in particular for larger values of the threshold γ. Although for the other six instances
AlgF3 was faster, for some instances AlgF3 was not even capable to solve the linear relaxation at the root node
of the search tree within the time limit of one hour.

We show that a variant of the exact enumeration algorithm QClique proposed by Ribeiro and Riveaux [25]
can be hybridized with the biased random-key genetic algorithm BRKGA-IG∗ developed by Pinto et al. [23] as
a local search strategy to improve the quality of the solutions created by the decoder. This paper is organized as
follows. Section 2 presents the problem formulation. Section 3 introduces biased random-key genetic algorithms
and describes their customization to the maximum quasi-clique problem. Section 4 describes in detail the
decoder DECODER-IG∗ previously used in the implementation of the biased random-key genetic algorithm
for the maximum quasi-clique problem. The new decoder DECODER-LSQClique using an exact local search
strategy is presented in Section 5, giving rise to a matheuristic for solving the maximum cardinality quasi-clique
problem based on a biased random-key genetic algorithm. The exact local search algorithm LSQClique used
by the new decoder is described in detail in Section 6. Numerical results are reported in Section 7. Concluding
remarks are drawn in the last section.

2. Problem formulation and related work

The maximum quasi-clique problem can be formulated by associating a binary variable xi to each vertex of
the graph [21]:

xi =

{
1, if vertex vi ∈ V belongs to the solution,
0, otherwise.
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This formulation also considers a variable yij = xi · xj associated to each pair of vertices i, j ∈ V , with i < j,
which is linearized as follows:

max
∑
i∈V

xi (2.1)

subject to: ∑
[i,j]∈E:i<j

yij ≥ γ·
∑

i,j∈V :i<j

yij , (2.2)

yij ≤ xi, ∀i, j ∈ V, i < j, (2.3)
yij ≤ xj , ∀i, j ∈ V, i < j, (2.4)

yij ≥ xi + xj − 1, i, j = 1, . . . , n, i < j, (2.5)
xi ∈ {0, 1}, ∀i ∈ V, (2.6)

yij ≥ 0, ∀i, j ∈ V, i < j. (2.7)

The objective function (2.1) maximizes the number of vertices in the solution. If two vertices i, j belong to
a solution, then xi = xj = 1 and yij = xi · xj = 1. If edge [i, j] ∈ E, then it contributes to the density of the
quasi-clique. Constraint (2.2) ensures that the density of the solution is greater than or equal to γ. Constraints
(2.3) and (2.4) ensure that any edge may contribute to the density of a solution only if both of its ends are
chosen to belong to this solution. Constraints (2.5) ensure that any existing edge [i, j] ∈ E will contribute to
the solution if both of its ends are chosen. Constraints (2.6) and (2.7) impose the binary and non-negativity
requirements on the problem variables, respectively.

Veremyev et al. [31] reported and compared four mixed integer programming formulations for the maximum
quasi-clique problem in sparse graphs. Two algorithms based on the best formulations led to better results
than the mixed integer programming formulation proposed in [21], with all mixed integer programs solved using
FICO Xpress-Optimizer [10] with the time limit of 3600 s.

Ribeiro and Riveaux [25] developed the exact algorithm QClique based on a quasi-hereditary proposition
and proposed a new upper bound that is used for pruning the search tree. Numerical results showed that their
approach is competitive and outperforms the best integer programming approaches in the literature. The new
upper bound is consistently tighter than previously existing bounds. The cuts lead to considerable reductions
in the number of visited nodes of the search tree. Consider the case of instance Erdos992, when 5 293 928 cuts
are generated. The number of visited nodes of the search tree is reduced from 31 238 995 to 5 837 764, i.e., to
only 18.68% of the original number. The running time is reduced from 1511.70 to 426.79 s, i.e., to 28.17% of
the original time.

3. Biased random-key genetic algorithms for maximum quasi-clique

In a biased random-key genetic algorithm (BRKGA), each solution is represented by a vector of randomly
generated real numbers called keys. A deterministic algorithm, called a decoder, takes as input a solution
represented by a vector of random keys and associates with it a feasible solution of the combinatorial optimization
problem at hand, for which an objective value or fitness can be computed. Selection in a BRKGA is said to be
biased because one of the two parents selected for mating in each crossover operation is always an elite solution
and has a higher probability of passing its genes to the new generation, while the other is a non-elite solution.
The reader is referred to Gonçalves and Resende [11] and Resende and Ribeiro [24] for complete reviews about
biased random-key genetic algorithms and their applications.

Two variants of a BRKGA for MQCP have been developed in [23], each of them using a different decoder.
The algorithms evolve a population that is formed by vectors of real-valued components in the range [0, 1), each
component being associated with one of the vertices of the graph G. Each vector is decoded by a deterministic
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Figure 1. Population evolution between consecutive generations of a BRKGA [23].

algorithm that builds a feasible solution for MQCP, i.e., a γ-clique. The two decoders DECODER-HCB and
DECODER-IG∗ originally presented in [23] are briefly summarized in Section 4.

The parametric uniform crossover of Spears and de Jong [29] is used to combine two mates: the offspring
inherits with higher probability each of its keys from the best fit of the two parents. Instead of the standard
mutation operator, the concept of mutants is used: randomly generated mutant solutions are introduced in
the population in each generation. Mutants play the same role of the mutation operator in traditional genetic
algorithms, diversifying the search and helping the procedure to escape from locally optimal solutions (see
also [6, 7, 17]).

The initial population is randomly generated. The population is partitioned into two subsets at each gen-
eration: TOP and REST . Subset TOP contains the elite solutions, being formed by the best solutions in the
population of the current generation. Subset REST is decomposed in two subsets: MID and BOT , with subset
BOT being formed by the worst elements in the population of the current generation. The size of the population
is |TOP |+ |REST |.

The population evolves from one generation to the next as illustrated in Figure 1. First, the solutions in TOP
are simply copied to the population of the next generation. The elements in BOT are replaced by new randomly
created mutants that are placed in the new set BOT . The remaining |MID | = |REST | − |BOT | solutions of
the new population are obtained by crossover, with one parent randomly chosen from TOP and the other from
REST . This is the main difference between a BRKGA and the random-key genetic algorithm of Bean [4], where
both parents are randomly selected from the entire population: since a solution can be chosen for mating more
than once in any given generation, elite solutions have a higher probability of passing their random keys to the
next generation.

The variants of the BRKGA for the maximum quasi-clique problem were implemented with the C++ library
brkgaAPI developed by Toso and Resende [30], which is a framework illustrated in Figure 2 for the development
of biased random-key genetic algorithms. Its instantiation to some specific optimization problem requires only
the development of a class implementing the decoder for the problem at hand, since this is the only problem-
dependent part of the tool.

The brkgaAPI framework requires the following parameters [12]: (a) the population size p = |TOP |+|REST |;
(b) the fraction pe of the population corresponding to the elite subset TOP ; (c) the fraction pm of the population
corresponding to the mutant subset BOT ; (d) the probability rhoe that the offspring inherits the keys from the
best fit parent; and (e) the number k of generations without improvement in the best solution until a restart is
performed.
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Figure 2. BRKGA framework [23].

In the remainder of this work, we consider and compare two variants of a biased random-key genetic algorithm
for solving MQCP, based on two different decoders. Decoder DECODER-IG∗ was originally proposed by Pinto
et al. [23] and will be summarized in the next section. The new decoder, named DECODER-LSQClique and
proposed in this work, is based on the exact enumeration algorithm of Ribeiro and Riveaux [25] and will be
presented in Section 5.

4. Decoder DECODER-IG∗

Decoder DECODER-HCB was firstly presented in [23] and finds its roots in the construction phase of the
GRASP approach of Abello et al. [1]. It takes as inputs the graph G = [V,E], the threshold γ, the parameter
α used to create the restricted candidate lists, the parameter minsize that defines the minimum size of the
restricted candidate lists, and the subset S of vertices in the initial solution. The decoder also receives as
parameters the random keys Rj ∈ [0, 1), j = 1, . . . , |V |, each of them corresponding to a vertex of the graph.
Each vector of random keys is decoded by an algorithm that builds a feasible solution to MQCP, i.e., a γ-clique.
The pseudo-code of this decoder appears in Algorithm 1.

Algorithm 1 may be used in two situations. First, to build a solution from scratch. Second, to complete
(i.e., to reconstruct) a partially destroyed solution. For the second case, the decoder receives as an additional
parameter a partial solution formed by a non-empty list S of vertices.

The second decoder, named DECODER-IG∗, was also originally presented in [23] and is an extension of
DECODER-HCB. It follows the iterated greedy scheme, using the constructive heuristic HCB. The population
is formed by longer vectors of 2 · |V | random keys Rj ∈ [0, 1) each, with j = 1, . . . , |V |, |V |+ 1, . . . , 2 · |V |. The
first |V | random keys are used in the construction of the initial solution and in the reconstruction phase, while
the last |V | random keys are used in the destruction phase. Algorithm 2 takes two additional parameters as
inputs: δ and β. Parameter δ controls the fraction of the vertices of the current solution that will be removed,
while parameter β determines the greediness of the removal process, by controlling the size of the restricted
candidate list from where each vertex will be extracted. The role played by each parameter is explained with
more detail in [23]. The pseudo-code of this decoder appears in Algorithm 2.

The algorithm starts in line 1 building the initial solution S′ with decoder DECODER-HCB and the first
|V | random keys Rj , j = 1, . . . , |V |. Lines 2 to 10 implement the loop that repeats the partial destruction
(vertex eliminations) followed by the reconstruction (vertex insertions) of the current solution, until no further
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Algorithm 1. DECODER-HCB(G, γ, α,minsize, S,R).
1: CL← V \ S
2: if S = ∅ then
3: RCL← {v ∈ CL : |{v′ ∈ CL : degG(v′) ≥ degG(v)}| ≤ max{minsize, bα · |CL|c}}
4: x← argmin{Rj : j ∈ RCL}
5: S ← {x}
6: end if
7: while CL 6= ∅ do
8: CL← ∅
9: for all v ∈ V \ S do

10: if 2·(|E(S)|+degG(v,S))

|S|(|S|+1)
≥ γ then

11: CL← CL ∪ {v}
12: end if
13: end for
14: if CL 6= ∅ then
15: for all v ∈ CL do
16: dif (v)← degG(v,CL) + |CL| · (degG(v, S)− γ · (|S|+ 1))
17: end for
18: RCL← {v ∈ CL : |{v′ ∈ CL : dif (v′) ≥ dif (v)}| ≤ max{minsize, bα · |CL|c}}
19: x← argmin{Rj : j ∈ RCL}
20: S ← S ∪ {x}
21: end if
22: end while

improvements can be obtained. The current solution S′ is copied to S in line 3. Lines 4 to 8 implement the
loop that removes one by one bδ · |S′|c vertices that should be eliminated from the current solution. In each
step, in line 5 a restricted candidate list RCL of size max{minsize, bβ · |S ′|c} is created containing the vertices
with the smallest degrees in G(S′). The vertex with the smallest random key is selected from RCL in line 6
and eliminated from the current solution in line 7. Line 9 performs the reconstruction phase: the current partial
solution S′ is rebuilt by decoder DECODER-HCB using the first |V | random keys. The loop is interrupted in
line 10 when the new solution S′ obtained by destruction-reconstruction does not improve the incumbent S or
the graph G(S′) is not connected; otherwise a new iteration resumes.

Algorithm 2. DECODER-IG∗(G, γ, α, δ, β,minsize, R).
1: S′ ← DECODER-HCB(G, γ, α,minsize, ∅, Rj : j = 1, . . . , |V |)
2: repeat
3: S ← S′

4: for k = 1 to bδ · |S′|c do
5: RCL← {v ∈ S′ : |{v′ ∈ S′ : degG(v′, S′) ≤ degG(v, S′)}| ≤ max{minsize, bβ · |S ′|c}}
6: x← argmin{R|V |+j : j ∈ RCL}
7: S′ ← S′ \ {x}
8: end for
9: S′ ← DECODER-HCB(G, γ, α,minsize, S′, Rj : j = 1, . . . , |V |)

10: until |S′| ≤ |S| or graph G(S′) is not connected

5. New decoder based on exact local search

The principle of the new decoder proposed in this section consists in replacing the reconstruction phase of
decoder DECODER-IG∗ (i.e., line 9 of Algorithm 2) by an exact algorithm that finds the maximum quasi-
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clique that can be reconstructed by DECODER-HCB starting from the remaining set of vertices S′ with α = 1.
A slightly modified version of the QClique algorithm of C.C. Ribeiro and J.A. Riveaux [25] is used with this
goal.

Algorithm 3 describes the pseudo-code of decoder DECODER-LSQClique. The algorithm takes as inputs the
same parameters as DECODER-IG∗, with the exception of an extended vector with 2 · |V | + 1 random keys
R+

j , j = 1, . . . , 2 · |V |, 2 · |V | + 1 and one additional frequency parameter ρ: the exact search algorithm will be
applied whenever R+

2·|V |+1 ≤ ρ, otherwise decoder DECODER-HCB will be used to reconstruct the solution.
We note that, if ρ = 1 the exact search algorithm will always be executed. If ρ = 0, it will never be executed
and DECODER-LSQClique will behave exactly as DECODER-IG∗. We observe that by appropriately tuning
and setting the best value for ρ one can optimize the performance of this decoder.

DECODER-LSQClique starts by creating an initial solution S′ in line 1, using DECODER-HCB and the
random keys Rj , j = 1, . . . , |V |. The loop in lines 2 to 14 repeats the partial destruction (vertex eliminations)
followed by the reconstruction (vertex insertions) of the current solution, until no further improvements can
be obtained. The current solution S′ is copied to S in line 3. The loop in lines 4 to 8 removes one by one
the bδ · |S′|c vertices that should be eliminated from the current solution. A restricted candidate RCL of size
max{minsize, bβ · |CL|c} is created in line 5, containing the vertices with the smallest degrees in G(S′). The
vertex with the smallest random key R|V |+j , j ∈ RCL, is selected from the restricted candidate list in line 6
and eliminated from the current solution in line 7. The reconstruction phase starts in line 9. If the random
key R+

2·|V |+1 is smaller than or equal to parameter ρ and G(S′) is a γ-clique, then the partial solution S′ is
extended in line 10 by an exact local search algorithm and a new solution S∗ is obtained. Otherwise, solution
S′ is rebuilt by DECODER-HCB in line 12, once again using the first random keys R+

j , j = 1, . . . , |V |. The
loop is interrupted in line 14 when the new solution S′ obtained by destruction-reconstruction does not improve
the incumbent S or the graph G(S′) is not connected; otherwise a new iteration resumes. The best solution is
returned in S.

Algorithm 3. DECODER-LSQClique(G, γ, α, δ, β,minsize, S,R+, ρ).
1: S′ ← DECODER-HCB(G, γ, α,minsize, ∅, R+

j , j = 1, . . . , |V |)
2: repeat
3: S ← S′

4: for k = 1 to bδ · |S′|c do
5: RCL← {v ∈ S′ : |{v′ ∈ S′ : degG(v′, S′) ≤ degG(v, S′)}| ≤ max{minsize, bβ · |S ′|c}}
6: x← argmin{R|V |+j : j ∈ RCL}
7: S′ ← S′ \ {x}
8: end for
9: if R+

2·|V |+1 ≤ ρ and dens(G(S′)) ≥ γ then

10: LSQClique(G,S′, γ, |S|, S∗)
11: else
12: S′ ← DECODER-HCB(G, γ, α,minsize, S′, R+

j : j = 1, . . . , |V |)
13: end if
14: until |S′| ≤ |S| or graph G(S′) is not connected

6. Exact algorithm for new decoder

Algorithm LSQClique described in this section is an exact algorithm for the maximum quasi-clique problem.
This variant may investigate multiple permutations of the same solution along the search tree, because it does
not make use of the quasi-heredity proposition [25]. It will be used as a variant of algorithm QClique in line 10
of Algorithm 3 to perform the exact local search.
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Algorithm 4. LSQClique(G,S′, γ,LB , S∗).
1: S∗ ← S′

2: i← |S′|
3: if a solution of size k containing all vertices of S′ does not exist for some k = i+ 1, . . . ,LB + 1 then return
4: CL← {v ∈ V \ S′ : dens(G(S′ ∪ {v})) ≥ γ}
5: if CL = ∅ then return
6: for all j ∈ CL do
7: LSQClique(G,S′ ∪ {j}, γ,max{LB, |S′|+ 1}, S′′)
8: if |S′′| > |S∗| then
9: S∗ ← S′′

10: LB ← max{LB, |S∗|}
11: end if
12: end for

Algorithm 4 works directly with the initial solution represented by the set of vertices S′. It takes as inputs
the graph G, the threshold γ, the partial solution S′, and the initial lower bound LB = |S|, returning the best
solution found S∗ also as a parameter. Line 1 of the pseudo-code copies to S∗ the current partial solution S′.
Line 2 sets i with the size of the current solution S′. If a solution of size k containing all vertices in S′ does not
exist for some value of k = i+ 1, . . . , LB + 1, then the algorithm returns in line 3 (pruning).

The candidate list CL created in line 4 is formed by every vertex v ∈ V \ S′ : dens(G(S′ ∪ {v})) ≥ γ, as for
DECODER-HCB. If the candidate list is empty, then the algorithm returns in line 5.

The loop in lines 6 to 12 attempts to extend the current solution S′ by each vertex j in the candidate list
CL. The vertices in the candidate list are taken in non increasing order of their degrees degG(j, S′). For each of
them, line 7 recursively invokes the algorithm for a new, extended partial solution S′ ∪ {j} and a new, updated
lower bound max{LB, |S′| + 1}, returning a new solution S′′. Line 8 checks if the new solution S′′ improves
then current best S∗. If this is the case, the current best and the lower bound are updated in lines 9 and 10,
respectively. When the recursion terminates, S∗ contains the best solution obtained by the algorithm.

The pruning strategy discards the current node of the enumeration tree in line 3 if a solution S of size k
containing all vertices of S′ can not exist for some k = i+ 1, . . . , LB + 1. This is done by calculating an upper
bound to the number of edges in G(S) and checking if the number of edges in a γ-clique is greater than this
upper bound. We follow a similar idea to that in [25].

Let E(S′, S \ S′) denote the set of edges in G between the vertices of S′ and S \ S′. If S is a γ-clique, then
the following condition holds and gives a lower bound to |E(S)|:

|E(S)| = |E(S′) ∪ E(S′, S \ S′) ∪ E(S \ S′)| ≥ γ ·
(
k

2

)
. (6.1)

Since the sets in equation (6.1) are disjoint,

|E(S)| = |E(S′)|+ |E(S′, S \ S′)|+ |E(S \ S′)|. (6.2)

Since |E(S′)| is already known, in order to calculate an upper bound to |E(S)| we need to calculate an upper
bound to |E(S′, S \ S′)|+ |E(S \ S′)|.

Let V ′ be formed by the k − i vertices of V \ S′ with the maximum number of adjacent vertices in G that
belong to S′. V ′ can be determined in polynomial time O(|V |): first sort the vertices in the non increasing order
of their degrees degG(v, S), then select the k − i first vertices. Then, an upper bound to |E(S′, S \ S′)| is given
by |E(S′, V ′)|.

Now, let us define V ′′ as the set formed by the k− i vertices of V \S′ with maximum degree in G. Then, the
following condition holds: ∑

v∈S\S′

degG(v) ≤
∑

v∈V ′′

degG(v). (6.3)
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Following a reasoning similar to that in [25], we obtain:

|E(S′, S \ S′)|+ |E(S \ S′)|

≤
∑
v∈V ′

degG(v, S′) + min
{∑

v∈V ′′ degG(v)−
∑

v∈V ′ degG(v, S′)
2

,

(
k − i

2

)}
.

(6.4)

Therefore, if the inequality below is not satisfied for at least one value of k = i+1, . . . , LB+1, then a solution
of size LB + 1 does not exist and we can prune the current node of the search tree:

|E(S′)|+
∑
v∈V ′

degG(v, S′) + min
{∑

v∈V ′′ degG(v)−
∑

v∈V ′ degG(v, S′)
2

,

(
k − i

2

)}
≥ γ ·

(
k

2

)
.

(6.5)

7. Computational results

7.1. Experimental setting

All algorithms were implemented using version 19.14.26429.4 of the Microsoft R© C/C++ Optimizing Compiler
for x64. The computational experiments have been performed on an Intel Core i5-5200 processor with 2.20 GHz
and 8 GB of RAM running under Windows 10.

The newly proposed algorithm BRKGA-LSQClique was compared with the original BRKGA-IG∗ heuristic
of [23], which was the best heuristic for the maximum quasi-clique problem at the time of writing. The best
parameters for algorithm BRKGA-IG∗ were determined using the automatic tuning tool IRACE [16, 22]. The
same parameter settings were used for algorithm BRKGA-LSQClique, except for the parameter δ that controls
the number of vertices to be destroyed. In order to enforce that the fraction of nodes eliminated in the destruction
phase be smaller for dense graphs, DECODER-LSQClique empirically sets δ = 1− dens(G), if dens(G) < 0.8;
δ = 2 · (1− dens(G)), otherwise.

DECODER-LSQClique makes use of an additional parameter ρ to establish whether the exact local search
should be applied or not to some solution. Again, we empirically set the probability that exact local search is
applied at ρ = max{1− dens(G), 0.80}.

Implementation notice. An additional parameter maxnodes was used to enforce a maximum limit to the number
of nodes of the search tree generated by the exact algorithm LSQClique. In case the search tree generated by
LSQClique reaches this maximum limit of nodes, then the algorithm returns the incumbent before an optimal
solution is obtained. For this reason, an additional application of the reconstruction procedure

S′ ← DECODER-HCB(G, γ, α,minsize, S∗, R+
j : j = 1, . . . , |V |)

should be enforced after line 10 of Algorithm 3 to further improve the current solution. This parameter maxnodes
was set at 220 using the IRACE tool.

All tested value ranges and the best parameter settings are shown in Table 1.

7.2. Numerical results

Pinto et al. [23] presented numerical results for experiments on 67 DIMACS instances [14, 28], 33 maximum
clique instances of the Benchmarks with Hidden Optimum Solutions for Graph Problems (BHOSLIB) [5,26,27],
and six sparse instances from the University of Florida Sparse Matrix Collection [9]. In the experiments reported
in the section, we eliminated all instances with less than 400 vertices or with density greater than or equal to
0.99, therefore excluding 29 instances from [14, 28] and two instances from [9] that were used in [23]. We
also considered three large sparse instances from [9] that were used by Veremyev et al. [31] (Geom, EVA and
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Table 1. Parameters settings: parameter maxnodes was set using IRACE in this work.

Parameter Value ranges BRKGA-IG∗ BRKGA-LSQClique

p 50, 51, . . . , 100 91 91
pe 0.10, 0.11, . . . , 0.25 0.13 0.13
pm 0.10, 0.11, . . . , 0.30 0.22 0.22
rhoe 0.50, 0.51, . . . , 0.80 0.78 0.78
α 0.01, 0.02, . . . , 0.20 0.01 0.01
minsize 1, 2, 3, 4, 5, 6 3 3

δ 0.01, 0.02, . . . , 0.50 0.40

{
1− dens(G); if dens(G) < 0.8
2 · (1− dens(G)); otherwise

β 0.01, 0.02, . . . , 0.20 0.02 0.02
maxnodes 100, 110, . . . , 300 – 220
ρ – – max{1− dens(G), 0.80}

Notes. Parameters ρ and δ were empirically set in this work. All other parameters were set using IRACE by Pinto
et al. [23].

PGPgiantcompo) and instance vsp p0291 seymourl iiasa used by Ribeiro and Riveaux [25]. Table 2 describes
the characteristics of each instance.

In the first experiment, for each instance and each value of the threshold γ, we performed 30 runs of each
algorithm BRKGA-IG∗ and BRKGA-LSQClique until a target solution value was found. For each instance and
value of γ, the target was determined as follows. We run both BRKGA-IG* and BRKGA-LSQClique for 100
generations or ten minutes, whatever happened first, and selected the target as the best among the solution
values found by the two algorithms. For some instances for which this value revealed itself to be easy, we
progressively increased the target until a sufficiently hard value was reached.

We discarded the results for the combinations of instance and value of γ for which both algorithm obtained the
target solution value in less than two generations on average over the 30 runs. Therefore, Tables 3–9 display the
results for 150 combinations of different values of γ with 24 of the 38 DIMACS instances, with all 33 BHOSLIB
instances, and with four of the eight sparse instances that were not completely discarded. Each run was limited
to ten minutes of execution, except for the instances in Table 9, whose runs were limited to 30 minutes of
execution. For each instance and value of γ, the tables show the target look4 considered in the experiment, and
the results obtained by each algorithm BRKGA-IG∗ and BRKGA-LSQClique. For each algorithm, the table
presents the average and best sizes of the solution found over the 30 runs, the average running time in seconds
and the average generation in which the target was found over the runs that reached the target value (#look4).
Whenever any of the two methods failed to find a solution as good as the target value look4 within the time
limit for all instances in the group of same density, we indicate it by “> 600 (0)” or “> 1800 (0)”.

The rows highlighted in dark gray ( ) correspond to the cases where BRKGA-IG∗ reached the target
look4 more often or, when both of them reached the target the same number of times, it was faster than
BRKGA-LSQClique in terms of the average time to target. Rows in light gray ( ) are those for which BRKGA-
LSQClique performed better in terms of the same criteria. For all other cases, both algorithms found the target
in the first generation in all runs.

For each instance and each value of γ in Tables 3–9, the two algorithms are compared primarily on the number
of runs in which the target solution value was found and, whenever there is a tie, on the average time taken to
find the target solution value over the successful runs. The plot in Figure 3 displays the comparison between
algorithms BRKGA-IG∗ and BRKGA-LSQClique. For each value of γ, it indicates the fraction of the number
of instances for which each algorithm outperforms the other. Considering all 150 combinations of instances and
values of γ, BRKGA-LSQClique outperformed the original BRKGA-IG* in 63.33% of the cases in terms of the
time-to-target solution value.
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Table 2. Description of the test instances.

Instance |V | |E| Density Instance |V | |E| Density

san400 0.5 1 400 39 900 0.50 frb45-21-1 945 386 854 0.87
sanr400 0.5 400 39 984 0.50 frb45-21-2 945 387 416 0.87
san400 0.7 1 400 55 860 0.70 frb45-21-5 945 387 461 0.87
san400 0.7 2 400 55 860 0.70 frb45-21-4 945 387 491 0.87
san400 0.7 3 400 55 860 0.70 p hat1000-1 1000 122 253 0.24
sanr400 0.7 400 55 869 0.70 p hat1000-2 1000 244 799 0.49
brock400 3 400 59 681 0.75 DSJC1000.5 1000 249 826 0.50
brock400 1 400 59 723 0.75 san1000 1000 250 500 0.50
brock400 2 400 59 786 0.75 p hat1000-3 1000 371 746 0.74
gen400 p0.9 55 400 71 820 0.90 C1000.9 1000 450 079 0.90
gen400 p0.9 65 400 71 820 0.90 hamming10-4 1024 434 176 0.83
frb30-15-2 450 83 151 0.82 email 1133 5451 0.01
frb30-15-4 450 83 194 0.82 frb50-23-2 1150 579 824 0.88
frb30-15-1 450 83 198 0.82 frb50-23-4 1150 580 417 0.88
frb30-15-5 450 83 231 0.82 frb50-23-1 1150 580 603 0.88
Erdos971 472 1314 0.01 frb50-23-5 1150 580 640 0.88
johnson32-2-4 496 107 880 0.88 frb53-24-4 1272 714 048 0.88
Harvard500 500 2043 0.02 frb53-24-2 1272 714 067 0.88
c-fat500-1 500 4459 0.04 frb53-24-1 1272 714 129 0.88
c-fat500-2 500 9139 0.07 frb53-24-5 1272 714 130 0.88
c-fat500-5 500 23 191 0.19 frb56-25-4 1400 869 262 0.89
p hat500-1 500 31 569 0.25 frb56-25-1 1400 869 624 0.89
c-fat500-10 500 46 627 0.37 frb56-25-5 1400 869 699 0.89
DSJC500.5 500 62 624 0.50 frb56-25-2 1400 869 899 0.89
p hat500-2 500 62 946 0.50 p hat1500-2 1500 568 960 0.51
p hat500-3 500 93 800 0.75 frb59-26-4 1534 1 048 800 0.89
C500.9 500 112 332 0.90 frb59-26-1 1534 1 049 256 0.89
frb35-17-5 595 148 572 0.84 frb59-26-2 1534 1 049 648 0.89
frb35-17-1 595 148 859 0.84 frb59-26-5 1534 1 049 829 0.89
frb35-17-2 595 148 868 0.84 C2000.9 2000 1 799 532 0.90
frb35-17-4 595 148 873 0.84 keller6 3361 4 619 898 0.82
p hat700-1 700 60 999 0.25 C4000.5 4000 4 000 268 0.50
p hat700-2 700 121 728 0.50 frb100-40 4000 7 425 226 0.93
frb40-19-5 760 246 801 0.86 CA-GrQc 5242 14 496 1.1/103

frb40-19-4 760 246 815 0.86 Geom 7343 11 898 1.9/104

frb40-19-1 760 247 106 0.86 EVA 8497 6711 3.4/104

frb40-19-2 760 247 157 0.86 vsp p0291- 10 498 53 868 9.8/104

keller5 776 225 990 0.75 seymourl iiasa
brock800 3 800 207 333 0.65 PGPgiant- 10 680 24 316 4.3/104

brock800 1 800 207 505 0.65 compo
brock800 2 800 208 166 0.65

In the next experiment, we evaluate and compare the run time distributions (or time-to-target plots) of algo-
rithms BRKGA-IG∗ and BRKGA-LSQClique for some instances. Time-to-target plots display on the ordinate
axis the probability that an algorithm will find a solution at least as good as a given target value within a
given running time, shown on the abscissa axis. Run time distributions have also been advocated by Hoos and
Stützle [13] as a way to characterize the running times of stochastic local search algorithms for combinatorial
optimization problems. In this experiment, the two algorithms were made to stop whenever a solution with cost
greater than or equal to a given target value was found. The targets are the same used in the first experiment.
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Figure 3. Comparison between algorithms BRKGA-IG∗ and BRKGA-LSQClique: fraction of
the number of instances on which each algorithm outperforms the other for each value of γ.
Considering all 150 instances and values of γ, BRKGA-LSQClique outperformed the original
BRKGA-IG* in 63.33% of the cases in terms of the time-to-target solution value.

Each heuristic was run 200 times for each value of the threshold γ. Next, the empirical probability distributions
of the time taken by each heuristic to find the target solution value are plotted. To plot the empirical distribu-
tion for each heuristic, we followed the methodology proposed by Aiex et al. [2, 3]. We associate a probability
pi = (i− 1

2 )/200 with the i-th smallest running time ti and plot the points (ti, pi), for i = 1, . . . , 200. The more
to the left is a plot, the better is the algorithm corresponding to it.

Figures 4 and 5 illustrate the time-to-target plots for instance brock400 2 with γ = 0.999, 0.90, and 0.80 and
for instance PGPgiantcompo with γ = 0.90, 0.80, and 0.50, respectively. We recall from Table 3 that BRKGA-
IG∗ obtained better results for brock400 2 with γ = 0.90. The plots in these figures show that BRKGA-IG∗

performed better for γ = 0.999, with BRKGA-LSQClique becoming progressively better as γ decreases.

8. Concluding remarks

In this work, we showed that the exact enumeration algorithm QClique proposed by Ribeiro and Riveaux [25]
can be hybridized with the biased random-key genetic algorithm BRKGA-IG∗ developed by Pinto et al. [23] as
a local search strategy to improve the quality of the solutions created by the decoder. The new decoder using
an exact local search strategy gives rise to a matheuristic for solving the maximum cardinality quasi-clique
problem based on a biased random-key genetic algorithm.

Computational experiments were performed on a set of benchmark instances, considering different thresholds.
The numerical results showed that although BRKGA-IG∗ performed better for γ = 0.999, algorithm BRKGA-

LSQClique becomes consistently better for smaller values of γ and considerably outperformed BRKGA-IG∗ in
terms of the time-to-target solution value in 63.33% of the 150 combinations of instances and values of γ.
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Figure 4. Time-to-target plots for instance brock400 2. (a) γ = 0.999. (b) γ = 0.90. (c) γ = 0.80.
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Figure 5. Time-to-target plots for instance PGPgiantcompo. (a) γ = 0.90. (b) γ = 0.80.
(c) γ = 0.50.
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