ERRATUM TO “OPTIMALITY CONDITIONS FOR NONSMOOTH INTERVAL-VALUED AND MULTIOBJECTIVE SEMI-INFINITE PROGRAMMING”

Mohsine Jennane1, El Mostafa Kalmoun2,* and Lahoussine Lafhim1

Abstract. This note corrects an error in our paper [RAIRO: OR 55 (2021) 1–11] as we should drop the expression “with at least one strict inequality” in the definition of interval order in Section 2. Instead of proposing this short amendment, the authors of [RAIRO: OR 55 (2021) 13–22] gave a proposition that requires an additional condition on the constraint functions. However, we claim that all the results of our paper are correct once the modification above is done.

Mathematics Subject Classification. 49J52, 90C46, 58E35.

Received November 16, 2020. Accepted November 18, 2020.

In defining the interval order on page 3 (line 19), the condition “with at least one strict inequality” is incorrect and should be dropped. Indeed, if we denote the class of all closed intervals in \(\mathbb{R} \) by \(I \), then a partial order on \(I \) would be defined for two elements \(A = [a_L, a_U] \) and \(B = [b_L, b_U] \) in \(I \) by \(A \leq_{LU} B \) if \(a_L \leq b_L \) and \(a_U \leq b_U \). We write \(A <_{LU} B \) if \(a_L < b_L \) and \(a_U < b_U \). On the other hand, \(A = (A_1, \ldots, A_p) \) is called an interval-valued vector if \(A_k = [a_L^k, a_U^k] \in I \) for each \(k = 1, \ldots, p \). For two interval-valued vectors \(A = (A_1, \ldots, A_p) \) and \(B = (B_1, \ldots, B_p) \), we write \(A \leq_{LU} B \) if \(A_k \leq_{LU} B_k \) for each \(k = 1, \ldots, p \), and \(A <_{LU} B \) if \(A_k <_{LU} B_k \) for each \(k = 1, \ldots, p \).

When the interval order is defined as above, we claim all the results in our paper are correct. In particular, Example 5 and Example 6 in [1] will not stand anymore as counter-examples of Lemma 3.3 in our paper, because we will have \(\Omega = \{ x \in \mathbb{R} : g_t(x) \leq 0, \forall t \in T \} = \{ 0 \} \) for the first example, and \(\Omega = \{ (x_1, x_2) \in \mathbb{R}^2 : g_t(x_1, x_2) \leq 0, \forall t \in T \} = \{ (x_1, x_2) \in \mathbb{R}^2 : x_2 \geq |x_1| \} \) with \((0, 0) \in \Omega \) for the second, which contradicts what the authors of [1] have asserted. Consequently, Remark 11 of [1] will not remain valid since \(\Xi \) will be a weak efficient solution of Problem (11) and \(\Omega \) will be locally star-shaped at \(\Xi \). Moreover, contrary to Remark 7 of [1] the feasible set of Problem (2) will always be equal to \(\{ x \in \mathbb{R} : g_t(x) \leq 0, \forall t \in T \} \).

Instead of proposing the short amendment in the LU order that we explained above, the authors of [1] gave a proposition that requires an additional condition on the constraint functions ([1], Assumption 3, p. 7). This strong assumption is not needed in our case, and hence, Lemma 13 of [1] turns out to be superfluous.

Keywords. Multiobjective semi-infinite programming, interval-valued functions, optimality conditions.

1 FSDM, Department of Mathematics, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
2 Department of Mathematics, Statistics and Physics, Qatar University, Doha, Qatar.
*Corresponding author: ekalmoun@qu.edu.qa

Article published by EDP Sciences © EDP Sciences, ROADEF, SMAI 2021
The arguments presented in Remark 8 of [1] are misleading. The authors said that the equality given in Lemma 3.4 is false because “the structure of Problem (4) requires that \bar{x} be already a weak efficient solution of Problem (2)” without explaining how this supports their claim and how is against our statement in Lemma 3.4. Their proposed version ([1], Lem. 14) needs Assumption 3 in [1], page 27 to be hold. In order to clarify our Lemma 3.4, we give a new reformulation as follows.

Lemma 3.4. Let $\bar{x} \in \Omega$ and consider the maps f_1 and f_2 given by (3.4). Then, \bar{x} is a weak efficient solution of (3.1) if and only if it is a weak minima of (3.3).

In Remark 9 of [1], the authors said that the following equality we used

$$N_\Omega(\bar{x}) = cl \text{ cone}(\Gamma(\bar{x})) = cl \text{ cone} \left(\bigcup_{t \in T(\bar{x})} \text{co}(\partial^* g_t(\bar{x})) \right),$$

due to [2], is based on a condition that we did not check. However, after going back to the indicated reference ([2], Thm. 3.3(iii)), we found this condition does not appear anywhere in the statement of this result nor in its proof. Hence, this condition is not necessary in Remark 12 of [1].

On the other hand, in Example 10 of [1], the authors stated that “The following example shows that (4) requires that \bar{x} be already a weak efficient solution of \bar{x}” without explaining how this supports their claim and how it is against our statement in Lemma 3.4.

In summary, the expression “with at least one strict inequality” was inadvertently missed in the definition of interval order in our paper but was never used. In dropping this expression, we claim that all the results and proofs of our paper are correct. Instead of simply proposing this amendment, the authors in [1] made remarks that most of them lack accuracy. For the convenience of the reader, we have shown that Examples 5, 6, 10, Remarks 7, 8, Assumption 3, Lemmas 13 and 14 of [1] are all superfluous. They also claimed providing a new and short proof. However, we found that they rewrote ours but only replacing a part of it with a result in Theorem 4.1 of [2], whose proof is based exactly on the same arguments we employed.
REFERENCES
