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INVENTORY MODELS WITH INTEGRATED TIME DEPENDENT DEMANDS
FOR DETERIORATING ITEMS – IN THIRD AND FOURTH ORDER

EQUATIONS

C.K. Sivashankari and Lalitha Ramachandran*

Abstract. Inventory models with integrated time-dependent demands for deteriorative items are con-
sidered in this study. The demand models found in the literature include constant, linear, quadratic,
exponential, price dependent, and stock dependent among others. To wit, no study exists that uses
integrated time-dependent demands. Three models are developed: The first model uses continuously
compounded demands, the second model uses linear demands integrated with continuously compounded
demands, and the third model uses quadratic demands integrated with continuously compounded
demands. Mathematical models are delineated for each model and relevant examples are provided
to elucidate the proposed procedure. The objective herein is to obtain optimum order quantities and
order intervals concerning the overall cost. Sensitivity analysis is provided for each of the three models.
The necessary data was generated using Visual Basic 6.0.
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1. Introduction

Inventory models are of primary significance in industries that require manufacturing, distribution, and
retail infrastructure. Among the many concerns, demand plays a critical role in determining the best inventory
strategy. Classical inventory models, from a boundless forecasting perspective, presume constant demand but this
assumption is only effective for a determinate period during the mature phase of the product life-cycle. In other
phases, the demand for the product may be growing, for example, after the product is launched into the market,
or declining, perhaps due to new competition. Addressing changing demand involves research in two aspects of
inventory planning models; the deterioration of inventory items, and variation in the demand rate over time. It
is, obvious that demand is not constant; it may be time-dependent. Research has developed inventory models
that presume constant, linearly increasing or decreasing and, quadratically increasing or decreasing demand
for items; they also consider, ramp type demand, and stock dependent models, among others. A significant
number of authors have performed extensive work on real-life inventory control issues based on exponential and
linear demand. Aggarwal and Jaggi [1] considered an inventory model with an exponential deterioration rate
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under permissible payment delay conditions. Shukla et al. [18] developed an inventory model for deteriorating
products with exponential time-dependent demand rates, shortages allowed, and partial backlogging. Taylor’s
used series expansion to find a closed-form optimal solution. Khanna et al. [7] developed an inventory model for
deteriorating items with time-dependent demand where payment delays are acceptable. While the deterioration
rate is presumed to be constant, the time-varying demand rate is considered to be a quadratic function of time.
Goswami and Chaudhuri [6] developed an economic order quantity (EOQ) inventory model for an item subject
to deterministic time-dependent demand with a linear (positive) trend. Presuming a uniform rate of inventory
replenishment, they solved the model, allowing for no shortages and inventory shortages. Trailogyanath Singh
et al. [21] developed an inventory model to determine the EOQ for a deteriorating item with a linear time function
for the demand rate, a time–proportional deterioration rate, and shortages not allowed. They implement the
concept of integrated demands in a higher-order equation for forms of demands such as linear or quadratic
continuously compounded demand.

Realizing that linear, quadratic, exponential, ramp type, stock-dependent, and price-dependent demand,
along with other patterns, do not precisely depict demand for certain products, this paper adopts the concept
of integrating time-dependent demand in a higher-order equation such as linear with continuously compounded
demand (𝑎 + 𝑏𝑡)𝑒𝑅𝑡 and quadratic with continuous compounded demand (𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑒𝑅𝑡. As far as previous
research is concerned, no author has researched integrated time-dependent demands. In view of this feature,
three models are developed here: the first uses continuously compounded demand, the second uses linear demand
integrated with continuously compounded demand, and the third uses quadratic demands integrated with con-
tinuously compounded demand. For the three models, the mathematical derivation is generated, numerical
examples demonstrated, and data provided using Visual Basic 6.0. This paper aims to present inventory mod-
els with integrated time-dependent demands for deteriorating items in a higher-order equation; its objective
is thus to develop mathematical models to determine the optimal quantity and optimal timing of inventory
replenishment to meet future demand based on integrated time-dependent demands.

The paper is further organized as follows: The relevant literature is reviewed in Section 2, and assumptions and
notations for the development of the model are provided in Section 3. The inventory model is formulated and the
optimal solution process is developed in Section 4. A comparison of continuously compounded demand, linear
demand integrated with continuously compounded demand, and quadratic demand integrated with continuously
compounded demand is provided in Section 5 and finally, the summary and the scope for future research are
given in Section 6.

2. Literature review

Baker and Urban [3] developed deterministic and continuous inventory models in which the demand rate
depends upon the inventory, and the demand rate for the item has a polynomial functional form. Mandal
and Phaujdar [9] determined a uniform rate of production and stock-dependent demand for deteriorating items,
where shortages are permitted, and excess demand creates a backlog. Pal et al. [11] determined a stock-dependent
inventory model with a constant deterioration rate, determining the average net profit 𝜋 over one production
run, and optimizing the decision variables 𝑄 (initial stock) and 𝑇 (duration of a production cycle). In 1995,
Chung et al. [4] proposed inventory models for deteriorating items with stock-dependent sales rates and derived
profit functions without backlogging and with complete backlogging. They explore the efficient use of the
Newton–Raphson method when finding optimum solutions for-profit functions per unit time modeled in both
contexts. Srivastava and Gupta [23] developed an infinite time-horizon inventory model for deteriorating items,
assuming that the demand rate is constant for some time and then a linear function of time. They obtain the
theoretical expressions for the optimal inventory level and total average cost, as a function of the sales price and
time-dependent holding cost. Ajanta Roy [13] developed an inventory model with a time-proportional rate of
deterioration and demand. Vinod Kumar et al. [10] developed an inventory model with time-dependent demand,
and a time-varying holding cost, and time-proportional deterioration. The model allowed for inventory shortages
with partial backlogging. An EOQ inventory model was developed by Shukla et al. [19] with quadratic demand
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that permitted both payment delay and shortages. Tripathi and Manjit Kaur [24] considered an inventory model
with deteriorating items to be a phenomenon that cannot be overlooked, as failing to consider such context
may provide an absurd result. In the high-tech business industry, deterioration is not necessarily constant,
but rather time-dependent. Trailokyanath Singh et al. [20] introduced a model of the EOQ for deteriorating
items with a deterioration rate proportional to time, a time-demand ramp-type demand rate, and shortages.
The model allowed completely backlogged shortages and the ramp-type demand rate is deterministic, changing
over time to a certain point and then constant. Saha and Sen [14] proposed an inventory model with a sale
price and time-dependent demand, a constant holding cost, and time-dependent deterioration. Shaikh et al. [16]
considered purchase cost irrespective of the order size and carrying cost over the entire cycle period, treating
deterioration as another imperative issue in inventory analysis, because of its huge impact on the profit or cost of
the inventory system. Considering these factors, they developed two different inventory models: (a) an inventory
model for a zero ending case and (b) an inventory model for a shortage case. Tripathi et al. [25] established an
inventory model of exponential time-dependent demand and time-dependent deterioration. The model accounts
for shortages and considers a proportionate demand rate and unit production cost. Khedlekar et al. [8] attempted
to develop a method of optimization an economic production quantity model for deteriorating items with
production disruption. They determined the optimum production time before and after the system disruption.
They have also developed a model that optimizes product shortages, which is useful for determining the time
to start and finish production when the system gets disrupted. Shaikh et al. [17] developed an inventory model
based on the sale price of deteriorating items with variable-demand allowing for shortages and the advertising
of items under financial trade credit policy. Sivasankari [22] proposed an inventory model for deteriorating
items with under-inflation time-dependent exponential demand and developed an optimal solution from higher-
order equations. Pervin et al. [12] formulated an inventory model for deteriorating items. To minimize the rate
of deterioration, they apply preservation technologies and quantify the level of expenditure on preservation
technology. In their model, the demand function depends on the stock level and price, and the production rate
is linearly time-dependent, based on consumer demand with shortages permitted. Sarkret et al. [15] investigated
an integrated vendor-buyer model with shortages under a stochastic lead time, which is assumed to be variable
but depends on the buyer’s order size and the vendor’s production rate; the proposed model determines the net
present value of the expected total cost. Ahmad and Benkherout [2] proposed a procedure for determining the
optimal replenishment policy for a basic inventory model of stock-dependent demand items, non-instantaneous
deteriorating items, and partial backlogging. Dong et al. [5] proposed a problem that focuses on determining
the optimal price of the existing product and the inventory level for the new product. Inspired by practice, the
problem considers various strategies for the existing product and the cross-elasticity of demand for existing and
new products.

3. Assumptions and notations

3.1. Assumptions

(1) The initial inventory level is zero. (2) The demand rate is continuous compound demand 𝑌 = 𝑌 𝑒𝑅𝑡 in
model 1, the demand rate is integrated linear demand with continuous compound demand that is, 𝑌 = (𝑎+𝑏𝑡) 𝑒𝑅𝑡

in model 2 and the demand rate is integrated quadratic demand with continuous compound demand that is,
𝑌 = (𝑎 + 𝑏𝑡 + 𝑐𝑡2) 𝑒𝑅𝑡 in model 3, where 𝑅 > 0 rate of demand and it is a continuous function of time, “a” be
the initial demand and “b” and “c” are demand based on time. (3) The deteriorating rate is constant. (4) The
planning horizon is finite. (5) Lead time is zero. (6) There is no repair or replacement of the deteriorated items.
(7) Shortages are not considered in this model.

3.2. Notations

(1) 𝑌 = 𝑌 𝑒𝑅𝑡 – demand is continuous compound demand rate in units per unit time, 𝑌 = (𝑎+𝑏𝑡) 𝑒𝑅𝑡 – linear
demand integrated with continuous compound demand in units in unit time and 𝑌 = (𝑎+𝑏𝑡+𝑐𝑡2) 𝑒𝑅𝑡 – quadratic
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Figure 1. Economic lot size model for deteriorating items with continuous compound demand.

demand integrated with continuous compound demand in units in unit time, (2) 𝑄* – optimal inventory size,
(3) 𝜇 – the rate of deteriorative. (4) 𝐷𝐶 – deterioration cost per unit, (5) 𝑆𝐶 – ordering cost/order, (6) 𝑟 – the
rate of interest, (6) 𝐻𝐶 – holding cost per unit/time, (7) 𝑇1 – the time during which the inventory is building
up, (8) 𝑇 – cycle time, (9) TC – total cost, (10) 𝑅 – rate of increase in demand.

4. Mathematical models

4.1. EOQ inventory model for deteriorative items with continuous compound demand

This model is developed for deteriorating inventory model in which demand is continuous compound demand
with a function of time that is 𝑌 = 𝑌 𝑒𝑅𝑡, where 𝑅 > 0 at time 𝑡 and “R” stands for the increase in demand.
Let 𝑄 be the units of item arrive at the inventory system at the beginning of each cycle. The inventory level
decreases due to demand and deteriorating till it becomes zero in the interval (0, 𝑇 ). The total process is repeated.
The inventory level at different instants of time is shown in Figure 1. The differential equation describing the
instantaneous states of 𝐼(𝑡) in the interval [0, 𝑇 ] is given below:

d
d𝑡

𝐼(𝑡) + 𝜇𝐼(𝑡) = −𝑌 𝑒𝑅𝑡; 0 ≤ 𝑡 ≤ 𝑇. (4.1)

The basic boundary conditions in the differential equation,

𝐼(0) = 𝑄 and 𝐼(𝑇 ) = 0. (4.2)

From the equation (4.1),

𝐼(𝑡) =
𝑌

𝑅 + 𝜇

(︁
𝑒(𝑅+𝜇)𝑡−𝜇𝑡 − 𝑒𝑅𝑡

)︁
. (4.3)

Total cost TC(𝑇 ): total cost comprised of the sum of the setup cost, holding cost, and deteriorating cost.
They are grouped after evaluating the above cost individually.

(1) Setup cost =
𝑆𝐶

𝑇
· (4.4)

(2) Holding cost =
𝐻𝐶

𝑇

∫︁ 𝑇

0

𝑌

𝑅 + 𝜇

(︁
𝑒(𝑅+𝜇)𝑇−𝜇𝑡 − 𝑒𝑅𝑡

)︁
d𝑡
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=
−𝑌 𝐻𝐶

𝑅𝜇(𝑅 + 𝜇)𝑇

(︁
Re𝑅𝑇 + 𝜇𝑒𝑅𝑇 − Re(𝑅+𝜇)𝑇 − 𝜇

)︁
=

−𝑌 𝐻𝐶

𝑅𝜇(𝑅 + 𝜇)𝑇

(︁
𝑅
(︁
𝑒𝑅𝑇 − 𝑒(𝑅+𝜇)𝑇

)︁
+ 𝜇

(︀
𝑒𝑅𝑇 − 1

)︀)︁
=

𝑌 𝐻𝐶

𝑅𝜇(𝑅 + 𝜇)𝑇

(︁
𝑅
(︁
𝑒(𝑅+𝜇)𝑇 − 𝑒𝑅𝑇

)︁
+ 𝜇

(︀
1− 𝑒𝑅𝑇

)︀)︁
. (4.5)

(3) Deteriorating cost =
𝑌 𝜇𝐷𝐶

𝑅𝜇(𝑅 + 𝜇)𝑇

(︁
𝑅
(︁
𝑒(𝑅+𝜇)𝑇 − 𝑒𝑅𝑇

)︁
+ 𝜇

(︀
1− 𝑒𝑅𝑇

)︀)︁
(4.6)

Total cost, TC(𝑇 ) =
𝐻𝐶

𝑇
+

𝑌 (𝐻𝐶 + 𝜇𝐷𝐶)
𝑅𝜇(𝑅 + 𝜇)𝑇

[︁
𝑅
(︁
𝑒(𝑅+𝜇)𝑇 − 𝑒𝑅𝑇

)︁
+ 𝜇

(︀
1− 𝑒𝑅𝑇

)︀]︁
. (4.7)

Optimality conditions:

d
d𝑇

TC(𝑇 ) = 0 and
d2

d𝑇 2
TC(𝑇 ) > 0.

Differentiate the equation (4.7) with respect to 𝑇

d
d𝑇

TC(𝑇 ) = −𝑆𝐶 +
𝑌 (𝐻𝐶 + 𝜇𝐷𝐶)

𝑅𝜇(𝑅 + 𝜇)

[︃
𝑇
{︁

𝑅(𝑅 + 𝜇)𝑒(𝑅+𝜇)𝑇 − Re𝑅𝑇
}︁
−𝑅

(︁
𝑒(𝑅+𝜇)𝑇 − 𝑒𝑅𝑇

)︁
+𝑇

{︀
𝜇
(︀
−Re𝑅𝑇

)︀}︀
− 𝜇

(︀
1− 𝑒𝑅𝑇

)︀ ]︃
= 0

𝑅(𝑅 + 𝜇)𝑇𝑒(𝑅+𝜇)𝑇 −𝑅𝑇𝑒𝑅𝑇 −𝑅
(︁
𝑒(𝑅+𝜇)𝑇 − 𝑒𝑅𝑇

)︁
−𝑅𝜇𝑇𝑒𝑅𝑇− 𝜇

(︀
1− 𝑒𝑅𝑇

)︀
=

𝑆𝐶𝑅𝜇(𝑅+ 𝜇)
𝑌 (𝐻𝐶 + 𝜇𝐷𝐶)

·

This is an optimum solution of 𝑇 in a higher-order equation. This equation can be evaluated by using Matlab.
But the reader’s convenient; the equation is reduced to the fourth-order equation then third order equation in
𝑇 .

On simplification ⎡⎢⎣ 𝜇𝑇 2

2
+

𝑅𝑇 2

2
+

2𝑅2𝑇 3

3
+ 𝑅𝜇𝑇 3 +

𝜇2𝑇 3

3
+

3𝑅3𝑇 4

8
+

3𝑅2𝜇𝑇 4

4
+

𝑅𝜇2𝑇 4

2
+

𝜇3𝑇 4

8

⎤⎥⎦ =
𝑆𝐶(𝑅 + 𝜇)

𝑌 (𝐻𝐶 + 𝜇𝐷𝐶)
·

On simplifications,

1
2

(𝑅 + 𝜇)𝑇 2 +
(︂

2𝑅2

3
+ 𝑅𝜇 +

𝜇2

3

)︂
𝑇 3 +

(︂
3𝑅3

8
+

3𝑅2𝜇

4
+

𝑅𝜇2

2
+

𝜇3

8

)︂
𝑇 4 =

𝑆𝐶(𝑅 + 𝜇)
𝑌 (𝐻𝐶 + 𝜇𝐷𝐶)[︂

3
(︀
3𝑅3 + 6𝑅2𝜇 + 4𝑅𝜇2 + 𝜇3

)︀
𝑇 4

+8
(︀
2𝑅2 + 3𝑅𝜇 + 𝜇2

)︀
𝑇 3 + 12(𝑅 + 𝜇)𝑇 2

]︂
=

24(𝑅 + 𝜇)𝑆𝐶

𝑌 (𝐻𝐶 + 𝜇𝐷𝐶)
(4.8)

which is optimal solution for cycle time 𝑇 in forth order equation and it is reduced to 3th order equation.

2
(︀
2𝑅2 + 3𝑅𝜇 + 𝜇2

)︀
𝑇 3 + 3(𝑅 + 𝜇)𝑇 2 =

6(𝑅 + 𝜇)𝑆𝐶

𝑌 (𝐻𝐶 + 𝜇𝐷𝐶)
· (4.9)

Note: when higher power values are assigned zero, then the equation (4.4) reduces to basic inventory model
𝑇 =

√︁
2𝑆𝐶

𝑌 (𝐻𝐶+𝜇𝐷𝐶) . (Appendix A)

Numerical example: let us consider the cost parameters

𝑌 = 5000 units, 𝐻𝐶 = 7, 𝐷𝐶 = 50, 𝑆𝐶 = 150, 𝜇 = 0.01, 𝑅 = 0.1.
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Table 1. Variation of rate of deteriorating items with inventory and total cost and continuous
compound demand.

𝜇 𝑇 𝑄 Setup cost Holding cost Deteriorating cost Total cost

0.01 0.0888 444.45 1687.45 1565.27 111.80 3364.53
0.02 0.0860 430.30 1742.94 1515.57 216.51 3475.03
0.03 0.0834 417.42 1796.74 1470.32 315.06 3582.14
0.04 0.0811 405.62 1849.00 1428.83 408.25 3686.15
0.05 0.0789 394.77 1899.83 1390.75 496.71 3787.33
0.06 0.0769 384.74 1949.36 1355.57 580.96 3885.89
0.07 0.0750 375.43 1997.67 1322.90 661.45 3982.03
0.08 0.0733 366.77 2044.86 1292.49 738.50 4075.92
0.09 0.0717 358.67 2091.00 1264.08 812.62 4167.71
0.10 0.0702 351.09 2136.16 1237.46 883.90 4257.53
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Figure 2. Relationship between rate of deteriorative items with total cost in continuous com-
pound demand.

Optimum solution

The cubic equation is 0.0462𝑇 3 + 0.33𝑇 2 − 0.00264 = 0 in which one positive real root and two negative
real roots. That is, 𝑇 = 0.08889, −7.14174 and −0.09001. The positive root 𝑇 = 0.0888 is considered in this
model. Therefore, Cycle time = 0.0888, Optimum Quantity 𝑄* = 444.45, Setup cost = 1687.45, Holding cost =
1565.27, Deteriorating cost = 111.80, Total cost = 3364.53.

In above Table 1, it is observed that a study of the rate of the deteriorative items with cycle time, optimum
quantity, setup cost, deteriorating cost, and total cost. There is a positive relationship between the increase in
the rate of deterioration for items 𝜇 and setup costs, deteriorating costs, and total costs, while there is a negative
relationship between the increase in the rate of deterioration for items 𝜇 and cycle time, optimum quantity, and
holding cost.

The graphical representations between total cost with rate of deteriorative items is given in Figure 2:

Sensitivity analysis

The total cost functions are the real solution in which the model parameters are assumed to be static values.
It is reasonable to study the sensitivity i.e. the effect of making changes in the model parameters over a given
optimum solution. It is important to find the effects on different system performance measures, such as cost
function, inventory system, etc. For this purpose, sensitivity analysis of various system parameters for the models
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Table 2. Effect of Demand and cost parameters on optimal values in continuous compound
demand.

Cost parameters Optimal values
𝑇 𝑄 Setup cost Holding cost Deteriorative cost Total cost

130 0.0827 413.94 1570.27 1457.19 104.09 3131.54
140 0.0858 429.47 1629.89 1512.19 108.01 3250.11

𝑆𝐶 150 0.0888 444.45 1687.45 1565.27 111.80 3364.53
160 0.0917 458.94 1743.14 1616.61 115.47 3475.23
170 0.0945 472.92 1797.14 1666.36 119.02 3582.53
5 0.1036 518.48 1446.52 1305.61 130.56 2882.70
6 0.0954 477.20 1571.64 1441.18 120.09 3132.92

𝐻𝐶 7 0.0888 444.45 1687.45 1565.27 111.80 3364.53
8 0.0835 417.64 1795.76 1680.36 105.02 3581.15
9 0.0790 395.17 1897.87 1788.14 99.34 3785.36
30 0.0901 450.46 1664.94 1586.57 67.99 3319.51
40 0.0895 447.43 1676.23 1575.81 90.46 3342.10

𝐷𝐶 50 0.0888 444.45 1687.45 1565.27 111.80 3364.53
60 0.0883 441.54 1698.89 1554.94 133.28 3386.82
70 0.0877 438.68 1709.66 1544.81 154.48 3408.96

𝑅

0.05 0.0891 445.75 1682.52 1565.25 111.80 3359.58
0.10 0.0888 444.45 1687.45 1565.27 111.80 3364.53
0.15 0.0886 443.17 1692.34 1565.31 111.80 3369.46
0.20 0.0883 441.90 1697.18 1565.35 111.81 3374.35
0.25 0.0881 440.66 1701.99 1565.41 111.81 3379.22
0.30 0.0878 439.42 1706.75 1565.48 111.82 3384.06
0.35 0.0876 438.21 1711.48 1565.57 111.82 3388.88
0.40 0.0874 437.01 1716.17 1565.66 111.83 3393.66
0.45 0.0871 435.83 1720.82 1565.76 111.84 3398.43
0.50 0.0869 434.67 1725.43 1565.88 111.84 3403.16

of this research is required to observe whether the current solutions remain unchanged, the current solutions
become infeasible, etc.

Managerial insights: a sensitivity analysis is performed to study the effects of changes in the system parame-
ters, rate of deteriorating items 𝜇, ordering cost per order (𝑆𝐶), holding cost per unit time (𝐻𝐶), deteriorating
cost per unit time (𝐷𝐶), and rate of increase in demand (𝑅) on optimal values that is optimal cycle time (𝑇 ),
optimal quantity (𝑄), setup cost, holding cost, deteriorating cost and total cost. The sensitivity analysis is per-
formed by changing (increasing or decreasing) the parameter taken at a time, keeping the remaining parameters
at their original values. The following influences can be obtained from sensitivity analysis based on Table 2.

(1) There is a positive relationship between the increase in the setup costs per set (𝑆𝐶) and the cycle time, the
optimum quantity, setup costs, holding costs, deteriorating costs, and total costs.

(2) There is a positive relationship between the increase in the holding cost per unit time (𝐻𝐶) and the setup
cost, holding cost, and total cost while there is a negative relationship between the increase in the holding
cost per unit time (𝐻𝐶) and the cycle time, optimal quantity and deteriorating cost.

(3) There is a positive relationship between the increase in the rate of demand (𝑅) and the setup cost, holding
cost, deteriorative cost and total cost, while there is a negative relationship between the increase in the
rate of demand (𝑅) and the cycle time, and optimum quantity.

(4) Similarly, other parameters, rate of deteriorating items (𝐷𝐶) can also be observed from Table 2.
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4.2. EOQ inventory model for deteriorating items integrated with linear and continuous
compound demand

This model is developed for deteriorating inventory model in which demand is linear integrated with contin-
uous compound demand which is a function of time that is 𝑌 = (𝑎 + 𝑏𝑡)𝑒𝑅𝑡, where 𝑅 > 0 at time 𝑡 and “R”
stands for the increase in demand, “a” stands for initial demand, and “b” demand based on time. Let 𝑄 be the
units of the item arriving at the inventory system at the beginning of each cycle. The inventory level decreases
due to demand and deteriorating till it becomes zero in the interval (0, 𝑇 ). The total process is repeated. The
differential equation describing the instantaneous states of 𝐼(𝑡) in the interval [0, 𝑇 ] is given below:

d
d𝑡

𝐼(𝑡) + 𝜇𝐼(𝑡) = −(𝑎 + 𝑏𝑡)𝑒𝑅𝑡; 0 < 𝑡 < 𝑇1 (4.10)

𝐼(𝑜) = 𝑄, 𝐼(𝑇 ) = 0. (4.11)

From the differential equation (4.11)

𝐼(𝑡) =
1

𝑅 + 𝜇

[︁
(𝑎 + 𝑏𝑇 )𝑒(𝑅+𝜇)𝑇−𝜇𝑡 − (𝑎 + 𝑏𝑡)𝑒𝑅𝑡

]︁
+

𝑏

(𝑅 + 𝜇)2
[︁
𝑒𝑅𝑡 − 𝑒(𝑅+𝜇)𝑇−𝜇𝑡

]︁
. (4.12)

Note:

(i) When 𝑎 = 𝑌 and 𝑏 = 0, then 𝐼(𝑡) = 𝑌
𝑅+𝜇

[︀
𝑒(𝑅+𝜇)𝑇−𝜇𝑡 − 𝑒𝑅𝑡

]︀
which is continuous compound demand. (as

per model 1)
(ii) When 𝑅 = 0, then 𝐼(𝑡) =

(︁
𝑎
𝜇 + 𝑏𝑇

𝜇 − 𝑏
𝜇2

)︁
𝑒(𝑇−𝑡)𝜇 − 𝑎

𝜇 −
𝑏𝑡
𝜇 + 𝑏

𝜇2 which is Linear Demand. (Appendix B)

(iii) When 𝑎 = 𝑌 and 𝑏 = 0, then 𝐼(𝑡) = 𝑌
𝜇

(︀
𝑒(𝑇−𝑡)𝜇 − 1)

)︀
constant Demand. (Appendix A)

To find 𝑄:

𝐼(0) = 𝑄 ⇒ 𝑄 =
1

𝑅 + 𝜇

[︁
(𝑎 + 𝑏𝑇 )𝑒(𝑅+𝜇)𝑇 − 𝑎

]︁
+

𝑏

(𝑅 + 𝜇)2
[︁
1− 𝑒(𝑅+𝜇)𝑇

]︁
.

On simplification,

𝑄 = 𝑎𝑇 +
1
2
𝑎(𝑅 + 𝜇)𝑇 2 +

𝑏𝑇 2

2
· (4.13)

Total cost TC(𝑇 ): total cost comprised of the sum of the setup cost, holding cost, and deteriorating cost.
They are grouped after evaluating the above cost individually.

Total cost (TC) = Setup cost + holding cost + deteriorating cost.

(1) Setup cost =
𝑆𝐶

𝑇
· (4.14)

(2) Holding cost =
𝐻𝐶

𝑇

⎡⎣ 𝑇∫︁
0

1
𝑅 + 𝜇

[︁
(𝑎 + 𝑏𝑇 )𝑒(𝑅+𝜇)𝑇−𝜇𝑡 − (𝑎 + 𝑏𝑡)𝑒𝑅𝑡

]︁
+

𝑏

(𝑅 + 𝜇)2
[︁
𝑒𝑅𝑡 − 𝑒(𝑅+𝜇)𝑇−𝜇𝑡

]︁]︂
d𝑡

=
𝐻𝐶

𝑇

⎡⎢⎢⎣
1

𝑅2𝜇(𝑅 + 𝜇)

[︂
𝑅2(𝑎 + 𝑏𝑇 )(𝑒(𝑅+𝜇)𝑇 − 𝑒𝑅𝑇 ) + 𝑏𝜇

(︀
𝑒𝑅𝑇 − 1

)︀
+𝑅𝑎𝜇

(︀
1− 𝑒𝑅𝑇

)︀
−𝑅𝑏𝜇𝑇𝑒𝑅𝑇

]︂
+

𝑏

𝑅𝜇(𝑅 + 𝜇)2
[︁
𝜇
(︀
𝑒𝑅𝑇 − 1

)︀
+ 𝑅

(︁
𝑒𝑅𝑇 − 𝑒(𝑅+𝜇)𝑇

)︁]︁
.

⎤⎥⎥⎦ (4.15)

(3) Deteriorative cost =
𝜇𝐷𝐶

𝑇

⎡⎢⎢⎣
1

𝑅2𝜇(𝑅 + 𝜇)

[︂
𝑅2(𝑎 + 𝑏𝑇 )(𝑒(𝑅+𝜇)𝑇 − 𝑒𝑅𝑇 ) + 𝑏𝜇

(︀
𝑒𝑅𝑇 − 1

)︀
+𝑅𝑎𝜇

(︀
1− 𝑒𝑅𝑇

)︀
−𝑅𝑏𝜇𝑇𝑒𝑅𝑇

]︂
+

𝑏

𝑅𝜇(𝑅 + 𝜇)2
[︁
𝜇
(︀
𝑒𝑅𝑇 − 1

)︀
+ 𝑅

(︁
𝑒𝑅𝑇 − 𝑒(𝑅+𝜇)𝑇

)︁]︁
⎤⎥⎥⎦ .
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Therefore, total cost,

TC =
𝑆𝐶

𝑇
+

𝐻𝐶 + 𝜇𝐷𝐶

𝑇

⎡⎢⎢⎢⎣
1

𝑅2𝜇(𝑅 + 𝜇)

[︃
𝑅2(𝑎 + 𝑏𝑇 )

(︁
𝑒(𝑅+𝜇)𝑇 − 𝑒𝑅𝑇

)︁
+ 𝑏𝜇

(︀
𝑒𝑅𝑇 − 1

)︀
+𝑅𝑎𝜇

(︀
1− 𝑒𝑅𝑇

)︀
−𝑅𝑏𝜇𝑇𝑒𝑅𝑇

]︃
+

𝑏

𝑅𝜇(𝑅 + 𝜇)2
[︁
𝜇
(︀
𝑒𝑅𝑇 − 1

)︀
+ 𝑅

(︁
𝑒𝑅𝑇 − 𝑒(𝑅+𝜇)𝑇

)︁]︁
⎤⎥⎥⎥⎦ . (4.16)

Optimality conditions:

d
d𝑇

TC(𝑇 ) = 0 and
d2

d𝑇 2
TC(𝑇 ) > 0.

Differentiate the equation (4.16) with respect to 𝑇 ,

d
d𝑇

(TC) = −𝑆𝐶 + (𝐻𝐶 + 𝜇𝐷𝐶)⎡⎢⎢⎢⎢⎢⎢⎣
1

𝑅2𝜇(𝑅 + 𝜇)

⎡⎢⎢⎣
𝑇𝑅2

{︁
(𝑎 + 𝑏𝑇 )

(︁
(𝑅 + 𝜇)𝑒(𝑅+𝜇)𝑇 − Re𝑅𝑇

)︁
+ 𝑏

(︁
𝑒(𝑅+𝜇)𝑇 − 𝑒𝑅𝑇

)︁}︁
−𝑅2(𝑎 + 𝑏𝑇 )

(︁
𝑒(𝑅+𝜇)𝑇 − 𝑒𝑅𝑇

)︁
+ 𝑅𝑏𝜇𝑇𝑒𝑅𝑇 − 𝑏𝜇

(︀
𝑒𝑅𝑇 − 1

)︀
−𝑅2𝑎𝜇𝑇𝑒𝑅𝑇 −𝑅𝑎𝜇

(︀
1− 𝑒𝑅𝑇

)︀
−𝑅2𝑏𝜇𝑒𝑅𝑇

⎤⎥⎥⎦
+

𝑏

𝑅𝜇(𝑅 + 𝜇)2
[︁
𝑅𝜇𝑇𝑒𝑅𝑇 − 𝜇

(︀
𝑒𝑅𝑇 − 1

)︀
+ 𝑅𝑇

(︁
Re𝑅𝑇 − (𝑅 + 𝜇)𝑒(𝑅+𝜇)𝑇

)︁
+ 𝑅

(︁
𝑒(𝑅+𝜇)𝑇 − 𝑒𝑅𝑇

)︁]︁

⎤⎥⎥⎥⎥⎥⎥⎦ = 0.

That is, it can be written as⎡⎢⎢⎢⎢⎢⎢⎢⎣
1

𝑅2𝜇(𝑅 + 𝜇)

⎡⎢⎢⎣
𝑅2(𝑎 + 𝑏𝑇 )𝑇

(︁
(𝑅 + 𝜇)𝑒(𝑅+𝜇)𝑇 − Re𝑅𝑇

)︁
+ 𝑅2𝑏𝑇

(︁
𝑒(𝑅+𝜇)𝑇 − 𝑒𝑅𝑇

)︁
−𝑅2(𝑎 + 𝑏𝑇 )

(︁
𝑒(𝑅+𝜇)𝑇 − 𝑒𝑅𝑇

)︁
+ 𝑅𝑏𝜇𝑇𝑒𝑅𝑇 − 𝑏𝜇

(︀
𝑒𝑅𝑇 − 1

)︀
−𝑅2𝑎𝜇𝑇𝑒𝑅𝑇 −𝑅𝑎𝜇

(︀
1− 𝑒𝑅𝑇

)︀
−𝑅2𝑏𝜇𝑇 2𝑒𝑅𝑇

⎤⎥⎥⎦
+ 𝑏

𝑅𝜇(𝑅+𝜇)2

[︃
𝑅𝜇𝑇𝑒𝑅𝑇 − 𝜇

(︀
𝑒𝑅𝑇 − 1

)︀
+ 𝑅2𝑇𝑒𝑅𝑇 −𝑅(𝑅 + 𝜇)𝑇𝑒(𝑅+𝜇)𝑇

−𝑅
(︁
𝑒𝑅𝑇 − 𝑒(𝑅+𝜇)𝑇

)︁ ]︃

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

𝑆𝐶

𝐻𝐶 + 𝜇𝐷𝐶
·

This is the optimum solution of 𝑇 in a higher-order equation. This equation can be evaluated by using Matlab.
But for the reader’s convenience; the equation is reduced to a fourth-order equation then a third-order equation
in 𝑇 . Expansion of exponential demand is evaluated up to fourth-order equation and simplifying them we can
get, ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝑅 + 𝜇

⎡⎢⎢⎢⎢⎢⎣
𝑅𝑎𝑇 2

2
+

𝑎𝜇𝑇 2

2
+

𝑏𝑇 2

2
+

4𝑅𝑏𝑇 3

3
+ 𝑏𝜇𝑇 3 +

2𝑅2𝑎𝑇 3

3
+ 𝑅𝑎𝜇𝑇 3

+
𝑎𝜇2𝑇 3

3
+

9𝑅2𝑏𝑇 4

8
+

3𝑅𝑏𝜇𝑇 4

2
+

𝑏𝜇2𝑇 4

2
+

𝑅3𝑎𝑇 4

2
+

3𝑅2𝑎𝜇𝑇 4

4
+

𝑅𝑎𝜇2𝑇 4

2
+

𝑎𝜇3𝑇 4

8
− 𝑅2𝑎𝑇 4

8

⎤⎥⎥⎥⎥⎥⎦
+ 𝑏

(𝑅+𝜇)2

⎡⎢⎣−𝑅𝑇 2

2
− 𝜇𝑇 2

2
− 2𝑅2𝑇 3

3
−𝑅𝜇𝑇 3 − 𝜇2𝑇 3

3
− 3𝑅3𝑇 4

8
−3𝑅2𝜇𝑇 4

4
− 𝑅𝜇2𝑇 4

2
− 𝜇3𝑇 4

8

⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

𝑆𝐶

𝐻𝐶 + 𝜇𝐷𝐶
·

After simplifications, the equation can be written in the following form⎡⎢⎢⎢⎢⎢⎣
((𝑅 + 𝜇) (𝑅𝑎 + 𝑎𝜇 + 𝑏)− 𝑏 (𝑅 + 𝜇))

𝑇 2

2
+
[︀
(𝑅 + 𝜇)

(︀
4𝑅𝑏 + 3𝑏𝜇 + 2𝑅2𝑎 + 3𝑅𝑎𝜇 + 𝑎𝜇2

)︀
+ 𝑏

(︀
−2𝑅2 − 3𝑅𝜇− 𝜇2

)︀]︀ 𝑇 3

3
+
[︂
(𝑅 + 𝜇)

(︂
9𝑅2𝑏 + 12𝑅𝑏𝜇 + 4𝑏𝜇2 + 4𝑅3𝑎
+6𝑅2𝑎𝜇 + 4𝑅𝑎𝜇2 + 𝑎𝜇3 −𝑅2𝑎

)︂
− 𝑏

(︂
3𝑅3 + 6𝑅2𝜇
+4𝑅𝜇2 + 𝜇3

)︂]︂
𝑇 4

8

⎤⎥⎥⎥⎥⎥⎦ =
(𝑅 + 𝜇)2𝑆𝐶

𝐻𝐶 + 𝜇𝐷𝐶
·
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Table 3. Variation of rate of deteriorating items with inventory and total cost with linear
integrated with continuous compound demand.

𝜇 𝑇 𝑄 Setup cost Holding cost Deteriorating cost Total cost

0.01 0.0879 457.02 1706.04 1515.40 108.24 3329.73
0.02 0.0852 442.73 1759.72 1466.80 209.54 3436.07
0.03 0.0827 428.84 1811.75 1422.60 304.84 3539.19
0.04 0.0805 416.15 1862.28 1382.18 394.90 3639.37
0.05 0.0784 404.51 1911.42 1345.03 480.36 3736.82
0.06 0.0765 393.79 1959.30 1310.73 561.74 3831.77
0.07 0.0747 383.87 2006.00 1278.93 639.46 3924.41
0.08 0.0731 374.65 2051.65 1249.35 713.91 4014.88
0.09 0.0715 366.05 2096.19 1221.74 785.40 4103.34
0.10 0.0701 358.02 2139.83 1195.88 854.20 4189.91

The above equation is in the fourth-order equation, then it is reduced to a third-order equation as follows,

(𝑅 + 𝜇)
[︀
2𝑏(𝑅 + 𝜇) + 2𝑅2𝑎 + 3𝑅𝑎𝜇 + 𝑎𝜇2

]︀ 𝑇 3

3
+ 3𝑎(𝑅 + 𝜇)𝑇 2 =

6(𝑅 + 𝜇)𝑆𝐶

𝐻𝐶 + 𝜇𝐷𝐶

2
[︀
2𝑏(𝑅 + 𝜇) + 2𝑅2𝑎 + 3𝑅𝑎𝜇 + 𝑎𝜇2

]︀
𝑇 3 + 3𝑎(𝑅 + 𝜇)𝑇 2 =

6(𝑅 + 𝜇)𝑆𝐶

𝐻𝐶 + 𝜇𝐷𝐶
· (4.17)

which is an optimal solution in the third-order equation and it is solved based on the visual basic 6.0 program
for generating the data.

Numerical example: let us consider the cost parameters

𝑌 = 5000 units, 𝐻𝐶 = 7, 𝐷𝐶 = 50, 𝑆𝐶 = 150, 𝜇 = 0.01, 𝑅 = 0.1, 𝑎 = 4650, 𝑏 = 3985.

Optimum solution
The cubic equation for the given data in example,

1968.23𝑇 3 + 1534.50𝑇 2 − 13.20 = 0.

The one positive real and two negative real roots of this third order equation is 𝑇 = 0.08792, −0.09928 and
−0.76827. The positive root 𝑇 = 0.0879 is considered in this model. Therefore, Cycle time = 0.0879, Optimum
Quantity 𝑄* = 457.02, Setup cost = 1706.04, Holding cost = 1515.40, Deteriorating cost = 108.24, Total cost =
3329.73.

From the above Table 3, it is observed that a study of the rate of the deteriorative items with cycle time,
optimum quantity, setup cost, holding cost, deteriorating cost, and total cost. There is a positive relationship
between the increase in the rate of deterioration for items 𝜇 and setup costs, deteriorating costs, and total costs,
while there is a negative relationship between the increase in the rate of deterioration for items 𝜇 and cycle
time, optimum quantity, and holding cost.

The graphical representations between total cost with rate of deteriorative items is given in Figure 3:

Sensitivity analysis

Managerial insights: a sensitivity analysis is performed to study the effects of changes in the system parame-
ters, rate of deteriorating items 𝜇, ordering cost per order (𝑆𝐶), holding cost per unit time (𝐻𝐶), deteriorating
cost per unit time (𝐷𝐶), and rate of increase in demand (𝑅) on optimal values that is optimal cycle time
(𝑇 ), optimal quantity (𝑄), setup cost, holding cost, deteriorating cost and total cost. The sensitivity analysis
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Figure 3. Relationship between rate of deteriorative items with total cost.

is performed by changing (increasing or decreasing) the parameter taking at a time, keeping the remaining
parameters at their original values. The following influences can be obtained from sensitivity analysis based on
Table 4.

(1) There is a positive relationship between the increase in the setup costs per set (𝑆𝐶) and the cycle time, the
optimum quantity, setup costs, holding costs, deteriorating costs, and total costs.

(2) There is a positive relationship between the increase in the holding cost per unit time (𝐻𝐶) and the setup
cost, holding cost, and total cost while there is a negative relationship between the increase in the holding
cost per unit time (𝐻𝐶) and the cycle time, optimal quantity and deteriorating cost.

(3) There is a positive relationship between the increase in the rate of demand (𝑅) and the setup cost, holding
cost, deteriorative cost and total cost, while there is a negative relationship between the increase in the
rate of demand (𝑅) and the cycle time, and optimum quantity.

(4) Similarly, other parameters, cost of deteriorating item per unit (𝐷𝐶), 𝑎, and 𝑏 can also be observed from
Table 4.

4.3. EOQ inventory model for deteriorating items with integrated quadratic and
continuous compound demand

This model has developed a deteriorating inventory model in which demand is quadratically integrated with
continuous compound demand which is a function of time that is 𝑌 = (𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑒𝑅𝑡, where 𝑅 > 0 at time 𝑡
and “R” stands for the increase in demand, “a” stands for constant that is initial demand and “b” and “c” are
demand-based time. Let 𝑄 be the units of item arrive at the inventory system at the beginning of each cycle.
The inventory level decreases due to demand and deteriorating till it becomes zero in the interval (0, 𝑇 ). The
total process is repeated. The differential equation describing the instantaneous states of 𝐼(𝑡) in the interval
[0, 𝑇 ] is given below:

d
d𝑡

𝐼(𝑡) + 𝜇𝐼(𝑡) = −
(︀
𝑎 + 𝑏𝑡 + 𝑐𝑡2

)︀
𝑒𝑅𝑡; 0 < 𝑡 < 𝑇1 (4.18)

with the boundary conditions

𝐼(0) = 𝑄, 𝐼(𝑇 ) = 0. (4.19)

From the differential equation (4.9)

𝐼(𝑡) =

⎡⎢⎣
1

𝑅 + 𝜇

[︁(︀
𝑎 + 𝑏𝑇 + 𝑐𝑇 2

)︀
𝑒(𝑅+𝜇)𝑇−𝜇𝑡 −

(︀
𝑎 + 𝑏𝑡 + 𝑐𝑡2

)︀
𝑒𝑅𝑡
]︁

+
1

(𝑅 + 𝜇)2
[︁
(𝑏 + 2𝑐𝑡)𝑒𝑅𝑡 − (𝑏 + 2𝑐𝑇 )𝑒(𝑅+𝜇)𝑇−𝜇𝑡

]︁
+

2𝑐

(𝑅 + 𝜇)3
[︁(︁

𝑒(𝑅+𝜇)𝑇−𝜇𝑡 − 𝑒𝑅𝑡
)︁]︁
⎤⎥⎦ . (4.20)
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Table 4. Effect of demand and cost parameters on optimal values and linear with integrated
continuous compound demand.

Cost parameters Optimal values
𝑇 𝑄 Setup cost Holding cost Deteriorative cost Total cost

130 0.0821 425.82 1582.92 1410.32 100.73 3093.99
140 0.0851 439.74 1645.49 1463.81 104.55 3213.86

𝑆𝐶 150 0.0879 457.02 1706.04 1515.40 108.24 3329.73
160 0.0906 470.80 1764.77 1565.38 111.81 3441.97
170 0.0933 487.18 1821.85 1613.81 115.27 3550.94
5 0.1018 532.64 1472.65 1265.08 126.51 2864.25
6 0.0941 492.81 1593.89 1395.79 116.31 3106.01

𝐻𝐶 7 0.0879 457.02 1706.04 1515.40 108.24 3329.73
8 0.0828 431.65 1810.89 1626.39 101.64 3538.93
9 0.0785 405.04 1909.69 1730.29 96.12 3736.11
30 0.0890 463.16 1684.25 1536.15 65.83 3286.24
40 0.0884 460.26 1695.18 1525.69 87.18 3308.06

𝐷𝐶 50 0.0879 457.02 1706.04 1515.40 108.24 3329.73
60 0.0873 454.24 1716.83 1505.38 129.03 3351.25
70 0.0868 450.93 1727.55 1495.53 149.55 3372.64
4350 0.0904 443.56 1657.79 1466.20 104.72 3228.72
4500 0.0891 451.25 1682.07 1491.02 106.50 3279.59

𝑎 4650 0.0879 457.02 1706.04 1515.40 108.24 3329.73
4800 0.0867 464.03 1729.72 1539.47 109.96 3379.16
4950 0.0855 469.67 1753.12 1563.14 111.65 3427.92
3685 0.0882 455.17 1700.50 1515.20 108.22 3323.94
3835 0.0880 456.14 1703.28 1515.32 108.23 3326.84

b 3985 0.0879 457.02 1706.04 1515.40 108.24 3329.73
4135 0.0877 458.04 1708.80 1515.55 108.25 3332.61
4285 0.0876 458.91 1711.54 1515.68 108.26 3335.48

R

0.10 0.0879 457.02 1706.04 1515.40 108.24 3329.73
0.15 0.0877 456.73 1710.31 1517.69 108.40 3336.41
0.20 0.0874 456.37 1714.54 1519.95 108.56 3343.06
0.25 0.0872 456.02 1718.74 1522.19 108.72 3349.66
0.30 0.0870 455.68 1722.91 1524.43 108.88 3356.23
0.35 0.0868 455.34 1727.05 1526.65 109.04 3362.75
0.40 0.0866 455.01 1731.17 1528.86 109.20 3369.24
0.45 0.0864 454.68 1735.26 1531.05 109.36 3375.68
0.50 0.0862 454.36 1739.32 1533.24 109.51 3382.08

Note:

(i) When 𝑎 = 𝑌 and 𝑏 = 𝑐 = 0, then 𝐼(𝑡) = 𝑌
𝑅+𝜇

[︀
𝑒(𝑅+𝜇)𝑇−𝜇𝑡 − 𝑒𝑅𝑡

]︀
which is continuous compound demand.

(As per Model 1)
(ii) When 𝑅 = 0, then

𝐼(𝑡) =
[︂(︂

𝑎

𝜇
+

𝑏𝑇

𝜇
+

𝑐𝑇 2

𝜇

)︂
−
(︂

𝑏

𝜇2
+

2𝑐𝑇

𝜇2

)︂
+

2𝑐

𝜇3

]︂
𝑒(𝑇−𝑡)𝜇 −

(︂
𝑎

𝜇
+

𝑏𝑡

𝜇
+

𝑐𝑡2

𝜇

)︂
+
(︂

𝑏

𝜇2
+

2𝑐𝑡

𝜇2

)︂
− 2𝑐

𝜇3

which is Quadratic Demand. (Appendix C)
(iii) When 𝑎 = 𝐷 and 𝑏 = 0 and 𝑅 = 0, then 𝐼(𝑡) = 𝐷

𝜇

(︀
𝑒(𝑇−𝑡)𝜇 − 1)

)︀
constant Demand. (Appendix A)
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(iv) When 𝑐 = 0 in (ii), then 𝐼(𝑡) =
(︁

𝑎
𝜇 + 𝑏𝑇

𝜇 − 𝑏
𝜇2

)︁
𝑒(𝑇−𝑡)𝜇 −

(︁
𝑎
𝜇 + 𝑏𝑡

𝜇 −
𝑏

𝜇2

)︁
which is linear demand. (Appendix B)

To find Q:

𝐼(0) = 𝑄 ⇒ 𝑄 =

⎡⎢⎣
1

𝑅 + 𝜇

[︁
(𝑎 + 𝑏𝑇 + 𝑐𝑇 2)𝑒(𝑅+𝜇)𝑇 − 𝑎

]︁
+

1
(𝑅 + 𝜇)2

[︁
𝑏− (𝑏 + 2𝑐𝑇 )𝑒(𝑅+𝜇)𝑇

]︁
+

2𝑐

(𝑅 + 𝜇)3
[︁(︁

𝑒(𝑅+𝜇)𝑇 − 1
)︁]︁
⎤⎥⎦ .

On simplification,

𝑄 = 𝑎𝑇 +
𝑎(𝑅 + 𝜇)𝑇 2

2
+

𝑎(𝑅 + 𝜇)2𝑇 3

6
+

𝑏𝑇 2

2
+

𝑏(𝑅 + 𝜇)𝑇 3

3
+

𝐶𝑇 3

3
· (4.21)

Total cost TC(𝑇 ): Total cost comprised of the sum of the setup cost, holding cost, and deteriorating cost.
They are grouped after evaluating the above cost individually.

Total cost (TC) = Setup cost + holding cost + deteriorating cost.

(1) Setup cost =
𝑆𝐶

𝑇
· (4.22)

(2) Holding cost =
𝐻𝐶

𝑇

⎡⎢⎢⎢⎢⎢⎣
𝑇∫︁

0

⎛⎜⎜⎜⎜⎜⎝
1

𝑅 + 𝜇

[︁
(𝑎 + 𝑏𝑇 + 𝑐𝑇 2)𝑒(𝑅+𝜇)𝑇−𝜇𝑡 − (𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑒𝑅𝑡

]︁
+

1
(𝑅 + 𝜇)2

[︁
(𝑏 + 2𝑐𝑡)𝑒𝑅𝑡 − (𝑏 + 2𝑐𝑇 )𝑒(𝑅+𝜇)𝑇−𝜇𝑡

]︁
+

2𝑐

(𝑅 + 𝜇)3
(︁
𝑒(𝑅+𝜇)𝑇−𝜇𝑡 − 𝑒𝑅𝑡

)︁
⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦d𝑡.

On further simplifications,

=
𝐻𝐶

𝑇

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
𝑅3𝜇(𝑅 + 𝜇)

⎛⎝−𝑅3(𝑎 + 𝑏𝑇 + 𝑐𝑇 2)𝑒𝑅𝑇 −𝑅2𝜇(𝑎 + 𝑏𝑇 + 𝑐𝑇 2)𝑒𝑅𝑇

+𝑅𝜇(𝑏 + 2𝑐𝑇 )𝑒𝑅𝑇 − 2𝑐𝜇𝑒𝑅𝑇 + 𝑅3(𝑎 + 𝑏𝑇 + 𝑐𝑇 2)𝑒(𝑅+𝜇)𝑇

−𝑅2𝑎𝜇−𝑅𝑏𝜇 + 2𝑐𝜇

⎞⎠
+ 1

𝑅2𝜇(𝑅+𝜇)2

[︂
𝑅𝜇(𝑏 + 2𝑐𝑇 )𝑒𝑅𝑇 − 2𝑐𝜇𝑒𝑅𝑡 + 𝑅2(𝑏 + 2𝑐𝑇 )𝑒𝑅𝑇

−𝑅𝜇𝑏 + 2𝑐𝜇−𝑅2(𝑏 + 2𝑐𝑇 )𝑒(𝑅+𝜇)𝑇

]︂
−2𝑐

𝑅𝜇(𝑅+𝜇)3

[︁
Re𝑅𝑇 + 𝜇𝑒𝑅𝑇 − Re(𝑅+𝜇)𝑇 − 𝜇

]︁

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=
𝐻𝐶

𝑇

⎡⎢⎢⎢⎢⎣
1

𝑅3𝜇(𝑅 + 𝜇)

(︂
−𝑅3(𝑎 + 𝑏𝑇 + 𝑐𝑇 2)(𝑒(𝑅+𝜇)𝑇 − 𝑒𝑅𝑇 ) + 𝑅2𝑎𝜇

(︀
1− 𝑒𝑅𝑇

)︀
−𝑅2𝜇(𝑏𝑇 + 𝑐𝑇 2)𝑒𝑅𝑇 + 𝑅𝑏𝜇

(︀
𝑒𝑅𝑇 − 1

)︀
+ 2𝑅𝑐𝜇𝑇𝑒𝑅𝑇 + 2𝑐𝜇

(︀
1− 𝑒𝑅𝑇

)︀)︂
+ 1

𝑅2𝜇(𝑅+𝜇)2

(︂
𝑅2(𝑏 + 2𝑐𝑇 )(𝑒𝑅𝑇 − 𝑒(𝑅+𝜇)𝑇 ) + 𝑏𝑅𝜇

(︀
𝑒𝑅𝑇 − 1

)︀
+2𝑅𝑐𝜇𝑇𝑒𝑅𝑇 + 2𝑐𝜇

(︀
1− 𝑒𝑅𝑇

)︀ )︂
−2𝑐

𝑅𝜇(𝑅+𝜇)3

(︀
𝑅(𝑒𝑅𝑇 − 𝑒(𝑅+𝜇)𝑇 ) + 𝜇

(︀
𝑒𝑅𝑇 − 1

)︀)︀

⎤⎥⎥⎥⎥⎦ .

(4.23)
(3) Deteriorative cost

=
𝜇𝐷𝐶

𝑇

⎡⎢⎢⎢⎢⎣
1

𝑅3𝜇(𝑅 + 𝜇)

(︂
−𝑅3(𝑎 + 𝑏𝑇 + 𝑐𝑇 2)(𝑒(𝑅+𝜇)𝑇 − 𝑒𝑅𝑇 ) + 𝑅2𝑎𝜇

(︀
1− 𝑒𝑅𝑇

)︀
−𝑅2𝜇(𝑏𝑇 + 𝑐𝑇 2)𝑒𝑅𝑇 + 𝑅𝑏𝜇

(︀
𝑒𝑅𝑇 − 1

)︀
+ 2𝑅𝑐𝜇𝑇𝑒𝑅𝑇 + 2𝑐𝜇

(︀
1− 𝑒𝑅𝑇

)︀)︂
+

1
𝑅2𝜇(𝑅 + 𝜇)2

(︂
𝑅2(𝑏 + 2𝑐𝑇 )(𝑒𝑅𝑇 − 𝑒(𝑅+𝜇)𝑇 ) + 𝑏𝑅𝜇

(︀
𝑒𝑅𝑇 − 1

)︀
+2𝑅𝑐𝜇𝑇𝑒𝑅𝑇 + 2𝑐𝜇

(︀
1− 𝑒𝑅𝑇

)︀ )︂
−2𝑐

𝑅𝜇(𝑅+𝜇)3

(︀
𝑅(𝑒𝑅𝑇 − 𝑒(𝑅+𝜇)𝑇 ) + 𝜇

(︀
𝑒𝑅𝑇 − 1

)︀)︀

⎤⎥⎥⎥⎥⎦ .
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Therefore, the total cost

TC =
𝑆𝐶

𝑇
+

𝐻𝐶 + 𝜇𝐷𝐶

𝑇

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1

𝑅3𝜇(𝑅 + 𝜇)

⎛⎝𝑅3(𝑎 + 𝑏𝑇 + 𝑐𝑇 2)(𝑒(𝑅+𝜇)𝑇 − 𝑒𝑅𝑇 ) + 𝑅2𝑎𝜇
(︀
1− 𝑒𝑅𝑇

)︀
−𝑅2𝜇(𝑏𝑇 + 𝑐𝑇 2)𝑒𝑅𝑇 + 𝑅𝑏𝜇

(︀
𝑒𝑅𝑇 − 1

)︀
+ 2𝑅𝑐𝜇𝑇𝑒𝑅𝑇

+2𝑐𝜇
(︀
1− 𝑒𝑅𝑇

)︀
⎞⎠

+ 1
𝑅2𝜇(𝑅+𝜇)2

(︂
𝑅2(𝑏 + 2𝑐𝑇 )(𝑒𝑅𝑇 − 𝑒(𝑅+𝜇)𝑇 ) + 𝑏𝑅𝜇

(︀
𝑒𝑅𝑇 − 1

)︀
+2𝑅𝑐𝜇𝑇𝑒.𝑅𝑇 + 2𝑐𝜇

(︀
1− 𝑒𝑅𝑇

)︀ )︂
−2𝑐

𝑅𝜇(𝑅+𝜇)3

(︀
𝑅(𝑒𝑅𝑇 − 𝑒(𝑅+𝜇)𝑇 ) + 𝜇

(︀
𝑒𝑅𝑇 − 1

)︀)︀

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4.24)

Optimality conditions:

d
d𝑇

TC(𝑇 ) = 0 and
d2

d𝑇 2
TC(𝑇 ) > 0.

Differentiate the equation (4.24) with respect to 𝑇

d
d𝑇

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑆𝐶 + (𝐻𝐶 + 𝜇𝐷𝐶)

1
𝑅3𝜇(𝑅+𝜇)

⎛⎜⎜⎜⎜⎜⎜⎝
𝑇
[︁
𝑅3
(︀
𝑎 + 𝑏𝑇 + 𝑐𝑇 2

)︀ (︁
(𝑅 + 𝜇)𝑒(𝑅+𝜇)𝑇 − Re𝑅𝑇

)︁
+ 𝑅3(𝑏 + 2𝑐𝑇 )𝑒(𝑅+𝜇)𝑇

(︀
−𝑒𝑅𝑇

)︀]︁
−𝑅3

(︀
𝑎 + 𝑏𝑇 + 𝑐𝑇 2

)︀ (︁
𝑒(𝑅+𝜇)𝑇 − 𝑒𝑅𝑇

)︁
+ 𝑅3𝑎𝜇𝑇𝑒𝑅𝑇

−𝑅2𝑎𝜇
(︀
1− 𝑒𝑅𝑇

)︀
−𝑅2𝜇𝑇

{︀(︀
𝑏𝑇 + 𝑐𝑇 2

)︀
Re𝑅𝑇 + (𝑏 + 2𝐶𝑇 )𝑒𝑅𝑇

}︀
+𝑅2𝜇

(︀
𝑏𝑇 + 𝑐𝑇 2

)︀
𝑒𝑅𝑇 + 𝑅2𝑏𝜇𝑇𝑒𝑅𝑇 −𝑅𝑏𝜇

(︀
𝑒𝑅𝑇 − 1

)︀
+2𝑅2𝑐𝜇𝑇 2𝑒𝑅𝑇 − 2𝑅𝑐𝜇𝑇𝑒𝑅𝑇 − 2𝑐𝜇

(︀
1− 𝑒𝑅𝑇

)︀

⎞⎟⎟⎟⎟⎟⎟⎠

+ 1
𝑅2𝜇(𝑅+𝜇)2

⎛⎜⎜⎝
𝑅2𝑇

{︁
(𝑏 + 2𝑐𝑇 )

(︁
Re𝑅𝑇 − (𝑅 + 𝜇)𝑒(𝑅+𝜇)𝑇

)︁
+ 2𝑐(𝑒𝑅𝑇 − 𝑒(𝑅+𝜇)𝑇 )

}︁
−𝑅2(𝑏 + 2𝑐𝑇 )

(︁
𝑒𝑅𝑇 − 𝑒(𝑅+𝜇)𝑇

)︁
+ 𝑅2𝑏𝜇𝑇𝑒𝑅𝑇 −𝑅𝑏𝜇

(︀
𝑒𝑅𝑇 − 1

)︀
+2𝑅2𝑐𝜇𝑇 2𝑒𝑅𝑇 − 2𝑅𝑐𝜇𝑇𝑒𝑅𝑇 − 2𝑐𝜇

(︀
1− 𝑒𝑅𝑇

)︀
⎞⎟⎟⎠

−2𝑐
𝑅𝜇(𝑅+𝜇)3

(︃
𝑅𝑇{Re𝑅𝑇 − (𝑅 + 𝜇)𝑒(𝑅+𝜇)𝑇 } −𝑅

(︁
𝑒𝑅𝑇 − 𝑒(𝑅+𝜇)𝑇

)︁
+𝑅𝜇𝑇𝑒𝑅𝑇 − 𝜇

(︀
𝑒𝑅𝑇 − 1

)︀ )︃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

This should be equal to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
𝑅3𝜇(𝑅 + 𝜇)

⎛⎜⎜⎜⎜⎜⎝
𝑅3𝑇

(︀
𝑎 + 𝑏𝑇 + 𝑐𝑇 2

)︀ (︁
(𝑅 + 𝜇)𝑒(𝑅+𝜇)𝑇 − Re𝑅𝑇

)︁
+ 𝑅3𝑇 (𝑏 + 2𝑐𝑇 )(︀

𝑒(𝑅+𝜇)𝑇 − 𝑒𝑅𝑇
)︀
−𝑅3

(︀
𝑎 + 𝑏𝑇 + 𝑐𝑇 2

)︀ (︀
𝑒(𝑅+𝜇)𝑇 − 𝑒𝑅𝑇

)︀
−𝑅3𝑎𝜇𝑇𝑒𝑅𝑇 −𝑅2𝑎𝜇

(︀
1− 𝑒𝑅𝑇

)︀
−𝑅3𝜇𝑇

(︀
𝑏𝑇 + 𝑐𝑇 2

)︀
𝑒𝑅𝑇

−𝑅2𝜇𝑇 (𝑏 + 2𝑐𝑇 )𝑒𝑅𝑇 + 𝑅2𝜇
(︀
𝑏𝑇 + 𝑐𝑇 2

)︀
𝑒𝑅𝑇 + 𝑅2𝑏𝜇𝑇𝑒𝑅𝑇

−𝑅𝑏𝜇
(︀
𝑒𝑅𝑇 − 1

)︀
+ 2𝑅2𝑐𝜇𝑇 2𝑒𝑅𝑇 − 2𝑅𝑐𝜇𝑇𝑒𝑅𝑇 − 2𝑐𝜇

(︀
1− 𝑒𝑅𝑇

)︀

⎞⎟⎟⎟⎟⎟⎠

+
1

𝑅2𝜇(𝑅 + 𝜇)2

⎛⎜⎜⎝
𝑅2(𝑏 + 2𝑐𝑇 )𝑇

(︁
Re𝑅𝑇 − (𝑅 + 𝜇)𝑒(𝑅+𝜇)𝑇

)︁
+ 2𝑅2𝐶𝑇

(︁
𝑒𝑅𝑇 − 𝑒(𝑅+𝜇)𝑇

)︁
−𝑅2(𝑏 + 2𝑐𝑇 )

(︁
𝑒𝑅𝑇 − 𝑒(𝑅+𝜇)𝑇

)︁
+ 𝑅2𝑏𝜇𝑇𝑒𝑅𝑇 −𝑅𝑏𝜇

(︀
𝑒𝑅𝑇 − 1

)︀
+2𝑅2𝑐𝜇𝑇 2𝑒𝑅𝑇 − 2𝑅𝑐𝜇𝑇𝑒𝑅𝑇 − 2𝑐𝜇

(︀
1− 𝑒𝑅𝑇

)︀
⎞⎟⎟⎠

−2𝑐
𝑅𝜇(𝑅+𝜇)3

(︃
𝑅𝑇

(︁
Re𝑅𝑇 − (𝑅 + 𝜇)𝑒(𝑅+𝜇)𝑇

)︁
−𝑅

(︁
𝑒𝑅𝑇 − 𝑒(𝑅+𝜇)𝑇

)︁
+𝑅𝜇𝑇𝑒𝑅𝑇 − 𝜇

(︀
𝑒𝑅𝑇 − 1

)︀ )︃
= 𝑆𝐶

𝐻𝐶+𝜇𝐷𝐶

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The above equation is the optimum solution in a higher-order equation and it is solved by using Mat lab. But,
for the reader’s convenience, the above equation is reduced to forth order equation and it is solved by using
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Visual Basic 6.0. On simplification, the fourth-order equation is⎛⎝ 102𝑅2𝑐𝜇 + 18𝑅4𝑏 + 33𝑅3𝑏𝜇 + 43𝑅2𝑏𝜇2 + 9𝑅5𝑎 + 36𝑅4𝑎𝜇
+57𝑅3𝑎𝜇2 + 45𝑅2𝑎𝜇3 + 102𝑅𝑐𝜇2 + 37𝑅𝑏𝜇3 + 18𝑅𝑎𝜇4

+18𝑐𝜇3 + 9𝑏𝜇4 + 3𝑎𝜇5 − 32𝑅2𝑐𝜇2 − 32𝑅𝑐𝜇3 + 18𝑅3𝑐

⎞⎠𝑇 4

+ 8
(︂

2𝑅3𝑏 + 9𝑅2𝑏𝜇 + 2𝑅4𝑎 + 7𝑅3𝑎𝜇 + 9𝑅2𝑎𝜇2 + 6𝑅𝑏𝜇2

+5𝑅𝑎𝜇2 + 2𝑏𝜇3 + 𝑎𝜇4 − 5𝑅2𝑏𝜇2 − 2𝑅𝑏𝜇3

)︂
𝑇 3

+ 12𝑎(𝑅 + 𝜇)3𝑇 2 =
24(𝑅 + 𝜇)3𝑆𝐶

𝐻𝐶 + 𝜇𝐷𝐶

(4.25)

which is the optimum solution for 𝑇 in the fourth-order equation.

Note:

(1) When 𝑅 = 0

3
(︀
𝑎𝜇2 + 3𝑏𝜇 + 6𝑐

)︀
𝑇 4 + 8(𝑎𝜇 + 2𝑏)𝑇 3 + 12𝑎𝑇 2 =

24𝑆𝐶

𝐻𝐶 + 𝜇𝐷𝐶

which is quadratic demand. (Appendix C)
(2) When 𝑅 = 0; 𝑐 = 0

3𝜇(𝑎𝜇 + 3𝑏)𝑇 4 + 8(𝑎𝜇 + 2𝑏)𝑇 3 + 12𝑎2 =
24𝑆𝐶

𝐻𝐶 + 𝜇𝐷𝐶

which is a linear demand. (Appendix B)
(3) When 𝑎 = 𝑌 ; 𝑏 = 𝑐 = 0

3(3𝑅3 + 6𝑅2𝜇 + 4𝑅𝜇2 + 𝜇3)𝑇 4 + 8
(︀
2𝑅2 + 3𝑅𝜇 + 𝜇2

)︀
𝑇 3 + 12(𝑅 + 𝜇)𝑇 2 =

24(𝑅 + 𝜇)𝑆𝐶

𝐷 (𝐻𝐶 + 𝜇𝐷𝐶)

which is CCD. (As per model 1)
(4) When the higher-order equation equal to zero, then 𝑇 =

√︁
2𝑆𝐶

𝑌 (𝐻𝐶+𝜇𝐷𝐶)

which is standard inventory models. (Appendix A)

Numerical example: let us consider the cost parameters

𝑌 = 5000 units, 𝐻𝐶 = 7, 𝐷𝐶 = 50, 𝑆𝐶 = 150, 𝜇 = 0.01, 𝑅 = 0.1, 𝑎 = 4000, 𝑏 = 3700, 𝑐 = 2400.

Optimum solution

The forth order equation is 𝑇 4 + 1.2266𝑇 3 + 0.9046𝑇 2 − 0.0078 = 0, in which the roots are one positive real
root, one negative real root and two complex roots. The positive root 𝑇 = 0.0878 is considered in this model.
Therefore, Cycle time = 0.0878, Optimum Quantity 𝑄* = 420.71, Setup cost = 1708.12, Holding cost = 1132.20,
Deteriorating cost = 80.87, Total cost = 2921.19.

The above Table 5, a study on the rate of the deteriorative items with cycle time, optimum quantity, setup
cost, holding cost, deteriorating cost and total cost are observed. There is a positive relationship between the
increase in the rate of deterioration for items 𝜇 and setup costs, holding cost, deteriorating costs, and total
costs, while there is a negative relationship between the increase in the rate of deterioration for items 𝜇 and
cycle time, and optimum quantity.
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Table 5. Variation of rate of deteriorating items with inventory and total cost.

𝜇 𝑇 𝑄 Setup cost Holding cost Deteriorating cost Total cost

0.01 0.0878 420.71 1708.12 1132.20 80.87 2921.19
0.02 0.0848 405.86 1768.82 1156.22 165.17 3090.22
0.03 0.0821 392.80 1826.04 1165.51 249.75 3241.32
0.04 0.0797 381.18 1880.34 1165.65 333.04 3379.04
0.05 0.0776 370.72 1932.14 1160.01 414.29 3506.45
0.06 0.0756 361.21 1981.82 1150.71 493.16 3625.69
0.07 0.0739 352.52 2029.67 1139.08 569.54 3738.29
0.08 0.0722 344.51 2075.90 1126.03 643.44 3845.37
0.09 0.0707 337.08 2120.71 1112.13 714.94 3947.79
0.10 0.0693 330.17 2164.26 1097.80 784.14 4046.22
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Figure 4. Relationship between rate of deteriorative items and total cost in quadratic inte-
grated with continuous compound demand.

The graphical representations between total cost with rate of deteriorative items is given in Figure 4:

Sensitivity analysis:

Managerial insights: a sensitivity analysis is performed to study the effects of changes in the system parame-
ters, rate of deteriorating items 𝜇, ordering cost per order (𝑆𝐶), holding cost per unit time (𝐻𝐶), deteriorating
cost per unit time (𝐷𝐶), and rate of increase in demand (𝑅) on optimal values that is optimal cycle time
(𝑇 ), optimal quantity (𝑄), setup cost, holding cost, deteriorating cost and total cost. The sensitivity analysis
is performed by changing (increasing or decreasing) the parameter taking at a time, keeping the remaining
parameters at their original values. The following influences are obtained from sensitivity analysis based on
Table 6.

(1) There is a positive relationship between the increase in the setup costs per set (𝑆𝐶) and the cycle time, the
optimum quantity, setup costs, holding costs, deteriorating costs, and total costs.

(2) There is a positive relationship between the increase in the holding cost per unit time (𝐻𝐶) and the setup
cost, holding cost, and total cost while there is a negative relationship between the increase in the holding
cost per unit time (𝐻𝐶) and the cycle time, optimal quantity and deteriorating cost.
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Table 6. Effect of Demand and cost parameters on optimal values in quadratic integrated
with continuous compound demand.

Cost parameters Optimal values
𝑇 𝑄 Setup cost Holding cost Deteriorative cost Total cost

130 0.0820 392.15 1583.91 1075.39 76.81 2736.12
140 0.0850 406.69 1647.01 1104.66 78.90 2830.57

𝑆𝐶 150 0.0878 420.71 1708.12 1132.20 80.87 2921.19
160 0.0905 434.25 1767.43 1158.19 82.72 3008.35
170 0.0931 447.35 1825.10 1182.78 84.48 3092.37
5 0.1015 489.81 1476.65 899.00 89.90 2465.56
6 0.0939 451.31 1596.87 1020.07 85.01 2701.95

𝐻𝐶 7 0.0878 420.71 1708.12 1132.20 80.87 2921.19
8 0.0827 395.62 1812.14 1237.08 77.31 3126.54
9 0.0785 374.57 1910.19 1335.94 74.21 3320.36
30 0.0889 426.33 1686.49 1143.06 48.98 2878.54
40 0.0883 423.49 1697.34 1137.58 65.01 2899.94

𝐷𝐶 50 0.0878 420.71 1708.12 1132.20 80.87 2921.19
60 0.0872 417.98 1718.82 1126.89 96.59 2942.31
70 0.0867 415.31 1729.45 1121.65 112.16 2963.29
4300 0.0903 406.10 1660.29 1061.00 75.78 2797.08
4450 0.0890 413.47 1684.35 1097.10 78.36 2859.81

𝑎 4600 0.0878 420.71 1708.12 1132.20 80.87 2921.19
4750 0.0866 427.82 1731.61 1166.36 83.31 2981.28
4900 0.0854 434.82 1754.83 1199.64 85.68 3040.17
3400 0.0881 421.12 1701.99 1129.82 80.70 2912.51
3550 0.0879 420.91 1705.06 1131.01 80.78 2916.86

𝑏 3700 0.0878 420.71 1708.12 1132.20 80.87 2921.19
3850 0.0876 420.50 1711.16 1133.37 80.95 2925.49
4000 0.0875 420.31 1714.19 1134.54 81.03 2929.77
2100 0.0878 420.81 1707.46 1177.17 84.08 2968.72
2250 0.0878 420.76 1707.79 1154.67 82.47 2944.95

𝑐 2400 0.0878 420.71 1708.12 1132.20 80.87 2921.19
2550 0.0877 420.66 1708.44 1109.93 79.26 2897.45
2700 0.0877 420.61 1708.77 1087.29 77.66 2873.73

𝑅

0.05 0.0878 418.81 1712.06 884.34 63.16 2659.58
0.10 0.0877 420.71 1708.12 1132.20 80.87 2921.19
0.15 0.0876 421.25 1709.45 1239.36 88.52 3037.35
0.20 0.0875 421.39 1712.34 1298.59 92.75 3103.69
0.25 0.0874 421.36 1715.87 1336.06 95.43 3147.37
0.30 0.0872 421.25 1719.74 1361.86 97.27 3178.88
0.35 0.0870 421.08 1723.79 1380.69 98.62 3203.10
0.40 0.0868 420.88 1727.94 1395.01 99.64 3222.60
0.45 0.0865 420.66 1732.17 1406.25 100.44 3238.87
0.50 0.0863 420.43 1736.45 1515.30 101.09 3252.85

(3) There is a positive relationship between the increase in the rate of demand (𝑅) and the optimum quantity,
holding cost, deteriorative cost and total cost, while there is a negative relationship between the increase
in the rate of demand (𝑅) and the cycle time, and setup cost.

(4) Similarly, other parameters, rate of deteriorating items 𝐷𝐶 , initial demand “a” and demands based on time
“b” and “c” can also be observed from Table 6.
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Table 7. Relationship between CCD, Linear with CCD and Quadratic with CCD.

Item of cost CCD Linear with CCD Quadratic with CCD

Setup cost 1687.45 1706.04 1708.12
Holding cost 1565.27 1515.40 1132.20
Deteriorative cost 111.80 108.24 80.87
Total cost 3364.53 3329.73 2921.19

Figure 5. Relationship between constant demand and continuous compound demand.

5. Comparative study

The relationship between continuous compound demand, linear demand integrated with continuous compound
demand, and quadratic demand integrated with continuous compound demand is presented in the following
table. From Table 7, it is observed that The setup cost is lower in constant demand than in linear CCD and
quadratic CCD. The holding cost, deterioration cost, and total cost are lower for quadratic CCD compared to
CDD and linear CCD (Fig. 5).
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6. Conclusion

This paper considers inventory models with integrated time-dependent demands in third-order equations. The
setup cost is lower in constant demand than in linear CCD and quadratic CCD. The holding cost, deterioration
cost, and total cost are lower for quadratic CCD compared to CDD and linear CCD. There is a positive
relationship between the increase in the rate of deterioration for items 𝜇 and setup costs, deteriorating costs,
and total costs, while there is a negative relationship between the increase in the rate of deterioration for items
𝜇 and cycle time, optimum quantity, and holding cost. There is a positive relationship between the increase in
the setup costs per set (𝑆𝐶) and the cycle time, the optimum quantity, setup costs, holding costs, deteriorating
costs, and total costs. There is a positive relationship between the increase in the holding cost per unit time
(𝐻𝐶) and the setup cost, holding cost, and total cost while there is a negative relationship between the increase
in the holding cost per unit time (𝐻𝐶) and the cycle time, optimal quantity and deteriorating cost. There is a
positive relationship between the increase in the rate of demand (𝑅) and the setup cost and total cost, while
there is a negative relationship between the increase in the rate of demand (𝑅) and the cycle time, optimum
quantity, holding cost, and cost of deterioration. There is no reduction in cost sensitivity.

Several extensions that could be made to this research are:
(1) In this study of inventory models, demand is a continuous compound. The analysis of probabilistic demand

can be another addition to this report.
(2) The Inventory models developed in this research are for a single period only. We can take the Inventory

models with multiple items into consideration for further research.
(3) The developed inventory models in this study introduce only one concept at a time. In the future, models

with the combination of several concepts may be used to determine the optimal policies.
(4) The proposed model can assist the manufacturer and retailer in accurately determining the optimal quantity,

cycle time, and inventory total cost. Moreover, the proposed inventory model can be used in inventory
control of certain items such as food items, fashionable commodities, stationery stores, and others.

Appendix A. EOQ inventory model for deteriorating items

The inventory level at 𝐼(𝑡) at time 𝑡 is represented by the following differential equation.

d𝐼(𝑡)
d𝑡

+ 𝜇𝐼(𝑡) = −𝑌 ; 0 ≤ 𝑡 ≤ 𝑇1

with the boundary conditions
𝐼(0) = 𝑄; 𝐼(𝑇 ) = 0;

The solutions of the above differential equation with the boundary conditions are

𝐼(𝑡) =
𝑌

𝜇

[︁
𝑒𝜇(𝑇1−𝑡) − 1

]︁
𝐼(0) = 𝑄1 ⇒

𝑌

𝜇

[︀
𝑒𝜇𝑇1 − 1

]︀
= 𝑄1. Therefore, 𝑄1 = 𝑌 𝑇1.

Therefore, total cost = setup cost and holding cost and deteriorating cost

(1) Setup cost =
𝑆𝐶

𝑇

(2) Holding cost =
𝐻𝐶

𝑇

𝑇1∫︁
0

𝐼(𝑡)d𝑡 =
𝐻𝐶

𝑇

𝑇1∫︁
0

𝑌

𝜇

(︁
𝑒𝜇(𝑇1−𝑡) − 1

)︁
d𝑡

=
𝑌 𝐻𝐶

𝜇2𝑇

[︀
𝜇𝑇 − 𝑒𝜇𝑇 + 1

]︀
=

𝐷𝐻𝐶

𝜇2𝑇

[︀
𝑒𝜇𝑇 − 𝜇𝑇 − 1

]︀
=

𝑌 𝐻𝐶𝑇

2
·
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(3) Deteriorating cost =
𝜇𝐷𝐶

𝑇

𝑇1∫︁
0

𝐼(𝑡)d𝑡 =
𝜇𝐷𝐶

𝑇

𝑇1∫︁
0

𝑌

𝜇

(︁
𝑒𝜇(𝑇1−𝑡) − 1

)︁
d𝑡 =

𝑌 𝜇𝐷𝐶𝑇

2
·

Therefore,

TC =
𝑆𝐶

𝑇
+

𝑌 (𝐻𝐶 + 𝜇𝐷𝐶)𝑇
2

·

Optimality: it can be easily shown that TC(𝑇 ) is a convex function in 𝑇 . Hence, an optimal cycle time 𝑇 can
be calculated from

d
d𝑇

TC(𝑇 ) = 0 and
d2

d𝑇 2
TC(𝑇 ) > 0.

Differentiate the total cost equation with respect to 𝑇 ,

d(TC)
d𝑇

= −𝑆𝐶

𝑇 2
+

𝑌 (𝐻𝐶 + 𝜇𝐷𝐶)
2

= 0

𝑇 =

√︃
2𝑆𝐶

𝑌 (𝐻𝐶 + 𝜇𝐷𝐶)
and 𝑄 = 𝑌 𝑇 =

√︃
2𝑌 𝑆𝐶

(𝐻𝐶 + 𝜇𝐷𝐶)
·

Numerical example:
𝑌 = 5000, 𝑆𝐶 = 150, 𝐻𝐶 = 7, 𝜇 = 0.01; 𝐷𝐶 = 50.

Optimum solution:
𝑇 = 0.08944, 𝑄 = 286.04, Setup cost = 1677.10, Holding cost = 1570.97, Deteriorating cost = 112.21, Total

cost = 3360.28.

Appendix B. EOQ inventory model with linear demand

This model has developed a deteriorating inventory model in which demand is a linear function of time that
is 𝑎 + 𝑏𝑡, where 𝑎 > 0, 𝑏 ̸= 0, at time t and “a” stands for the initial demand and “b” is a positive trend.

d
d𝑡

𝐼(𝑡) + 𝜇𝐼(𝑡) = −(𝑎 + 𝑏𝑡); 0 < 𝑡 < 𝑇.

The boundary conditions are 𝐼(0) = 𝑄, 𝐼(𝑇 ) = 0.
The solutions of above differential equation with the boundary conditions are

𝐼(𝑡) =
(︂

𝑎

𝜇
+

𝑏𝑇

𝜇
− 𝑏

𝜇2

)︂
𝑒𝜇(𝑇−𝑡) − 𝑎

𝜇
− 𝑏𝑡

𝜇
+

𝑏

𝜇2
·

Total cost = setup cost + holding cost + deteriorating cost.

(1) Setup cost =
𝑆𝐶

𝑇
·

(2) Holding cost =
𝐻𝐶

𝑇

𝑇∫︁
𝑜

[︂(︂
𝑎

𝜇
+

𝑏𝑇

𝜇
− 𝑏

𝜇2

)︂
𝑒𝜇(𝑇−𝑡) − 𝑎

𝜇
− 𝑏𝑡

𝜇
+

𝑏

𝜇2

]︂
d𝑡.

On simplification,

=
𝐻𝐶

𝑇

[︂
1
𝜇

(︂
𝑎

𝜇
+

𝑏𝑇

𝜇
− 𝑏

𝜇2

)︂
(𝑒𝜇𝑇 − 1)− 𝑎𝑇

𝜇
− 𝑏𝑇 2

2𝜇
+

𝑏𝑇

𝜇2

]︂
·

(3) Deteriorating cost =
𝜇𝐷𝐶

𝑇

[︂
1
𝜇

(︂
𝑎

𝜇
+

𝑏𝑇

𝜇
− 𝑏

𝜇2

)︂
(𝑒𝜇𝑇 − 1)− 𝑎𝑇

𝜇
− 𝑏𝑇 2

2𝜇
+

𝑏𝑇

𝜇2

]︂
·

Therefore, total cost = setup cost + holding cost + deteriorating cost.
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TC =
𝑆𝐶

𝑇
+

𝐻𝐶 + 𝜇𝐷𝐶

𝑇

[︂
1
𝜇

(︂
𝑎

𝜇
+

𝑏𝑇

𝜇
− 𝑏

𝜇2

)︂
(𝑒𝜇𝑇 − 1)− 𝑎𝑇

𝜇
− 𝑏𝑇 2

2𝜇
+

𝑏𝑇

𝜇2

]︂
·

Differentiating the total cost equation with respect to 𝑇 , then(︂
𝑎𝑇

𝜇
+

𝑏𝑇 2

𝜇
− 𝑏𝑇

𝜇2

)︂
𝑒𝜇𝑇 +

𝑏𝑇

𝜇2
(𝑒𝜇𝑇 − 1)− 1

𝜇

(︂
𝑎

𝜇
+

𝑏𝑇

𝜇
− 𝑏

𝜇2

)︂
(𝑒𝜇𝑇 − 1)− 𝑏𝑇 2

2𝜇
=

𝑆𝐶

𝐻𝐶 + 𝜇𝐷𝐶
·

On simplifications,

2(𝑎𝜇 + 2𝑏)𝑇 3 + 3𝑎𝑇 2 =
6𝑆𝐶

𝐻𝐶 + 𝜇𝐷𝐶

which is the equation for optimum solution in the third-order equation.

Note: when the higher-order equation equal to zero, then 𝑇 =
√︁

2𝑆𝐶

𝑌 (𝐻𝐶+𝜇𝐷𝐶) which is the standard inventory
model.
Numerical example:

𝑌 = 5000, 𝑆𝐶 = 150, 𝐻𝐶 = 7, 𝜇 = 0.01, 𝐷𝐶 = 50, 𝑎 = 4650, 𝑏 = 3985.

Optimum solution: the optimum equation is 16033𝑇 3 + 13950𝑇 2 − 120 = 0. The values of 𝑇 are 0.08837,
−0.85996, −0.09849. Here, the 𝑇 has one positive real root and two negatives real roots. Here, the positive real
root 𝑇 = 0.08837 is considered.

Therefore, 𝑇 = 0.08837, 𝑄 = 441.85, Setup cost = 1697.40, Holding cost = 1511.25, Deteriorating cost =
107.94, Total cost = 3316.59.

Appendix C. EOQ inventory model with quadratic demand

This model has developed a deteriorating inventory model in which demand is a quadratic function of time
that is 𝑎 + 𝑏𝑡 + 𝑐𝑡2, where 𝑎 > 0, 𝑏 ̸= 0, at time t and “a” stands for the initial demand and “b” is a positive
trend.

d
d𝑡

𝐼(𝑡) + 𝜇𝐼(𝑡) = −
(︀
𝑎 + 𝑏𝑡 + 𝑐𝑡2

)︀
; 0 < 𝑡 < 𝑇.

The boundary conditions are 𝐼(0) = 𝑄, 𝐼(𝑇 ) = 0.
The solutions of above differential equation with the boundary conditions are

𝐼(𝑡) =
(︂

𝑎 + 𝑏𝑇 + 𝑐𝑇 2

𝜇
− 𝑏 + 2𝑐𝑇

𝜇2
+

2𝑐

𝜇3

)︂
𝑒𝜇(𝑇−𝑡) − 𝑎 + 𝑏𝑡 + 𝑐𝑡2

𝜇
+

𝑏 + 2𝑐𝑡

𝜇2
− 2𝑐

𝜇3
·

Therefore, total cost = setup cost + holding cost + deteriorating cost.

(1) Setup cost =
𝑆𝐶

𝑇
·

(2) Holding cost =
𝐻𝐶

𝑇

𝑇∫︁
0

⎡⎢⎢⎣
(︂

𝑎 + 𝑏𝑇 + 𝑐𝑇 2

𝜇
− 𝑏 + 2𝑐𝑇

𝜇2
+

2𝑐

𝜇3

)︂
𝑒𝜇(𝑇−𝑡)

−𝑎 + 𝑏𝑡 + 𝑐𝑡2

𝜇
+

𝑏 + 2𝑐𝑡

𝜇2
− 2𝑐

𝜇3

⎤⎥⎥⎦d𝑡.

On simplifications, =
𝐻𝐶

𝑇

⎡⎢⎢⎣
1
𝜇

(︂
𝑎 + 𝑏𝑇 + 𝑐𝑇 2

𝜇
− 𝑏 + 2𝑐𝑇

𝜇2
+

2𝑐

𝜇3

)︂(︀
𝑒𝜇𝑇 − 1

)︀
−𝑎𝑇

𝜇
− 𝑏𝑇 2

2𝜇
− 𝑐𝑇 3

3𝜇
+

𝑏𝑇

𝜇2
+

𝑐𝑇 2

𝜇2
− 2𝑐𝑇

𝜇3

⎤⎥⎥⎦ .
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(3) Deteriorating cost =
𝜇𝐷𝐶

𝑇

⎡⎢⎢⎣
1
𝜇

(︂
𝑎 + 𝑏𝑇 + 𝑐𝑇 2

𝜇
− 𝑏 + 2𝑐𝑇

𝜇2
+

2𝑐

𝜇3

)︂(︀
𝑒𝜇𝑇 − 1

)︀
−𝑎𝑇

𝜇
− 𝑏𝑇 2

2𝜇
− 𝑐𝑇 3

3𝜇
+

𝑏𝑇

𝜇2
+

𝑐𝑇 2

𝜇2
− 2𝑐𝑇

𝜇3

⎤⎥⎥⎦
TC =

𝑆𝐶

𝑇
+

𝐻𝐶 + 𝜇𝐷𝐶

𝑇

⎡⎢⎢⎣
(︂

𝑎 + 𝑏𝑇 + 𝑐𝑇 2

𝜇2
− 𝑏 + 2𝑐𝑇

𝜇3
+

2𝑐

𝜇4

)︂
(𝑒𝜇𝑇 − 1)

−𝑎𝑇

𝜇
− 𝑏𝑇 2

2𝜇
− 𝑐𝑇 3

3𝜇
+

𝑏𝑇

𝜇2
+

𝑐𝑇 2

𝜇2
− 2𝑐𝑇

𝜇3

⎤⎥⎥⎦ .

Differentiating the total cost equation with respect to 𝑇 , then

d
d𝑇

(TC) = −𝑆𝐶 + (𝐻𝐶 + 𝜇𝐷𝐶)⎡⎢⎢⎣𝑇

{︂(︂
𝑎

𝜇2
+

𝑏𝑇

𝜇2
+

𝑐𝑇 2

𝜇2
− 𝑏

𝜇3
− 2𝑐𝑇

𝜇3
+

2𝑐

𝜇4

)︂
𝜇 𝑒𝜇𝑇 +

(︂
𝑏

𝜇2
+

2𝑐𝑇

𝜇2
− 2𝑐

𝜇3

)︂
(𝑒𝜇𝑇 − 1)

}︂
−
(︂

𝑎

𝜇2
+

𝑏𝑇

𝜇2
+

𝑐𝑇 2

𝜇2
− 𝑏

𝜇3
− 2𝑐𝑇

𝜇3
+

2𝑐

𝜇4

)︂
(𝑒𝜇𝑇 − 1) + 𝑇 2

(︂
𝑐

𝜇2
− 𝑏

2𝜇
− 2𝑐𝑇

3𝜇

)︂
⎤⎥⎥⎦ = 0.

and

d2

d𝑇 2
(TC) > 0

⎡⎢⎢⎣
(︂

𝑎𝑇

𝜇
+

𝑏𝑇 2

𝜇
+

𝑐𝑇 3

𝜇
− 𝑏𝑇

𝜇2
− 2𝑐𝑇 2

𝜇2
+

2𝑐𝑇

𝜇3

)︂
𝑒𝜇𝑇 +

(︂
𝑏𝑇

𝜇2
+

2𝑐𝑇 2

𝜇2
− 2𝑐𝑇

𝜇3

)︂
(𝑒𝜇𝑇 − 1)

−
(︂

𝑎

𝜇2
+

𝑏𝑇

𝜇2
+

𝑐𝑇 2

𝜇2
− 𝑏

𝜇3
− 2𝑐𝑇

𝜇3
+

2𝑐

𝜇4

)︂
(𝑒𝜇𝑇 − 1)− 𝑏𝑇 2

2𝜇
− 2𝑐𝑇 3

3𝜇
+

𝑐𝑇 2

𝜇2
=

𝑆𝐶

𝐻𝐶 + 𝜇𝐷𝐶

⎤⎥⎥⎦ .

On simplification,

3
(︀
𝑎𝜇2 + 3𝑏𝜇 + 6𝑐

)︀
𝑇 4 + 8 (𝑎𝜇 + 2𝑏) 𝑇 3 + 12𝑎𝑇 2 =

24𝑆𝐶

𝐻𝐶 + 𝜇𝐷𝐶

which is the equation for optimum solution in fourth order equation.

Note:

(i) When 𝑏 = 0 and 𝑎 = 𝑌 , then 𝑇 =
√︁

2𝑆𝐶

𝑌 (𝐻𝐶+𝜇𝐷𝐶) .

(ii) When 𝑐 = 0, 3𝜇(𝑎𝜇 + 3𝑏)𝑇 4 + 8(𝑎𝜇 + 2𝑏)𝑇 3 + 12𝑎𝑇 2 = 24𝑆𝐶

𝐻𝐶+𝜇𝐷𝐶
Linear demand.

Numerical example:

𝑌 = 5000, 𝑆𝐶 = 150, 𝐻𝐶 , 𝜇 = 0.01, 𝐷𝐶 = 50, 𝑎 = 4650, 𝑏 = 3700, 𝑐 = 2900.

Optimum solution: the optimum equation is 𝑇 4 + 1.1339𝑇 3 + 1.0621𝑇 2 − 0.00913 = 0. The values of 𝑇
are 0.0883. Here, the 𝑇 has one positive real root and two negatives real roots. Here, the positive real root
𝑇 = 0.0883 is considered.

Therefore, 𝑇 = 0.0883, 𝑄 = 441.78, Setup cost = 1697.52, Holding cost = 1558.78, Deteriorating cost =
111.34, Total cost = 3367.65.
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for the publication.
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