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WEIGHT RESTRICTIONS FOR THE DEA MODEL IN THE PRESENCE OF
DUAL-ROLE FACTORS: AN APPLICATION TO THE IRANIAN BANKING

SECTOR

Amineh Ghazi1 and Farhad Hosseinzadeh Lotfi2,*

Abstract. A production process transforming multiple inputs to different outputs is considered in
conventional data envelopment analysis (DEA) models. In various settings, however, there are factors
that simultaneously play the roles of both input and output called dual-role factors. In some situations,
additional information is available to impose on a DEA model with dual-role factors, or the decision
maker is forced to impose some restrictions regarding the importance of dual-role factors on the model.
Toward this end, the current research employs two different weighting methods to introduce various
weighted DEA models in the presence of dual-role factors. To strengthen the accuracy of the new
models, their properties are discussed. Then, each new model is illustrated in details by a numerical
example. Moreover, to show that the new models are applicable, they are applied to the Iranian banking
sector. To do this, 20 bank branches which have dual-role factors are assessed. At last, to show the
outcome of weight restrictions, the results obtained by each new model are compared with those from
Cook and Zhu’s model [Eur. J. Oper. Res. 180 (2007) 692–699].
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1. Introduction

Preliminary data envelopment analysis (DEA) proposed by Charnes et al. [8] is a non-parametric frontier
estimation methodology on the basis of linear programming problems. It has been widely applied to measure the
relative efficiency for a group of homogeneous decision making units (DMUs) with multiple input and output
factors. All in all, DEA includes a collection of linear and non-linear models which are extensions of the original
work of Charnes et al. [8] for the evaluation of DMUs. It has been developed over the last years and emerged as
a body of methodologies and concepts. Also, its popularity is reflected by a multitude of successful applications.

In the DEA methodology, outputs show what a DMU generates whereas inputs are resources that have
resulted in creating those outputs. Typical DEA studies assume that a production process transforms multiple
inputs to various outputs. In some cases, however, as well as those having a clear input or output role, there exist
some factors which simultaneously play both input and output roles; they are known as dual-role factors. The
dual-role factor was first noted by Beasly [6,7]. In the evaluation of universities, he finds that the research funding

Keywords. Data envelopment analysis, dual-role factors, weight restrictions, banking.

1 Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
2 Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.
*Corresponding author: farhad@hosseinzadeh.ir

c○ The authors. Published by EDP Sciences, ROADEF, SMAI 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2021162
https://www.rairo-ro.org
https://orcid.org/0000-0001-8831-5792
mailto:farhad@hosseinzadeh.ir
https://creativecommons.org/licenses/by/4.0


1948 A. GHAZI AND F. HOSSEINZADEH LOTFI

is a resource, an input factor, and is a performance criterion which strengthens the university’s performance, an
output factor. Another example for factors which simultaneously play both input and output roles is trainees
in organizations, like nurses and doctoral students in hospitals. Trainees are staff in a study for the evaluation
of hospitals, hence, they are inputs; on the other hand, they obviously are output factors in evaluations.

Assessing DMUs with dual-role factors, and consequently, specifying the role of dual-role factors were con-
ducted from different perspective. A substantial body of previous DEA research indicates that there exist a
considerable number of papers published in this area; some of which are briefly reviewed as follows. Cook et al.
[14] developed a linear programming problem to evaluate DMUs having a dual-role factor barring input and
output factors. Also, they determined the dual-role factor status, whenever possible. In modelling, they assumed
that the dual-role factor behaves like a non-discretionary input. Cook and Zhu [12] suggested two mixed integer
linear programming problems to acquire the efficiency score of DMUs having 𝐿 dual-role factors (𝐿 > 1), and
to characterize the status of each dual-role factor. Drawing upon the DEA model proposed by Cook et al. [14],
Farzipoor Saen [16] presented the supplier selection process through a DEA model in the presence of dual-
role factors allowing the incorporation of decision maker’s preferences on input/output factors. In contrast to
the previous DEA models mentioned based on the multiplier form, Amirteimoori and Emrouznejad [2] and
Amirteimoori et al. [3] suggested mixed integer linear programming problems, in the envelopment form, to cal-
culate the efficiency score of DMUs having dual-role factors, and to specify the status of dual-role factors. In
2014, Chen [11] expanded the work of Cook et al. [14] to incorporate dual-role factors in DEA models. To do so,
he [11] considered two individual production processes acting together by summarizing the intuitive thinking.
Toloo et al. [33] developed mixed integer linear programming problems in the presence of imprecise dual-role
factors. Also, they proposed a structure to calculate an optimal reallocation model for dual-role factors among
all DMUs. Su and Sun [31] suggested a network DEA model which includes undesirable outputs and dual-role
factors. They calculated the optimistic and pessimistic efficiency scores, and ranked DMUs by computing the
overall performance measures. Noveiri et al. [19] developed an alternative DEA approach to incorporate dual-role
factors in the production process. In estimating the efficiency of each DMU by their model, a dual-role factor
can simultaneously take both input and output roles, but in the previous DEA models, after the evaluation,
a dual-role factor can only take one role. Toloo et al. [35] presented DEA models in the presence of dual-role
factors for the interval data. The formulated models are a pair of mixed binary linear programming problems to
calculate the relative efficiencies in the interval forms. Also, they suggested a stepwise procedure to specify the
status of each dual-role factor. Moreover, Toloo et al. [34] indicated that the epsilon-free classifier models in the
presence of dual-role factors may lead to unacceptable results. Hence, they presented a pair of multiplier and
envelopment epsilon-based classifier models. In addition, an approach was developed to find a suitable value for
the epsilon in the proposed models.

In the multiplier form of conventional DEA models, in some cases, there exists additional information regard-
ing the structure of factors leading to adding conditions to the model as weight constraints, apart from non-
negativity weights. On the other hand, a popular way to prevent uncommon weights in the conventional DEA
models is to imposing weight restrictions [1, 22]. Weight restrictions represent value judgements incorporated
in the form of additional constraints on input and output weights within conventional DEA models. These
constraints reduce the flexibility of weights and typically improve the discrimination of models [1,13,20,26,29].
Several reasons motivating the application of weight restrictions in the DEA methodology were mentioned in
the work of Allen et al. [1]. From the technology perspective, the incorporation of additional weight restrictions
in multiplier DEA models results in the expansion of the production possibility set (PPS) [17, 23, 27, 28]. It is
obvious that the shift of the production frontier away from DMUs fails to increase the efficiency scores which
results in failure to recognize efficient DMUs. In the literature of the DEA methodology, there are different
types of inserting additional homogeneous and non-homogeneous weight restrictions. Often, applying weight
restrictions to models may result in infeasibility and may not calculate the relative efficiency score of DMUs;
they are well-known drawbacks in restricting weights for DEA models [21,24,25,32].
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There are a wide range of methods for weighting the conventional DEA models. In 1997, Allen et al. [1]
classified most of the weighting methods in the three categories, direct restrictions on the weights, adjusting the
observed input-output levels to capture value judgements, and restricting the virtual inputs and outputs. Two
weighting methods used in the current study are “virtual weight restrictions” and “cone-ratio”; they belong to
the third and second categories. In what follows, these two methods are briefly reviewed. In the virtual weight
restrictions method, except the restriction of actual DEA weights, non-negativity weights, the proportion of the
total virtual inputs/outputs of a DMU devoted to a virtual input/output is restricted in a distance. Also, the
decision maker sets appropriate bounds in the range between 0 and 1. The virtual weight restrictions can be
formed for all DMUs, the assessed DMU, or the average unit. A preliminary work on the use of restricting virtual
input/output weights within the conventional DEA model was undertaken by Wong and Beasley [36]. In addition
to the virtual weight restrictions method, the cone-ratio method lends itself to a variety of additional uses in
restricting weights. This weighting method is based on applying polyhedral cones for weights which results
in artificial data. Using the cone-ratio method, Charnes et al. [9] (C2WH) provided definitions of efficiency
over the conventional DEA model whose data are insufficient to capture restrictions which should be involved.
Furthermore, Charnes et al. [10] applied this restricting method to assess commercial banks. It should be noted
that these two weighting methods are different, and have various aims in weighting.

The model with the dual-role factors proposed by Cook and Zhu [12] overestimates the relative efficiency of
DMUs because it obtains an optimal set of weights for input, output, and dual-role factors to represent the
assessed DMU in the best light in comparison to all the other DMUs. Now, the difficulty for flexibility of weights
is resolved by weight restrictions. In recent studies, weight restrictions represent value judgements on only input
and output weights in a multiplier model; however, there does not exist any additional weight constraint on a
DEA model as for restricting weights of dual-role factors, even the DEA model weighted by Farzipoor Saen [16].
To fill this gap, the current paper establishes how the virtual weight restrictions and cone-ratio methods are
separately employed for restricting input, output, and dual-role factor weights within the DEA model presented
by Cook and Zhu [12]. Consequently, two different weighted DEA models are formed for assessing DMUs having
dual-role factors apart from input and output factors. Then, for confirming the newly proposed models, their
properties are discussed and illustrated by simple examples. It should be noted that the two newly weighted
DEA models are not comparable, they are non-equivalent with different aims. Given that the importance of the
banking industry in the economy of each country, an application to a data set of 20 bank branches is offered.
In these bank branches, in addition to input and output factors, there exist factors playing simultaneously both
input and output roles. Hence, we employ the new weighting models to control the flexibility of weights for
input, output, and dual-role factors.

The current paper proceeds as follows. In Section 2, a brief review on the previous DEA models used in
this study is accomplished. Section 3 proposes two different weighted DEA models in the presence of dual-role
factors. They are constructed based on the two weighting DEA methods, virtual weight restrictions and cone-
ratio. Section 4 illustrates the proposed models by the two numerical examples. Then, the applicability of the
new models is discussed by a real data set of 20 Iranian bank branches. At last, conclusion and future research
directions are discussed in Section 5.

2. Preliminaries

In this section, the preliminary DEA models applied within Section 3 are reviewed in two subsections. First,
DEA models with weight restrictions presented by Wong and Beasley [36] and Charnes et al. [9] (C2WH) are
summarized. Then, the DEA model developed by Cook and Zhu [12] for the evaluation of DMUs in the presence
of dual-role factors is briefly presented.
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2.1. The weighted DEA models

Assume there exist 𝑛 DMUs each of which consumes 𝑚 inputs to produce 𝑠 outputs. The 𝑖th input and the
𝑟th output of DMU𝑗 (𝑗 = 1, . . . , 𝑛) are respectively denoted as 𝑥𝑖𝑗 (𝑖 = 1, . . . ,𝑚) and 𝑦𝑟𝑗 (𝑟 = 1, . . . , 𝑠).
Without loss of generality, let DMU𝑜 (𝑜 ∈ {1, . . . , 𝑛}) be the DMU assessed.

Wong and Beasley [36] suggested the application of restricting virtual inputs and outputs on the conventional
CCR DEA model in the multiplier form presented by Charnes et al. [8]. To do this, except restricting the actual
DEA weights, non-negativity weights, the proportion of the total virtual outputs of a unit devoted to the 𝑟th
virtual output is restricted to the range between [𝑈𝑟, 𝑈𝑟] (𝑟 = 1, . . . , 𝑠). The decision maker sets 𝑈𝑟 and 𝑈𝑟 as
suitable lower and upper bounds for the importance of the virtual output 𝑟 normalized

(︀
0 6 𝑈𝑟 6 𝑈𝑟 6 1

)︀
. In the

mathematical term, the restriction on the 𝑟th virtual output takes the form 𝑈𝑟 6
𝑢𝑟𝑦𝑟𝑎∑︀𝑠

𝑟=1 𝑢𝑟𝑦𝑟𝑎
6 𝑈𝑟 where 𝑢𝑟𝑦𝑟𝑎

and
∑︀𝑠

𝑟=1 𝑢𝑟𝑦𝑟𝑎 respectively represent the virtual output 𝑟 and the total virtual outputs for the average unit

(𝑥1𝑎, . . . , 𝑥𝑚𝑎, 𝑦1𝑎, . . . , 𝑦𝑠𝑎) =
(︁∑︀𝑛

𝑗=1
𝑥1𝑗

𝑛 , . . . ,
∑︀𝑛

𝑗=1
𝑥𝑚𝑗

𝑛 ,
∑︀𝑛

𝑗=1
𝑦1𝑗

𝑛 , . . . ,
∑︀𝑛

𝑗=1
𝑦𝑠𝑗

𝑛

)︁
. A similar restriction can be

imposed on the 𝑖th input as well. By considering the above-mentioned virtual weight restrictions to the average
unit, 𝑚+𝑠 additional weighting constraints can be added to the conventional CCR DEA model in the multiplier
form. Hence, the DEA model constructed by restricting the virtual weights is as follows [1, 36]:

Max
∑︀𝑠

𝑟=1 𝑢𝑟𝑦𝑟𝑜∑︀𝑚
𝑖=1 𝑣𝑖𝑥𝑖𝑜

s.t.
∑︀𝑠

𝑟=1 𝑢𝑟𝑦𝑟𝑗∑︀𝑚
𝑖=1 𝑣𝑖𝑥𝑖𝑗

6 1, 𝑗 = 1, . . . , 𝑛,

𝑉 𝑖 6
𝑣𝑖𝑥𝑖𝑎∑︀𝑚
𝑖=1 𝑣𝑖𝑥𝑖𝑎

6 𝑉 𝑖, 𝑖 = 1, . . . ,𝑚,

𝑈𝑟 6
𝑢𝑟𝑦𝑟𝑎∑︀𝑠

𝑟=1 𝑢𝑟𝑦𝑟𝑎
6 𝑈𝑟 𝑟 = 1, . . . , 𝑠,

𝑣𝑖 > 0, 𝑖 = 1, . . . ,𝑚,

𝑢𝑟 > 0, 𝑟 = 1, . . . , 𝑠. (2.1)

Also, in the virtual weight restrictions method, the under evaluation DMU or DMU𝑗 (𝑗 = 1, . . . , 𝑛) can be
used rather than the average unit. For computational reasons, the average unit is generally used in this weighting
method [36].

For distributing more general conditions imposing restrictions on the weights of input and output factors, the
conventional CCR DEA model was generalized by Charnes et al. [9] (C2WH) known as the cone-ratio CCR DEA
model. For formulating the preliminary cone-ratio CCR DEA model, the feasible regions of decision space for
the input and output weights are supposed within the polyhedral convex cones 𝑉 and 𝑈 spanned by 𝑘1 and 𝑘2
admissible non-negative direction vectors 𝑎ℎ ∈ ℜ𝑚 (ℎ = 1, . . . , 𝑘1) and 𝑏𝑝 ∈ ℜ𝑠 (𝑝 = 1, . . . , 𝑘2), respectively. By
adding these cones to the conventional CCR DEA model and after doing some transformations, the cone-ratio
CCR DEA model is acquired as follows [9, 10]:

Max
𝑘2∑︁

𝑝=1

𝛽𝑝𝑦𝑝𝑜

s.t.
𝑘1∑︁

ℎ=1

𝛼ℎ𝑥ℎ𝑜 = 1,

𝑘2∑︁
𝑝=1

𝛽𝑝𝑦𝑝𝑗 −
𝑘1∑︁

ℎ=1

𝛼ℎ𝑥ℎ𝑗 6 0, 𝑗 = 1, . . . , 𝑛,

𝛼ℎ > 0, ℎ = 1, . . . , 𝑘1,
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𝛽𝑝 > 0, 𝑝 = 1, . . . , 𝑘2, (2.2)

where 𝑥ℎ𝑗 =
∑︀𝑚

𝑖=1 𝑎ℎ𝑖𝑥𝑖𝑗 (ℎ = 1, . . . , 𝑘1) and 𝑦𝑝𝑗 =
∑︀𝑠

𝑟=1 𝑏𝑝𝑟𝑦𝑟𝑗 (𝑝 = 1, . . . , 𝑘2) are respectively the artificial
input and output data sets for DMU𝑗 (𝑗 = 1, . . . , 𝑛) obtained by the 𝑘1 and 𝑘2 admissible non-negative
direction vectors. Also, 𝛼ℎ and 𝛽𝑝 are respectively the importance of the ℎth and the 𝑝th artificial input and
output generated by the cone-ratio method. Essentially, the process of constructing the weighted DEA model
by the cone-ratio method generates artificial input and output data sets in ℜ𝑘1 and ℜ𝑘2.

2.2. The DEA model in the presence of dual-role factors

In traditional DEA models, each factor explicitly plays one of the roles of input or output. Still, some
factors in several applications can simultaneously play both input and output roles; they are known as dual-role
factors. In addition to the notations mentioned in the previous subsection, here, consider 𝐿 dual-role factors
𝑤𝑙𝑗 (𝑙 = 1, . . . , 𝐿, 𝑗 = 1, . . . , 𝑛). To evaluate DMU𝑜 having dual-role factors apart from input and output factors,
Cook and Zhu [12] developed the following mixed integer linear programming problem,

max
𝑠∑︁

𝑟=1

𝑢𝑟𝑦𝑟𝑜 +
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑜

s.t.
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑜 +
𝐿∑︁

𝑙=1

𝛾𝑙𝑤𝑙𝑜 −
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑜 = 1,

𝑠∑︁
𝑟=1

𝑢𝑟𝑦𝑟𝑗 + 2
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑗 −
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑗 −
𝐿∑︁

𝑙=1

𝛾𝑙𝑤𝑙𝑗 6 0, 𝑗 = 1, . . . , 𝑛,

0 6 𝛿𝑙6𝑀𝑑𝑙, 𝑙 = 1, . . . , 𝐿,

𝛿𝑙6 𝛾𝑙6 𝛿𝑙 + 𝑀(1− 𝑑𝑙), 𝑙 = 1, . . . , 𝐿,

𝑑𝑙 ∈ {0, 1}, 𝑙 = 1, . . . , 𝐿,

𝛿𝑙, 𝛾𝑙 > 0, 𝑙 = 1, . . . , 𝐿,

𝑣𝑖 > 0, 𝑖 = 1, . . . ,𝑚,

𝑢𝑟 > 0, 𝑟 = 1, . . . , 𝑠. (2.3)

Model (2.3) is solved for each DMU to acquire the efficiency score and to detect the status of 𝐿 dual-role
factors. The binary variable 𝑑𝑙 (𝑙 ∈ {1, . . . , 𝐿}) takes the value 0 or 1 in which 𝑑𝑙 = 0/𝑑𝑙 = 1 determines that
the 𝑙th dual-role factor behaves as an input/output factor. After assessing all DMUs, 𝐿 sets including 𝑛 optimal
values 0 and/or 1 are characterized. In the 𝑙th set (𝑙 ∈ {1, . . . , 𝐿}), providing that the number of 0 is more than
the number of 1, all DMUs accept the input role for the 𝑙th dual-role factor, otherwise, the output role. Finally,
the 𝐿 sets gained by Model (2.3) specify the status of all the dual-role factors. In the case that the numbers of
obtained 0 and 1 for the 𝑙th set are equal, Model (2.3) cannot specify the status of the 𝑙th dual-role factor.

3. The proposed DEA models

Consider each DMU𝑗 consumes 𝑚 inputs 𝑥𝑖𝑗 (𝑖 = 1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑛) to produce 𝑠 outputs 𝑦𝑟𝑗 (𝑟 =
1, . . . , 𝑠, 𝑗 = 1, . . . , 𝑛), and has 𝐿 dual-role factors 𝑤𝑙𝑗 (𝑙 = 1, . . . , 𝐿, 𝑗 = 1, . . . , 𝑛) which simultaneously play
both input and output roles. Furthermore, DMU𝑜 is assumed as the under evaluation DMU.

It is well-known that the model proposed by Cook and Zhu [12] in the presence of dual-role factors fails
to have any additional weight restriction. On the other hand, there exist many weighted models in the DEA
methodology but none of them restricts dual-role factor weights, even the one proposed by Farzipoor Saen [16]
restricted only weights of input/output factors in evaluating DMUs having dual-role factors. Hence, his work
[16] does not have any contribution to controlling weights of dual-role factors. Previous studies in the literature
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have reported that most of developments for the evaluation of DMUs in the presence of dual-role factors were
followed by an extension of applications without challenging the fundamental basis of the DEA methodology
like the flexibility in selecting weights of dual-role factors. To fill this gap, the current study makes noteworthy
contributions to restrict additional weighting constraints to the all factors, even dual-role, by the two different
methods, virtual weight restrictions and cone-ratio. Consequently, these weighting methods lead to construct
two different weighted DEA models in the presence of dual-role factors.

3.1. The virtual weighted DEA model in the presence of dual-role factors

This subsection proposes an extension of the virtual weight restrictions method for weighting the DEA
model with dual-role factors developed by Cook and Zhu [12]. By an inspiration of the additional weight
restrictions in Section 2.1, here, the virtual weighting constraints of the average unit, apart from 𝑚 inputs
and 𝑠 outputs, for 𝐿 dual-role factors are newly constructed. The level of 𝑖th input, 𝑟th output, and 𝑙th
dual-role factor for the average unit are respectively considered as 𝑥𝑖𝑎 =

∑︀𝑛
𝑗=1

𝑥𝑖𝑗

𝑛 , 𝑦𝑟𝑎 =
∑︀𝑛

𝑗=1
𝑦𝑟𝑗

𝑛 , and
𝑤𝑙𝑎 =

∑︀𝑛
𝑗=1

𝑤𝑙𝑗

𝑛 . Since each dual-role factor plays two roles, input and output, two weighting constraints are
formed for each dual-role factor. The process of constructing them is as follows. For the average unit, the
ratio of the 𝑙th virtual dual-role factor playing the input role ((1 − 𝑑𝑙)𝛾𝑙𝑤𝑙𝑎) against the total virtual inputs(︁∑︀𝑚

𝑖=1 𝑣𝑖𝑥𝑖𝑎 +
∑︀𝐿

𝑙=1 (1− 𝑑𝑙)𝛾𝑙𝑤𝑙𝑎

)︁
should be between the lower bound 𝑉 1𝑙 and the upper bound 𝑉 1𝑙 (𝑙 ∈

{1, . . . , 𝐿}). In a mathematical term, a virtual weighting constraint for the 𝑙th dual-role factor playing the input
role is 𝑉 1𝑙(1− 𝑑𝑙) 6

(1−𝑑𝑙)𝛾𝑙𝑤𝑙𝑎∑︀𝑚
𝑖=1 𝑣𝑖𝑥𝑖𝑎+

∑︀𝐿
𝑙=1(1−𝑑𝑙)𝛾𝑙𝑤𝑙𝑎

6 𝑉 1𝑙 (𝑙 ∈ {1, . . . , 𝐿}). Similarly, a virtual weighting constraint

for the 𝑙th dual-role factor whenever it plays the output role is formed as 𝑈1𝑙𝑑𝑙 6
𝑑𝑙𝛾𝑙𝑤𝑙𝑎∑︀𝑠

𝑟=1 𝑢𝑟𝑦𝑟𝑎+
∑︀𝐿

𝑙=1 𝑑𝑙𝛾𝑙𝑤𝑙𝑎
6 𝑈1𝑙

(𝑙 ∈ {1, . . . , 𝐿}). In addition to imposing the restrictions for weights of dual-role factors, virtual weighting
constraints for weights of other factors, inputs and outputs, can be added to the new model constructed. Toward
this end, the weighting constraints for the weights of input and output factors are respectively constructed as
𝑉 2𝑖 6

𝑣𝑖𝑥𝑖𝑎∑︀𝑚
𝑖=1 𝑣𝑖𝑥𝑖𝑎+

∑︀𝐿
𝑙=1 (1−𝑑𝑙)𝛾𝑙𝑤𝑙𝑎

6 𝑉 2𝑖 (𝑖 = 1, . . . ,𝑚) and 𝑈2𝑟 6
𝑢𝑟𝑦𝑟𝑎∑︀𝑠

𝑟=1 𝑢𝑟𝑦𝑟𝑎+
∑︀𝐿

𝑙=1 𝑑𝑙𝛾𝑙𝑤𝑙𝑎
6 𝑈2𝑟 (𝑟 = 1, . . . , 𝑠).

As regards the structure of these fractional weighting constraints, the lower bounds must be greater than or
equal to zero and upper bounds must be less than or equal to unity. After all, these bounds are considered by
the decision maker. These weighting constraints which are homogeneous can be added to the fractional DEA
model presented by Cook and Zhu [12]. Hence, the fractional virtual weighted DEA model in the presence of
dual-role factors is constructed as follows:

Max
∑︀𝑠

𝑟=1 𝑢𝑟𝑦𝑟𝑜 +
∑︀𝐿

𝑙=1 𝑑𝑙𝛾𝑙𝑤𝑙𝑜∑︀𝑚
𝑖=1 𝑣𝑖𝑥𝑖𝑜 +

∑︀𝐿
𝑙=1 (1− 𝑑𝑙)𝛾𝑙𝑤𝑙𝑜

s.t.
∑︀𝑠

𝑟=1 𝑢𝑟𝑦𝑟𝑗 +
∑︀𝐿

𝑙=1 𝑑𝑙𝛾𝑙𝑤𝑙𝑗∑︀𝑚
𝑖=1 𝑣𝑖𝑥𝑖𝑗 +

∑︀𝐿
𝑙=1 (1− 𝑑𝑙)𝛾𝑙𝑤𝑙𝑗

6 1, 𝑗 = 1, . . . , 𝑛

𝑉 1𝑙(1− 𝑑𝑙) 6
(1− 𝑑𝑙)𝛾𝑙𝑤𝑙𝑎∑︀𝑚

𝑖=1 𝑣𝑖𝑥𝑖𝑎 +
∑︀𝐿

𝑙=1 (1− 𝑑𝑙)𝛾𝑙𝑤𝑙𝑎

6 𝑉 1𝑙, 𝑙 = 1, . . . , 𝐿, (*1)

𝑈1𝑙𝑑𝑙 6
𝑑𝑙𝛾𝑙𝑤𝑙𝑎∑︀𝑠

𝑟=1 𝑢𝑟𝑦𝑟𝑎 +
∑︀𝐿

𝑙=1 𝑑𝑙𝛾𝑙𝑤𝑙𝑎

6 𝑈1𝑙, 𝑙 = 1, . . . , 𝐿, (*2)

𝑉 2𝑖 6
𝑣𝑖𝑥𝑖𝑎∑︀𝑚

𝑖=1 𝑣𝑖𝑥𝑖𝑎 +
∑︀𝐿

𝑙=1 (1− 𝑑𝑙)𝛾𝑙𝑤𝑙𝑎

6 𝑉 2𝑖, 𝑖 = 1, . . . ,𝑚,

𝑈2𝑟 6
𝑢𝑟𝑦𝑟𝑎∑︀𝑠

𝑟=1 𝑢𝑟𝑦𝑟𝑎 +
∑︀𝐿

𝑙=1 𝑑𝑙𝛾𝑙𝑤𝑙𝑎

6 𝑈2𝑟, 𝑟 = 1, . . . , 𝑠,

𝑑𝑙 ∈ {0, 1}, 𝑙 = 1, . . . , 𝐿,

𝑣𝑖 > 0, 𝑖 = 1, . . . ,𝑚,

𝑢𝑟 > 0, 𝑟 = 1, . . . , 𝑠,
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𝛾𝑙 > 0, 𝑙 = 1, . . . , 𝐿. (3.1)

Controlling the contribution of each factor in the efficiency is the aim of this weighted DEA model. The
average unit applied to restricting weights, all DMUs in the peer set comply with the virtual weight constraints.
The reason is that the weights are not dependent on the observed input, output, and dual-role factor levels.

In Model (3.1), the binary variable 𝑑𝑙 (𝑙 ∈ {1, . . . , 𝐿}) implies that the 𝑙th dual-role factor takes either the
input or output role. Its status is determined so that, taking into account the expert preferences, the relative
efficiency score of the given DMU increases as much as possible. In the fractional virtual weighted DEA model
(3.1), if 𝑑𝑙 = 0, the 𝑙th virtual weighting constraint in (*1) will be active and the corresponded constraint in
(*2) will be redundant because in this case the 𝑙th dual-role factor plays the input role. Furthermore, if 𝑑𝑙 = 1,
the 𝑙th virtual weighting constraint in (*2) will be active and the corresponded one in (*1) will be redundant
because in this case the 𝑙th dual-role factor plays the output role.

It is obvious that Model (3.1) is non-linear. Some of its constraints can be linearized by the changing variables
𝛿𝑙 = 𝑑𝑙𝛾𝑙 (𝑙 = 1, . . . , 𝐿) and imposing the following constraints [12]:

0 6 𝛿𝑙6𝑀𝑑𝑙, 𝑙 = 1, . . . , 𝐿,

𝛿𝑙6 𝛾𝑙6 𝛿𝑙 + 𝑀(1− 𝑑𝑙), 𝑙 = 1, . . . , 𝐿. (3.2)

Yet, it is continuously non-linear. Now, the changing variables 𝑔𝑙𝑖 = 𝑑𝑙𝑣𝑖 (𝑙 = 1, . . . , 𝐿, 𝑖 = 1, . . . ,𝑚),
𝑓𝑙𝑟 = 𝑑𝑙𝑢𝑟 (𝑙 = 1, . . . , 𝐿, 𝑟 = 1, . . . , 𝑠), 𝑞𝑙𝑙′ = 𝑑𝑙𝛿𝑙′ , and 𝑝𝑙𝑙′ = 𝑑𝑙𝛾𝑙′ (𝑙 = 1, . . . , 𝐿, 𝑙′ = 1, . . . , 𝐿) by imposing the
constraints

06 𝑔𝑙𝑖6𝑀𝑑𝑙, 𝑙 = 1, . . . , 𝐿, 𝑖 = 1, . . . ,𝑚,

𝑔𝑙𝑖 6 𝑣𝑖 6 𝑔𝑙𝑖 + 𝑀(1− 𝑑𝑙), 𝑙 = 1, . . . , 𝐿, 𝑖 = 1, . . . ,𝑚, (3.3)
06 𝑓𝑙𝑟 6𝑀𝑑𝑙, 𝑙 = 1, . . . , 𝐿, 𝑟 = 1, . . . , 𝑠,

𝑓𝑙𝑟 6 𝑢𝑟 6 𝑓𝑙𝑟 + 𝑀(1− 𝑑𝑙), 𝑙 = 1, . . . , 𝐿, 𝑟 = 1, . . . , 𝑠, (3.4)
0 6 𝑞𝑙𝑙′ 6𝑀𝑑𝑙, 𝑙 = 1, . . . , 𝐿, 𝑙′ = 1, . . . , 𝐿,

𝑞𝑙𝑙′ 6 𝛿𝑙′ 6 𝑞𝑙𝑙′ + 𝑀(1− 𝑑𝑙), 𝑙 = 1, . . . , 𝐿, 𝑙′ = 1, . . . , 𝐿, (3.5)

and

0 6 𝑝𝑙𝑙′ 6𝑀𝑑𝑙, 𝑙 = 1, . . . , 𝐿, 𝑙′ = 1, . . . , 𝐿,

𝑝𝑙𝑙′ 6 𝛾𝑙′ 6 𝑝𝑙𝑙′ + 𝑀(1− 𝑑𝑙), 𝑙 = 1, . . . , 𝐿, 𝑙′ = 1, . . . , 𝐿, (3.6)

are utilized to the linearization. Given the above-mentioned changing variables and the variable transformation
method ([30], pp. 340-341), Model (3.1) is converted to the following mixed integer linear programming problem,

Max
𝑠∑︁

𝑟=1

𝑢𝑟𝑦𝑟𝑜 +
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑜

s.t.
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑜 +
𝐿∑︁

𝑙=1

𝛾𝑙𝑤𝑙𝑜 −
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑜 = 1,

𝑠∑︁
𝑟=1

𝑢𝑟𝑦𝑟𝑗 + 2
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑗 −
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑗 −
𝐿∑︁

𝑙=1

𝛾𝑙𝑤𝑙𝑗 6 0, 𝑗 = 1, . . . , 𝑛,

𝑉 1𝑙

(︃
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑎 +
𝐿∑︁

𝑙=1

𝛾𝑙𝑤𝑙𝑎 −
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑎
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−
𝑚∑︁

𝑖=1

𝑔𝑙𝑖𝑥𝑖𝑎 −
𝐿∑︁

𝑙′=1

𝑝𝑙𝑙′𝑤𝑙′𝑎 +
𝐿∑︁

𝑙′=1

𝑞𝑙𝑙′𝑤𝑙′𝑎

)︃

6 𝛾𝑙𝑤𝑙𝑎 − 𝛿𝑙𝑤𝑙𝑎 6 𝑉 1𝑙

(︃
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑎 +
𝐿∑︁

𝑙=1

𝛾𝑙𝑤𝑙𝑎 −
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑎

)︃
, 𝑙 = 1, . . . , 𝐿,

𝑈1𝑙

(︃
𝑠∑︁

𝑟=1

𝑓𝑙𝑟𝑦𝑟𝑎 +
𝐿∑︁

𝑙′=1

𝑞𝑙𝑙′𝑤𝑙′𝑎

)︃
6 𝛿𝑙𝑤𝑙𝑎 6 𝑈1𝑙

(︃
𝑠∑︁

𝑟=1

𝑢𝑟𝑦𝑟𝑎 +
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑎

)︃
, 𝑙 = 1, . . . , 𝐿,

𝑉 2𝑖

(︃
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑎 +
𝐿∑︁

𝑙=1

𝛾𝑙𝑤𝑙𝑎 −
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑎

)︃
6 𝑣𝑖𝑥𝑖𝑎

6 𝑉 2𝑖

(︃
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑎 +
𝐿∑︁

𝑙=1

𝛾𝑙𝑤𝑙𝑎 −
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑎

)︃
, 𝑖 = 1, . . . ,𝑚,

𝑈2𝑟

(︃
𝑠∑︁

𝑟=1

𝑢𝑟𝑦𝑟𝑎 +
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑎

)︃
6 𝑢𝑟𝑦𝑟𝑎 6 𝑈2𝑟

(︃
𝑠∑︁

𝑟=1

𝑢𝑟𝑦𝑟𝑎 +
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑎

)︃
, 𝑟 = 1, . . . , 𝑠,

0 6 𝛿𝑙6𝑀𝑑𝑙, 𝑙 = 1, . . . , 𝐿,

𝛿𝑙6 𝛾𝑙6 𝛿𝑙 + 𝑀(1− 𝑑𝑙), 𝑙 = 1, . . . , 𝐿,

06 𝑔𝑙𝑖6𝑀𝑑𝑙, 𝑙 = 1, . . . , 𝐿, 𝑖 = 1, . . . ,𝑚,

𝑔𝑙𝑖 6 𝑣𝑖 6 𝑔𝑙𝑖 + 𝑀(1− 𝑑𝑙), 𝑙 = 1, . . . , 𝐿, 𝑖 = 1, . . . ,𝑚,

06 𝑓𝑙𝑟 6𝑀𝑑𝑙, 𝑙 = 1, . . . , 𝐿, 𝑟 = 1, . . . , 𝑠,

𝑓𝑙𝑟 6 𝑢𝑟 6 𝑓𝑙𝑟 + 𝑀(1− 𝑑𝑙), 𝑙 = 1, . . . , 𝐿, 𝑟 = 1, . . . , 𝑠,

0 6 𝑞𝑙𝑙′ 6𝑀𝑑𝑙, 𝑙 = 1, . . . , 𝐿, 𝑙′ = 1, . . . , 𝐿,

𝑞𝑙𝑙′ 6 𝛿𝑙′ 6 𝑞𝑙𝑙′ + 𝑀(1− 𝑑𝑙), 𝑙 = 1, . . . , 𝐿, 𝑙′ = 1, . . . , 𝐿,

0 6 𝑝𝑙𝑙′ 6𝑀𝑑𝑙, 𝑙 = 1, . . . , 𝐿, 𝑙′ = 1, . . . , 𝐿,

𝑝𝑙𝑙′ 6 𝛾𝑙′ 6 𝑝𝑙𝑙′ + 𝑀(1− 𝑑𝑙), 𝑙 = 1, . . . , 𝐿, 𝑙′ = 1, . . . , 𝐿,

𝑑𝑙 ∈ {0, 1}, 𝑙 = 1, . . . , 𝐿. (3.7)

In assessing DMU𝑜 by Model (3.7), 2𝐿 expanded PPSs are constructed, there being 𝐿 dual-role factors
which play different roles, inputs and/or outputs. Then, one of them which gives the maximum efficiency
score for DMU𝑜 is selected. The virtual weight restrictions are unlinked weight constraints as −𝑃𝑇

𝑡1𝑣 6 0
(𝑡1 = 1, . . . , 𝑇1) and 𝑄𝑇

𝑡2𝑢 6 0 (𝑡2 = 1, . . . , 𝑇2) where 𝑇1 > 2𝑚, 𝑇2 > 2𝑠, and 𝑇1 + 𝑇2 = 2(𝑚 + 𝑠 + 𝐿) [27].
The axiom for the feasibility of the trade-offs (−𝑃𝑡1 , 0) (𝑡1 = 1, . . . , 𝑇1) and (0, 𝑄𝑡2) (𝑡2 = 1, . . . , 𝑇2) implies
that in the expanded PPS with the CRS technology (𝑇𝐶), each unlinked weight constraint is a virtual DMU
as 𝐴𝑡1 = (−𝑃𝑡1 , 0) ∈ ℜ𝑚+𝑠+𝐿 or 𝐵𝑡2 = (0, 𝑄𝑡2) ∈ ℜ𝑚+𝑠+𝐿 which has zero outputs or inputs [23]. It is obvious
that 𝐴𝑡1 (𝑡1 ∈ {1, . . . , 𝑇1}) has zero outputs and 𝐵𝑡2 (𝑡2 ∈ {1, . . . , 𝑇2}) has at least one negative output. Hence,
not all of the new virtual DMUs dominate any observed DMU or any virtual DMU gotten by the axiom of the
unbounded ray for an observed DMU in 𝑇𝐶 , with outputs for the observed DMUs non-negative. On the other
hand, there exists at least one negative component in each positive combination of 𝐵𝑡2 ∈ 𝑇𝐶 (𝑡2 ∈ {1, . . . , 𝑇2}).
Therefore, each non-negative combination of the trade-offs corresponding to the new virtual DMUs fails to
dominate any observed DMU. As a result, after adding the virtual weighting constraints to Cook and Zhu’s
model, some of the observed DMUs still remain efficient in the technologies expanded by the production trade-
offs of Model (3.7).

Adding unlinked weight constraints to a feasible DEA model may lead to infeasibility because the weighting
constraints may be in conflict with each other. Thus, the virtual weighting constraints may create the empty
feasible region of decision space for Model (3.7). In fact, on condition that the lower and upper bounds for
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the virtual weighting constraints are selected inappropriate, they lead to the infeasibility of Model (3.7). To
overcome this difficulty, the bounds should be appropriately chosen by the decision maker so that there should
be freedom in selecting weights. In most cases, however, determining these bounds by the decision maker is a
hard task. In the current research, the authors are argued that, to ensuring the feasibility of Model (3.7), the
bounds for the virtual weighting constraints can be considered as goals of the decision maker. Thereby, Model
(3.7) is revised by the goal programming approach ([30], pp. 282–301). After adding deviation variables to the
virtual weighting constraints, Model (3.7) is modified in the following form,

Max
𝑠∑︁

𝑟=1

𝑢𝑟𝑦𝑟𝑜 +
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑜 −𝑀

𝐿∑︁
𝑙=1

(︀
𝐴1𝑙 + 𝐴1𝑙 + 𝐵1𝑙 + 𝐵1𝑙

)︀
−𝑀

𝑚∑︁
𝑖=1

(︀
𝐴2𝑖 + 𝐴2𝑖

)︀
−𝑀

𝑠∑︁
𝑟=1

(︀
𝐵2𝑟 + 𝐵2𝑟

)︀
s.t.

𝑚∑︁
𝑖=1

𝑣𝑖𝑥𝑖𝑜 +
𝐿∑︁

𝑙=1

𝛾𝑙𝑤𝑙𝑜 −
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑜 = 1,

𝑠∑︁
𝑟=1

𝑢𝑟𝑦𝑟𝑗 + 2
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑗 −
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑗 −
𝐿∑︁

𝑙=1

𝛾𝑙𝑤𝑙𝑗 6 0, 𝑗 = 1, . . . , 𝑛,

𝑉 1𝑙

(︃
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑎 +
𝐿∑︁

𝑙=1

𝛾𝑙𝑤𝑙𝑎 −
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑎 −
𝑚∑︁

𝑖=1

𝑔𝑙𝑖𝑥𝑖𝑎 −
𝐿∑︁

𝑙′=1

𝑝𝑙𝑙′𝑤𝑙′𝑎

+
𝐿∑︁

𝑙′=1

𝑞𝑙𝑙′𝑤𝑙′𝑎

)︃
− 𝛾𝑙𝑤𝑙𝑎 + 𝛿𝑙𝑤𝑙𝑎 −𝐴1𝑙 6 0, 𝑙 = 1, . . . , 𝐿,

𝛾𝑙𝑤𝑙𝑎 − 𝛿𝑙𝑤𝑙𝑎 − 𝑉 1𝑙

(︃
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑎 +
𝐿∑︁

𝑙=1

𝛾𝑙𝑤𝑙𝑎 −
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑎

)︃
−𝐴1𝑙 6 0, 𝑙 = 1, . . . , 𝐿,

𝑈1𝑙

(︃
𝑠∑︁

𝑟=1

𝑓𝑙𝑟𝑦𝑟𝑎 +
𝐿∑︁

𝑙′=1

𝑞𝑙𝑙′𝑤𝑙′𝑎

)︃
− 𝛿𝑙𝑤𝑙𝑎 −𝐵1𝑙 6 0, 𝑙 = 1, . . . , 𝐿,

𝛿𝑙𝑤𝑙𝑎 − 𝑈1𝑙

(︃
𝑠∑︁

𝑟=1

𝑢𝑟𝑦𝑟𝑎 +
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑎

)︃
−𝐵1𝑙 6 0, 𝑙 = 1, . . . , 𝐿,

𝑉 2𝑖

(︃
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑎 +
𝐿∑︁

𝑙=1

𝛾𝑙𝑤𝑙𝑎 −
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑎

)︃
− 𝑣𝑖𝑥𝑖𝑎 −𝐴2𝑖 6 0, 𝑙 = 1, . . . , 𝐿,

𝑣𝑖𝑥𝑖𝑎 − 𝑉 2𝑖

(︃
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑎 +
𝐿∑︁

𝑙=1

𝛾𝑙𝑤𝑙𝑎 −
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑎

)︃
−𝐴2𝑖 6 0, 𝑖 = 1, . . . ,𝑚,

𝑈2𝑟

(︃
𝑠∑︁

𝑟=1

𝑢𝑟𝑦𝑟𝑎 +
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑎

)︃
− 𝑢𝑟𝑦𝑟𝑎 −𝐵2𝑟 6 0, 𝑟 = 1, . . . , 𝑠,

𝑢𝑟𝑦𝑟𝑎 − 𝑈2𝑟

(︃
𝑠∑︁

𝑟=1

𝑢𝑟𝑦𝑟𝑎 +
𝐿∑︁

𝑙=1

𝛿𝑙𝑤𝑙𝑎

)︃
−𝐵2𝑟 6 0, 𝑟 = 1, . . . , 𝑠,

0 6 𝛿𝑙6𝑀𝑑𝑙, 𝑙 = 1, . . . , 𝐿,

𝛿𝑙6 𝛾𝑙6 𝛿𝑙 + 𝑀(1− 𝑑𝑙), 𝑙 = 1, . . . , 𝐿,

06 𝑔𝑙𝑖6𝑀𝑑𝑙, 𝑙 = 1, . . . , 𝐿, 𝑖 = 1, . . . ,𝑚,
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𝑔𝑙𝑖 6 𝑣𝑖 6 𝑔𝑙𝑖 + 𝑀(1− 𝑑𝑙), 𝑙 = 1, . . . , 𝐿, 𝑖 = 1, . . . ,𝑚,

06 𝑓𝑙𝑟 6𝑀𝑑𝑙, 𝑙 = 1, . . . , 𝐿, 𝑟 = 1, . . . , 𝑠,

𝑓𝑙𝑟 6 𝑢𝑟 6 𝑓𝑙𝑟 + 𝑀(1− 𝑑𝑙), 𝑙 = 1, . . . , 𝐿, 𝑟 = 1, . . . , 𝑠,

0 6 𝑞𝑙𝑙′ 6𝑀𝑑𝑙, 𝑙 = 1, . . . , 𝐿, 𝑙′ = 1, . . . , 𝐿,

𝑞𝑙𝑙′ 6 𝛿𝑙′ 6 𝑞𝑙𝑙′ + 𝑀(1− 𝑑𝑙), 𝑙 = 1, . . . , 𝐿, 𝑙′ = 1, . . . , 𝐿,

0 6 𝑝𝑙𝑙′ 6𝑀𝑑𝑙, 𝑙 = 1, . . . , 𝐿, 𝑙′ = 1, . . . , 𝐿,

𝑝𝑙𝑙′ 6 𝛾𝑙′ 6 𝑝𝑙𝑙′ + 𝑀(1− 𝑑𝑙), 𝑙 = 1, . . . , 𝐿, 𝑙′ = 1, . . . , 𝐿,

𝑑𝑙 ∈ {0, 1}, 𝑙 = 1, . . . , 𝐿,

𝐴1𝑙 > 0, 𝐴1𝑙 > 0, 𝐵1𝑙 > 0, 𝐵1𝑙 > 0, 𝑙 = 1, . . . , 𝐿,

𝐴2𝑖 > 0, 𝐴2𝑖 > 0, 𝐵2𝑟 > 0, 𝐵2𝑟 > 0, 𝑖 = 1, . . . ,𝑚, 𝑟 = 1, . . . , 𝑠, (3.8)

where 𝑀 is a large positive number. Model (3.8) is the finally virtual weighted DEA model for the evaluation
of DMU𝑜 having dual-role factors except to inputs and outputs. As mentioned in Section 2.2, after assessing 𝑛
DMUs, the role of all dual-role factors are specified by optimal values of 𝑑𝑙 (𝑙 = 1, . . . , 𝐿). Regarding the results
of Model (3.8), if the number of cases that a dual-role factor is considered as an input is greater (smaller) than
the number of cases of output, then the dual-role factor is considered as an input (output) factor.

In the following, Theorem 3.1 shows that there exists a relationship between the feasibility of Models (3.7)
and (3.8).

Theorem 3.1. If Model (3.7) is feasible, then, in the optimal solution of Model (3.8), the value of all deviation
variables are zero.

Proof. By contradiction, suppose that in the optimal solution 𝜒* =
(︁
𝑣*, 𝑢*, 𝛾*, 𝛿*, 𝑔*, 𝑓*, 𝑞*, 𝑝*, 𝑑*, 𝐴*1, 𝐴

*
1, 𝐵

*
1,

𝐵
*
1, 𝐴

*
2, 𝐴

*
2, 𝐵

*
2, 𝐵

*
2

)︁
for Model (3.8), the value for not all derivation variables are zero. Without loss

of generality, assume that 𝐴*1 ̸= 0. Therefore, there is at least one index 𝑙 (𝑙 ∈ {1, . . . , 𝐿}) such
that 𝐴*1𝑙 ̸= 0. With Model (3.7) feasible, there exists a solution

(︁̂︀𝑣, ̂︀𝑢, ̂︀𝛾, ̂︀𝛿, ̂︀𝑔, ̂︀𝑓, ̂︀𝑞, ̂︀𝑝, ̂︀𝑑)︁ for this model
which satisfies in the all of its constraints. It is clear that ̂︀𝜒 = (𝑣 = ̂︀𝑣, 𝑢 = ̂︀𝑢, 𝛾 = ̂︀𝛾, 𝛿 =̂︀𝛿, 𝑔 = ̂︀𝑔, 𝑓 = ̂︀𝑓, 𝑞 = ̂︀𝑞, 𝑝 = ̂︀𝑝, 𝑑 = ̂︀𝑑, 𝐴1 = 0, 𝐴1 = 0, 𝐵1 = 0, 𝐵1 = 0, 𝐴2 = 0, 𝐴2 = 0,
𝐵2 = 0, 𝐵2 = 0) is a feasible solution for Model (3.8). Hence, in Model (3.8), the results of objective func-
tion for the optimal solution 𝜒* and the feasible solution ̂︀𝜒 are respectively as 𝐸*𝑜 =

∑︀𝑠
𝑟=1 𝑢*𝑟𝑦𝑟𝑜 +

∑︀𝐿
𝑙=1 𝛿*𝑙 𝑤𝑙𝑜−

𝑀
∑︀𝐿

𝑙=1

(︁
𝐴*1𝑙 + 𝐴

*
1𝑙 + 𝐵*1𝑙 + 𝐵

*
1𝑙

)︁
− 𝑀

∑︀𝑚
𝑖=1

(︁
𝐴*2𝑖 + 𝐴

*
2𝑖

)︁
− 𝑀

∑︀𝑠
𝑟=1

(︁
𝐵*2𝑟 + 𝐵

*
2𝑟

)︁
and ̂︀𝐸𝑜 =

∑︀𝑠
𝑟=1 ̂︀𝑢𝑟𝑦𝑟𝑜 +∑︀𝐿

𝑙=1
̂︀𝛿𝑙𝑤𝑙𝑜. Thus, it is a contradiction, 𝑀 being a large positive number and 𝐴*1 > 0, 𝐴*1 ̸= 0. �

Now, to strengthen the accuracy of the virtual weighted DEA model (3.8), the following theorem is proven.

Theorem 3.2. The relative efficiency score obtained by Model (3.8) is not greater than the one obtained by
Model (2.3).

Proof. Since (𝑚+𝑠+𝐿) > 1, the number of constraints in the new model is more than the number of constraints
in the model proposed by Cook and Zhu [12]. It is remembered that by adding constraints to a model its feasible
region of decision space fails to become greater than before adding any new constraint. As a consequence, the
relative efficiency score of DMU𝑜 obtained by the virtual weighted DEA model will be less than or equal to the
before score obtained by Cook and Zhu’s model, which completes the proof. �
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3.2. The cone-ratio weighted DEA model in the presence of dual-role factors

This subsection employs another weighting method, cone-ratio, to introduce a new weighted DEA model for
the evaluation of DMUs having dual-role factors aside from input and output factors. Similar to the process
of constructing the virtual weighted DEA model, the model proposed by Cook and Zhu [12] is also employed
to form the newly weighted DEA model in the current subsection. To construct the model, suppose that the
feasible regions of decision space for the weights of input, output, and dual-role factors are restricted within
polyhedral convex cones 𝑉 , 𝑈 , and Γ spanned by the 𝑘1, 𝑘2 and 𝑘3 admissible non-negative direction vectors
𝑎ℎ ∈ ℜ𝑚 (ℎ = 1, . . . , 𝑘1), 𝑏𝑝 ∈ ℜ𝑠 (𝑝 = 1, . . . , 𝑘2), and 𝑐𝑓 ∈ ℜ𝐿 (𝑓 = 1, . . . , 𝑘3), respectively. Accordingly, the
feasible input, output, and dual-role factor weights 𝑣, 𝑢, and 𝛾 can be respectively expressed as

𝑣 ∈ 𝑉 =
𝑘1∑︁

ℎ=1

𝛼ℎ 𝑎ℎ = 𝐴𝑇 𝛼,

𝑢 ∈ 𝑈 =
𝑘2∑︁

𝑝=1

𝛽𝑝 𝑏𝑝 = 𝐵𝑇 𝛽,

𝛾 ∈ Γ =
𝑘3∑︁

𝑓=1

𝜆𝑓 𝑐𝑓 = 𝐶𝑇 𝛿, (3.9)

where 𝐴𝑇 = (𝑎1, . . . , 𝑎𝑘1) ∈ 𝑅𝑚×𝑘1, 𝐵𝑇 = (𝑏1, . . . , 𝑏𝑘2) ∈ 𝑅𝑠×𝑘2, 𝐶𝑇 = (𝑐1, . . . , 𝑐𝑘3) ∈ 𝑅𝐿×𝑘3, 𝛼𝑇 =
(𝛼1, . . . , 𝛼𝑘1) ∈ ℜ𝑘1, 𝛽𝑇 = (𝛽1, . . . , 𝛽𝑘2) ∈ ℜ𝑘2, and 𝜆𝑇 = (𝜆1, . . . , 𝜆𝑘3) ∈ ℜ𝑘3. There exist several ways to
select the admissible direction vectors ([15], p. 189). In the current research, the knowledge of experts is applied
for characterizing these vectors.

As the cone-ratio method results in homogeneous weighting constraints, there is no problem in applying this
method to a linear form of DEA models [21]. Imposing the polyhedral convex cones 𝑉 , 𝑈 and Γ on the weights
of input, output, and dual-role factors in the mixed integer linear programming problem proposed by Cook and
Zhu [12] leads to a cone-ratio DEA model with dual-role factors,

Max
𝑠∑︁

𝑟=1

𝑢𝑟𝑦𝑟𝑜 +
𝐿∑︁

𝑙=1

𝑑𝑙𝛾𝑙𝑤𝑙𝑜

s.t.
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑜 +
𝐿∑︁

𝑙=1

(1− 𝑑𝑙)𝛾𝑙𝑤𝑙𝑜 = 1,

𝑠∑︁
𝑟=1

𝑢𝑟𝑦𝑟𝑗 +
𝐿∑︁

𝑙=1

𝑑𝑙𝛾𝑙𝑤𝑙𝑗 −
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑗 −
𝐿∑︁

𝑙=1

(1− 𝑑𝑙)𝛾𝑙𝑤𝑙𝑗 6 0, 𝑗 = 1, . . . , 𝑛,

𝑑𝑙 ∈ {0, 1}, 𝑙 = 1, . . . , 𝐿,

(𝑣1, . . . , 𝑣𝑚) ∈ 𝑉,

(𝑢1, . . . , 𝑢𝑠) ∈ 𝑈,

(𝛾1, . . . , 𝛾𝐿) ∈ Γ. (3.10)

The cone-ratio weighted DEA model (3.10) controls the importance of each factor in the efficiency with
adding a cone to the feasible region of decision space for Model (2.3). By assuming 𝑉 = ℜ𝑚> 0, 𝑈 = ℜ𝑠> 0,
and Γ = ℜ𝐿> 0 within Model (3.10), Models (3.10) and (2.3) become coincident. With respect to the three
polyhedral convex cones defined in (3.9), Model (3.10) is converted to,

Max
𝑠∑︁

𝑟=1

(︃
𝑘2∑︁

𝑝=1

𝛽𝑝𝑏𝑝𝑟

)︃
𝑦𝑟𝑜 +

𝐿∑︁
𝑙=1

𝑑𝑙

⎛⎝ 𝑘3∑︁
𝑓=1

𝜆𝑓𝑐𝑓𝑙

⎞⎠𝑤𝑙𝑜
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s.t.
𝑚∑︁

𝑖=1

(︃
𝑘1∑︁

ℎ=1

𝛼ℎ𝑎ℎ𝑖

)︃
𝑥𝑖𝑜 +

𝐿∑︁
𝑙=1

(1− 𝑑𝑙)

⎛⎝ 𝑘3∑︁
𝑓=1

𝜆𝑓𝑐𝑓𝑙

⎞⎠𝑤𝑙𝑜 = 1,

𝑠∑︁
𝑟=1

(︃
𝑘2∑︁

𝑝=1

𝛽𝑝𝑏𝑝𝑟

)︃
𝑦𝑟𝑗 +

𝐿∑︁
𝑙=1

𝑑𝑙

⎛⎝ 𝑘3∑︁
𝑓=1

𝜆𝑓𝑐𝑓𝑙

⎞⎠𝑤𝑙𝑗 −
𝑚∑︁

𝑖=1

(︃
𝑘1∑︁

ℎ=1

𝛼ℎ𝑎ℎ𝑖

)︃
𝑥𝑖𝑗

−
𝐿∑︁

𝑙=1

(1− 𝑑𝑙)

⎛⎝ 𝑘3∑︁
𝑓=1

𝜆𝑓𝑐𝑓𝑙

⎞⎠𝑤𝑙𝑗 6 0, 𝑗 = 1, . . . , 𝑛,

𝑑𝑙 ∈ {0, 1}, 𝑙 = 1, . . . , 𝐿,

𝛼ℎ > 0, ℎ = 1, . . . , 𝑘1,

𝛽𝑝 > 0, 𝑝 = 1, . . . , 𝑘2,

𝜆𝑓 > 0, 𝑓 = 1, . . . , 𝑘3. (3.11)

If Model (3.11) obtains 𝑑𝑙 = 0 (𝑙 ∈ {1, . . . , 𝐿}), then, 𝑑𝑙

(︁∑︀𝑘3
𝑓=1 𝜆𝑓𝑐𝑙𝑓

)︁
𝑤𝑙𝑜 will be removed from the objective

function and the second constraint set for all 𝑗; this means that the 𝑙th dual-role factor behaves as an input
factor in the evaluation of DMU𝑜. Moreover, if Model (3.11) obtains 𝑑𝑙 = 1 (𝑙 ∈ {1, . . . , 𝐿}), then, (1 −
𝑑𝑙)
(︁∑︀𝑘3

𝑓=1 𝜆𝑓𝑐𝑙𝑓

)︁
𝑤𝑙𝑜 will be eliminated from the first constraint and the second constraint set for all 𝑗; this

means that the 𝑙th dual-role factor plays an output role within assessing DMU𝑜.
With a precise perspective, Model (3.11) deals with the artificial non-negative data sets 𝑥ℎ𝑗 =∑︀𝑚
𝑖=1 𝑎ℎ𝑖𝑥𝑖𝑗(ℎ = 1, . . . , 𝑘1), 𝑦𝑝𝑗 =

∑︀𝑠
𝑟=1 𝑏𝑝𝑟𝑦𝑟𝑗(𝑝 = 1, . . . , 𝑘2), and 𝑤𝑓𝑗 =

∑︀𝐿
𝑙=1 𝑐𝑓𝑙𝑤𝑙𝑗 (𝑓 = 1, . . . , 𝑘3) belonging

to DMU𝑗(𝑗 = 1, . . . , 𝑛). In the following, the changed data for input, output, and dual-role factors is presented
in the matrix forms,

𝐴𝑋 = 𝑋̄ ∈ 𝑅𝑘1×𝑛,

𝐵𝑌 = 𝑌 ∈ 𝑅𝑘2×𝑛,

𝐶𝑊 = 𝑊̄ ∈ 𝑅𝑘3×𝑛, (3.12)

where 𝐴, 𝐵, and 𝐶 are the transformation matrices for the original data of input, output, and dual-role factors
shown by the matrices 𝑋 ∈ ℜ𝑚×𝑛, 𝑌 ∈ ℜ𝑠×𝑛, and 𝑊 ∈ ℜ𝐿×𝑛. Furthermore, the transformation matrices
constructed by the admissible non-negative direction vectors {𝑎1, . . . , 𝑎𝑘1}, {𝑏1, . . . , 𝑏𝑘2}, and {𝑐1, . . . , 𝑐𝑘3} are
as follows:

𝐴 =

⎡⎢⎢⎢⎢⎣
𝑎11 . . . 𝑎1𝑚

𝑎21 . . . 𝑎2𝑚

...
...

...
𝑎(𝑘1)1 . . . 𝑎(𝑘1)𝑚

⎤⎥⎥⎥⎥⎦
𝑘1×𝑚

, 𝐵 =

⎡⎢⎢⎢⎢⎣
𝑏11 . . . 𝑏1𝑠

𝑏21 . . . 𝑏2𝑠

...
...

...
𝑏(𝑘2)1 . . . 𝑏(𝑘2)𝑠

⎤⎥⎥⎥⎥⎦
𝑘2×𝑠

, 𝐶 =

⎡⎢⎢⎢⎢⎣
𝑐11 . . . 𝑐1𝐿

𝑐21 . . . 𝑐2𝐿

...
...

...
𝑐(𝑘3)1 . . . 𝑐(𝑘3)𝐿

⎤⎥⎥⎥⎥⎦
𝑘3×𝐿

.

(3.13)
It is easy to verify that Model (3.11) is non-linear. It can be linearized by the changing variables 𝑡𝑙𝑓 = 𝑑𝑙𝜆𝑓

(𝑙 = 1, . . . , 𝐿, 𝑓 = 1, . . . , 𝑘3) and imposing the following constraints:

0 6 𝑡𝑙𝑓 6𝑀𝑑𝑙, 𝑙 = 1, . . . , 𝐿, 𝑓 = 1, . . . , 𝑘3,

𝑡𝑙𝑓 6 𝜆𝑓 6 𝑡𝑙𝑓 + 𝑀(1− 𝑑𝑙), 𝑙 = 1, . . . , 𝐿, 𝑓 = 1, . . . , 𝑘3. (3.14)
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Owing to the artificial data sets and the above-mentioned changing variables, Model (3.11) is converted to
the following mixed integer linear programming problem,

Max
𝑘2∑︁

𝑝=1

𝛽𝑝𝑦𝑝𝑜 +
𝐿∑︁

𝑙=1

𝑘3∑︁
𝑓=1

𝑡𝑙𝑓 𝑤̄𝑓𝑜

s.t.
𝑘1∑︁

ℎ=1

𝛼ℎ𝑥̄ℎ𝑜 +
𝑘3∑︁

𝑓=1

𝜆𝑓 𝑤̄𝑓𝑜 −
𝐿∑︁

𝑙=1

𝑘3∑︁
𝑓=1

𝑡𝑙𝑓 𝑤̄𝑓𝑜 = 1,

𝑘2∑︁
𝑝=1

𝛽𝑝𝑦𝑝𝑗 + 2
𝐿∑︁

𝑙=1

𝑘3∑︁
𝑓=1

𝑡𝑙𝑓 𝑤̄𝑓𝑗 −
𝑘1∑︁

ℎ=1

𝛼ℎ𝑥̄ℎ𝑗 −
𝑘3∑︁

𝑓=1

𝜆𝑓 𝑤̄𝑓𝑗 6 0, 𝑗 = 1, . . . , 𝑛,

0 6 𝑡𝑙𝑓 6𝑀𝑑𝑙, 𝑙 = 1, . . . , 𝐿, 𝑓 = 1, . . . , 𝑘3,

𝑡𝑙𝑓 6 𝜆𝑓 6 𝑡𝑙𝑓 + 𝑀(1− 𝑑𝑙), 𝑙 = 1, . . . , 𝐿, 𝑓 = 1, . . . , 𝑘3,

𝑑𝑙 ∈ {0, 1}, 𝑙 = 1, . . . , 𝐿,

𝛼ℎ > 0, ℎ = 1, . . . , 𝑘1,

𝛽𝑝 > 0, 𝑝 = 1, . . . , 𝑘2. (3.15)

Model (3.15) is the finally weighted DEA model based on the cone-ratio method to evaluate DMU𝑜 having
dual-role factors. After assessing 𝑛 DMUs by Model (3.15), the role of all dual-role factors are specified using
the optimal values of 𝑑𝑙 (𝑙 = 1, . . . , 𝐿). If the number of cases that a dual-role factor is considered as an input
is greater (smaller) than the number of cases of output, then the dual-role factor is considered as an input
(output) factor.

Now, some properties of the cone-ratio weighted DEA model (3.15) are proven to verify its accuracy. In doing
so, Theorems 3.3 and 3.4 respectively indicate that Model (3.15) is feasible and its optimal objective function
value gives the relative efficiency score of the DMU assessed.

Theorem 3.3. Model (3.15) is always feasible.

Proof. 𝑑𝑙 = 0 (𝑙 = 1, . . . , 𝐿), 𝛼1 = 1
𝑥1𝑜

> 0, 𝛼ℎ = 0 (ℎ = 2, . . . , 𝑘1), 𝛽𝑝 = 0 (𝑝 = 1, . . . , 𝑘2), 𝜆𝑓 = 0
(𝑓 = 1, . . . , 𝑘3), and 𝑡𝑙𝑓 = 0 (𝑙 = 1, . . . , 𝐿, 𝑓 = 1, . . . , 𝑘3) is a desired feasible solution for Model (3.15), which
completes the proof. �

Theorem 3.4. Model (3.15) gives the relative efficiency score of DMU𝑜.

Proof. Model (3.15) similar to Model (2.3) with the artificial data, the proof is clear. �

The following theorem shows that results of the cone-ratio weighted DEA model have more power to distin-
guish inefficient DMUs in comparison with Cook and Zhu’s model.

Theorem 3.5. The relative efficiency score obtained by the newly proposed model (3.15) is less than or equal
to the one obtained by Model (2.3).

Proof. Model (3.15) was obtained by Model (3.10). It suffices to show that the optimal objective function value
obtained by Model (3.10) is not greater than the one obtained by Model (2.3). As mentioned before, Model
(3.10) is similar to Model (2.3) providing that 𝑉 = ℜ𝑚 > 0, 𝑈 = ℜ𝑠 > 0, and Γ = ℜ𝐿 > 0. With 𝑉 ⊆ ℜ𝑚 > 0,
𝑈 ⊆ ℜ𝑠 > 0, and Γ ⊆ ℜ𝐿 > 0 assumed in Model (3.10), the feasible region of decision space for this model is
not greater than the one for Model (2.3). Hence, the optimal objective function value for Model (3.10) is not
greater than the one obtained by Model (2.3), which completes the proof. �

What is interesting in this subsection is that the weighted DEA model (3.15) constructed by the cone-ratio
method fails to have any problem with decision maker’s preferences.
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Table 1. Data for the three DMUs in Example 1.

DMU Input Output Dual-role factor

A 1 1 2
B 2 1 1
C 1 1 3

4. Examples

The current section gives two numerical examples and an application to illustrate the new models proposed
in the previous section.

4.1. Numerical examples

In this subsection, the effect of weight restrictions based on the virtual weight and cone-ratio methods on the
DEA model with dual-role factors is illustrated by the two numerical examples.

Example 1

This example makes clear results for the virtual weighted DEA model in the presence of dual-role factors.
Consider a simple example of three DMUs, 𝐴, 𝐵, and 𝐶, where each of them has one input (𝑥), one output (𝑦),
and one dual-role factor (𝑤). Table 1 shows a set of hypothetical data for these three DMUs.

Our illustrations can be limited only to the two-dimensional spaces depicted by Figures 1 and 2. In Figure 1,
the dual-role factor plays the input role; however, it has the output role in Figure 2.

The shaded areas in these figures represent the original PPSs used for evaluating the three DMUs by Cook
and Zhu’s model. The results of assessing indicate that all of the DMUs are efficient. 𝐵 selects only the original
PPS in Figure 1 because considering the input role for the dual-role factor gives the maximum efficiency score.
Yet, other DMUs can choose the input or output role for the dual-role factor because Figures 1 and 2 display
𝐴 and 𝐶 are efficient in both the original PPSs.

Now, the virtual weight restrictions for the weight of dual-role factor are added as 0.1(1−𝑑) 6 (1−𝑑)𝛾𝑤𝑎

𝑣𝑥𝑎+(1−𝑑)𝛾𝑤𝑎
6

0.2 and 0.1𝑑 6 𝑑𝛾𝑤𝑎

𝑢𝑦𝑎+𝑑𝛾𝑤𝑎
6 0.2. The first weighting constraint results in the judgements 0.13𝑣 − 1.8𝛾 6 0 and

−0.26𝑣 + 1.6𝛾 6 0. Also, they can be expressed as the trade-offs 𝑃1 = (−0.13, 1.8), 𝑄1 = (0), 𝑃2 = (0.26,−1.6),
and 𝑄2 = (0) in Figure 1. These trade-offs expand the original PPS and add the lines 𝐴𝐸 and 𝐴𝐹 to the
technology. In essence, the light dotted areas are added to the original PPS to construct the expanded PPS
in Figure 1. Moreover, drawing on the second weighting constraint, the judgements 0.1𝑢 − 1.8𝛾 6 0 and
−0.2𝑢 + 1.6𝛾 6 0 lead to the trade-offs 𝑃1 = (0), 𝑄1 = (0.1,−1.8), 𝑃2 = (0), and 𝑄2 = (−0.2, 1.6) in Figure 2.
These trade-offs insert the lines 𝐶𝐺 and 𝐶𝐻 and the light dotted areas to the original PPS. It is obvious that
the expanded PPSs are larger than the original ones.

Table 2 reports the results of efficiency score in evaluating the three DMUs by Model (3.8).
The results show that 𝐴 and 𝐵 select the expanded PPS in Figure 1 but 𝐶 selects the expanded PPS in

Figure 2. In the case that the dual-role factor is considered as input, the efficiency score for 𝐶 is 0.941. Hence,
by considering the above-mentioned weighting constraints, the best situation for the dual-role factor in the
evaluation of 𝐶 is that it plays the output role. In assessing 𝐴 and 𝐵, if the dual-role factor is considered as
the output, their efficiency scores are 0.952 and 0.452, respectively. That is why, these DMUs selected the input
role for the dual-role factor.

Example 2

The current numerical example shows results of the cone-ratio weighted DEA model in the presence of
dual-role factors. Consider a hypothetical data set exhibited in Table 3.
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Figure 1. The original PPS and the trade-offs when the dual-role factor plays the input role.

There exist five DMUs labelled as 𝐴, 𝐵, 𝐶, 𝐷, and 𝐸. Each DMU has two inputs, one output, and two
dual-role factors.

Assessing these five DMUs by Model (2.3) reports that all of them are efficient. Also, the first dual-role factor
has the input role and the second one plays as the output.

Drawing upon the notations in Section 3.2, the decision maker assumes 𝑘1 = 3, 𝑘2 = 1, and 𝑘3 = 2 which
are the numbers of admissible non-negative direction vectors for the input, output, and dual-role factor weight
spaces to construct the polyhedral convex cones 𝑉 , 𝑈 , and Γ. The transformation matrices considered by the
decision maker for the hypothetical data set are

𝐴 =

⎡⎢⎣ 0.2 0.8
0.41 0.59
0.39 0.61

⎤⎥⎦, 𝐵 =
[︀
1
]︀
, 𝐶 =

[︂
0.35 0.65
0.42 0.58

]︂
. (4.1)

Consequently, the matrices for the artificial data are obtained as follows:

𝑋 =

⎡⎢⎣ 6.6 3.6 5.8 6.8 8.6
7.23 3.18 6.64 6.59 8.18
7.17 3.22 6.56 6.61 8.22

⎤⎥⎦, 𝑌 =
[︀
4 5 1 4 2

]︀
,

𝑊 =
[︂
6.55 1.7 4.95 3.6 6.6
6.06 1.84 4.74 3.32 6.32

]︂
. (4.2)
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Figure 2. The original PPS and the trade-offs when the dual-role factor plays the output role.

Table 2. Results of assessing DMUs in Example 1.

DMU A B C

Efficiency scores 1.000 0.613 1.000

With respect to the artificial data in (4.2), the efficiency scores for the five DMUs gotten by Model (3.15)
are reported in Table 4.

Also, the results show that the first dual-role factor behaves as the input factor and the second one has the
output role.

4.2. An application to the Iranian banking sector

This subsection clarify the application of the theoretical results obtained in Section 3. To this end, first, the
structure of the case study is introduced. Then, computational results obtained by Models (2.3), (3.8), and
(3.15) for this case study are reported.

Iran is an Asian country, located in the Middle East. It has vast agriculture lands, various mines, and other
reserves of underground resources like oil and natural gas. Unfortunately, notwithstanding rich underground
wealth, the economy of this country has many problems and challenges. On the other hand, Iran’s economy has
been hit hard because of the US economic sanctions that came to effect in mid 2018. Meanwhile, on account
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Table 3. Data for the five DMUs in Example 2.

DMU Input 1 Input 2 Output Dual-role
factor 1

Dual-role
factor 2

A 9 6 4 2 9
B 2 4 5 3 1
C 9 5 1 3 6
D 6 7 4 1 5
E 7 9 2 4 8

Table 4. Results of assessing DMUs in Example 2.

DMU 𝐴 𝐵 𝐶 𝐷 𝐸

Efficiency scores 1.000 1.000 0.890 0.833 0.922

of this sanctions, Iran’s national currency, the rial, has lost its value with a high percentage against the US
dollar within a few months in this year. It has followed that most Iranians have had a low livelihood level. It is
well-known that commercial banks play a critical role in the enhancement and the economic expansion of each
country. Consequently, given the problems mentioned, the Iranian banking sector is selected for the case study
of this research.

The evaluation of banks or bank branches has different aims such as profitability, provision of services, and
curbing liquidity. The current study considers the view point of profitability for the evaluation. It should be
noted that assessing banks is different from assessing bank branches. The difference between evaluating banks
and bank branches and also the purposes mentioned for evaluating them lead to choosing different factors as
inputs and outputs within various case studies in the banking industry [18]. For instance, the automated teller
machine (ATM) is not considered as a factor whenever bank branches are assessed because each ATM gives
services for all customers of the considered bank belonging to the all branches. Still, it is supposed as an input
factor in most studies of evaluating banks [4, 5].

The data of this case study were obtained from the central management of Mellat bank branches located in
a region of Tehran. There are 20 branches in this region, each of which consumes 3 inputs to produce 2 outputs.
As well as these factors, there exist 2 other ones playing simultaneously both input and output roles, known
dual-role factors. The input factors are staff privilege (𝑥1), interest paid (𝑥2), and demand arrear (𝑥3). The
output factors include interest received (𝑦1) and charge received (𝑦2). Regarding the aim of evaluating these
bank branches, loan (𝑤1) and deposit (𝑤2) are considered as dual-role factors. A period of time considered for
this case study is a month. Now, the above-mentioned factors applied for the application are briefly described.

– The staff privilege is an input factor including the quantitative and qualitative indexes of manpower in a
branch. These indexes are the number of staff, experience, degree of education, and training rate. Using the
weighted sum approach, they are combined, and then, considered as a factor called the staff privilege.

– Each bank branch is forced to pay interests for some client deposits. For Gharzolhasaneh deposits, popular in
Iranian banks, branches do not pay any interest. Yet, they pay various interests for short-term and long-term
deposits. The sum of all interests that a branch should pay, in a period of time, to some deposits is called
the interest paid.

– To grant a loan is one of the activities for commercial banks to earn income. After the loan has been received
by a customer, it should be returned by monthly instalments to the granter bank branch. In some cases,
however, customers delay to pay or never pay their instalments, even though branches attain guarantees
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Table 5. Descriptive statistics of factors for the 20 bank branches.

Factor Mean Minimum Maximum Coefficient
of variation

Staff privilege (𝑥1) 15.361 5.11 31.09 0.483
Interest paid (𝑥2) 3 294 079 885.200 373 144 412 11 461 622 508 0.744
Demand arrear (𝑥3) 6 293 320 459.250 206 149 410 21 208 699 780 1.011

Interest received (𝑦1) 5 264 044 354.500 1 674 570 195 15 460 389 283 0.606
Charge received (𝑦2) 163 501 789.300 60 916 564 338 207 770 0.407

Loan (𝑤1) 78 592 945 448.950 24 526 627 277 266 434 914 435 0.752
Deposit (𝑤2) 58 409 279 730.250 20 439 226 024 128 044 781 417 0.512

from clients due to granting loans. The amount of non-payment for loan instalments by clients, in a period
of time, is called the demand arrear.

– Bank branches on loans earn interests. The sum of all interests of a branch received in a period of time
for all previous loans granted is called the interest received. The interest received is a percentage of loans
granted. It should be noted that different loans have various interests.

– Bank branches give services like selling bonds and bank guarantees and remitting money. For doing these
services, they receive charges from customers. Total received charges of a branch for the sake of all services
performed, in a period of time, is called the bank charge received.

– The amount of total loans which a branch grants to authentic or legal clients, in a period of time, is considered
as a factor called the loan. After all, in return for granting loans, a branch receives valid legal guarantees
from clients.

– Total deposits of clients in different sectors, Gharzolhasaneh, short-term, and long-term, is assumed to be
one of the factors used in this case study, the deposit. In essence, the deposit shows the mean of deposits
balanced within all days for a period of time. Bank branches can apply the deposit to investments and
granting loans.

In what follows, the reasons for considering the loan and the deposit as dual-role factors are discussed. It is
worthwhile to know that how much the loan is granted to customers because it results in the interest received.
Therefore, the loan is an input factor to produce the interest received. It is good that more interests are earned
in return for granting fewer loans. On the other hand, granting the loan is a service leading to business boom,
job creation, etc. As such, granting the loan is an output factor for bank branches, from the service perspective.
As mentioned before, curbing liquidity is one of the bank purposes. Thus, collecting deposits of customers is an
output factor. Actually, increasing the deposit in a branch results in decreasing the cash among people. That
is, liquidity is inhibited in the society. From another point of view, the deposit results in granting the loan.
Furthermore, the loan receives the interest. Consequently, the deposit is considered an input factor which leads
to producing the interest received. As the aim of assessing the bank branches in this research is profitability,
whether is not recognized that the increase or decrease in granting the loan and receiving the deposit are good
for a branch. Hence, they are considered as dual-role factors. Yet, with respect to different purposes, in some
case studies, the loan and the deposit may be confidently supposed as input and/or output factors [18].

The summary statistics for all of the factors appear in Table 5. It is worth mentioning that the unit for all
factors except the staff privilege is 1 000 000 Rials.

Now, the computational results of applying Models (2.3), (3.8), and (3.15) for the 20 bank branches are
presented. Note that comparing the computational results gotten by Models (3.8) and (3.15) is not correct,
they being based on the two weighting methods with different aims in the DEA methodology. GAMS (http:

http://www.gams.com
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Table 6. Results of efficiency scores for the 20 bank branches.

No. of
branch

Efficiency
score of
Model
(2.3)

Efficiency
score of
Model
(3.8)

Efficiency
score of
Model
(3.15)

1 0.944 0.777 0.895
2 1.000 0.831 0.796
3 1.000 0.809 0.813
4 0.998 0.753 0.669
5 1.000 1.000 1.000
6 1.000 0.963 1.000
7 1.000 0.890 0.680
8 0.987 0.843 0.882
9 1.000 0.622 0.910
10 1.000 0.938 1.000
11 0.912 0.632 0.672
12 1.000 0.837 0.755
13 1.000 0.768 0.837
14 0.917 0.742 0.901
15 1.000 0.975 0.961
16 0.919 0.704 0.734
17 0.895 0.752 0.788
18 1.000 1.000 1.000
19 1.000 1.000 1.000
20 1.000 1.000 0.856
Mean 0.979 0.842 0.857

//www.gams.com) package is used for the software code of these models. The original data are used within
coding these three models. Table 6 reports the results.

First, the 20 bank branches are assessed by Model (2.3). The second column of Table 6 shows the results of
this model. There exist 13 efficient branches. The mean of efficiency scores for all the branches obtained by this
model is 0.979.

Owing to the structure and the data set for the 20 bank branches, the decision maker considers a set of bounds
for the virtual weighting constraints in Model (3.8), e.g. 𝑉 11 = 0.2, 𝑉 11 = 0.65, 𝑈21 = 0.35, and 𝑈21 = 0.8.
The results of efficiency scores acquired by Model (3.8) are shown in the third column of Table 6. There are 4
efficient branches. The mean of efficiency scores for all the branches gotten by this model is 0.842. Comparing
the second and third columns shows that the efficiency score of each branch taken by Model (3.8) is not greater
than the one obtained by Cook and Zhu’s model. Therefore, the new constraints reduce the flexibility of weights
and improve the discrimination of the model (3.8) than Cook and Zhu’s model. The computational results
obtained by Model (3.8) confirm the properties discussed in Section 3.1.

The polyhedral convex cones spanned by the 𝑘1 = 2, 𝑘2 = 3, and 𝑘3 = 1 admissible non-negative direction
vectors are considered in ℜ3, ℜ2, and ℜ2 by the decision maker. For instance, the direction vector considered
by the decision maker for Γ in the normalized form is {(0.747, 0.253)}. The results of the cone-ratio weighted
DEA model (3.15) are listed in the last column of Table 6. It shows that there exist 5 efficient branches.
Comparing the second and forth columns of Table 6 indicates that the results obtained by Model (3.15) have
better discrimination power for DMUs than Cook and Zhu’s model. Also, the last row of this table confirms this
issue. That is, the mean of the 20 efficiency scores is decreased whenever Model (3.15) is used instead of Model
(2.3). By changing the parameters of three polyhedral convex cones 𝑉 , 𝑈 , and Γ, the results are changed. All
of the results obtained by Model (3.15), in this case study, confirm the theorems proven in Section 3.2.

http://www.gams.com
http://www.gams.com
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Figure 3. The efficiency scores obtained by Models (2.3), (3.8), and (3.15).

Figure 4. The status of dual-role factors.

From a geometrical perspective, Figure 3 displays the results of efficiency scores obtained by the three models
(2.3), (3.8), and (3.15).

Figure 3 is geometrically indicated the correctness of the notes stated above.
Now, the results for the status of the two dual-role factors, loan and deposit, are discussed. Models (2.3),

(3.8), and (3.15) imply that the loan is an input factor with the contributions 80%, 70%, and 85%, respectively.
Also, the results show that the second dual-role factor, deposit, is an output factor with the contributions 60%,
85%, and 50%. Figure 4 shows the bar charts of the percentages for each dual-role factor obtained by Models
(2.3), (3.8), and (3.15).

To assume the loan and the deposit as the dual-role factors is the best way to increase the system performance
as much as possible. However, in the case that they should have explicit roles to improve the system performance,
the results obtained show that the loan should be considered as an input factor and the deposit as an output
factor. The following results confirm our claim. First, suppose the correct roles for the two dual-role factors;
the means of the efficiency scores for the 20 bank branches taken by the CCR DEA models corresponding to
Models (2.3) and (3.8) are 0.970 and 0.815, respectively. Next, consider incorrect roles for them; the means
of the efficiency scores are 0.907 and 0.691 generated respectively by the CCR DEA models corresponding to
Models (2.3) and (3.8).

Note that the loan and the deposit fail to have always the input and output roles, respectively. Regarding
the data set for this case study, they play these roles but by changing the data set they may have other roles. It
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is evident that by changing the parameters of Models (3.8) and (3.15), in addition to changing efficiency scores,
the results for the status of the dual-role factors will be changed.

5. Conclusion

Conventional DEA models consider the assumption of an explicit designation for each factor whether it is
input or output. Still, there exist applications where this assumption is not realistic for some factors, known
dual-role factors. In fact, the status of dual-role factors is not clear and they simultaneously play two roles.
To date, there exist a good number of papers published for the evaluation of DMUs having dual-role factors
apart from input and output factors. However, they are optimistic i.e. acquire the highest efficiency score for
DMUs. Restricting weights is one of the approaches to overcome this weakness. In the literature of the DEA
methodology, there does not exist any model whose contribution is the restriction of dual-role factor weights,
even the weighted DEA model in the presence of dual-role factors presented by Farzipoor Saen [16]. To fill this
gap, the current paper addressed this issue. To this end, Cook and Zhu’s model [12] to evaluate DMUs with
dual-role factors was improved using weighting methods. In this study, imposing additional weight restrictions
was performed using two different methods, virtual weight restrictions and cone-ratio. The newly weighted DEA
models not only do not overestimate the efficiency of the DMUs but also make relatively better discrimination
for DMUs. We believe that the models presented could be employed in the real world applications. To prove the
claim, the models were separately applied to the Iranian banking sector. Providing the number of cases that a
dual-role factor can be considered as an input is equal to the number of cases of output, then some appropriate
criteria can be developed. Discussion about these suitable criteria can be considered as a further research topic.
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