A NOTE ON THE DOUBLE DOMINATION NUMBER IN MAXIMAL OUTERPLANAR AND PLANAR GRAPHS

NOOR A’LAWIAH ABD AZIZ¹, NADER JAFARI RAD²,* AND HAILIZA KAMARULHAILI¹

Abstract. In a graph, a vertex dominates itself and its neighbors. A subset S of vertices of a graph G is a double dominating set of G if S dominates every vertex of G at least twice. The double domination number $\gamma_{\times2}(G)$ of G is the minimum cardinality of a double dominating set of G. In this paper, we prove that the double domination number of a maximal outerplanar graph G of order n is bounded above by $n + \frac{k}{2}$, where k is the number of pairs of consecutive vertices of degree two and with distance at least 3 on the outer cycle. We also prove that $\gamma_{\times2}(G) \leq \frac{5n}{8}$ for a Hamiltonian maximal planar graph G of order $n \geq 7$.

Mathematics Subject Classification. 05C69.

Received July 2, 2021. Accepted August 16, 2022.

1. Introduction

For graph theory notation and terminology not given here we refer to [6]. We consider finite, undirected and simple graphs G with vertex set $V = V(G)$ and edge set $E = E(G)$. The number of vertices of G is called the order of G and is denoted by $n = n(G)$. The open neighborhood of a vertex $v \in V$ is $N(v) = N_G(v) = \{u \in V \mid uv \in E\}$ and the closed neighborhood of v is $N[v] = N_G[v] = N(v) \cup \{v\}$. The degree of a vertex v, denoted by $\deg(v)$ (or $\deg_G(v)$ to refer to G), is the cardinality of its open neighborhood. We denote by $\delta(G)$ and $\Delta(G)$, the minimum and maximum degrees among all vertices of G, respectively. A plane graph G is said to be a triangulated disc if all of its faces except the infinite face are triangles. A graph G is outerplanar if it has an embedding in the plane such that all vertices belong to the boundary of its outer face. A planar (resp. outerplanar) graph G is maximal if $G + uv$ is not planar (resp. outerplanar) for any two nonadjacent vertices u and v of G. An inner face of a maximal outerplanar graph G is said to be an internal triangle if it is not adjacent to the outer face. A maximal outerplanar graph G is called striped if it has no internal triangles. A subset $S \subseteq V$ is a dominating set of G if every vertex in $V - S$ has a neighbor in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. For a comprehensive survey on the subject of domination parameters in graphs the reader can refer to the two books [6,7].

Harary and Haynes [5] defined a generalization of domination, namely k-tuple domination. For a positive integer k, a subset S of vertices of a graph G is a k-tuple dominating set of G if for every vertex $v \in V(G)$,
The k-tuple domination number $\gamma_{\times k}(G)$ is the minimum cardinality of a k-tuple dominating set of G, if such a set exists. A k-tuple dominating set where $k = 2$ is called a double dominating set. A double dominating set of cardinality $\gamma_{\times 2}(G)$ is referred to as a $\gamma_{\times 2}(G)$-set. The concept of double domination in graph was further studied in, for example, [1, 2, 4, 8]. Bidia et al. [1] showed that $\gamma_{\times 2}(G) \leq \frac{11n}{13}$ if G is a graph of order n with $\delta(G) \geq 2$. Henning [8] proved that $\gamma_{\times 2}(G) \leq \frac{3n}{4}$ provided that G is not a 5-cycle.

Domination in maximal planar graphs and outer-planar graphs has received great attention and several domination parameters for these classes of graph have been studied. See, for example, Dorfling et al. [3], Henning and Kaemawichanurat [9], Lemanska et al. [11], Li et al. [12], King and Pelsmajer [10], Matheson and Tarjan [14], Tokunaga [16] and Liu [13]. Recently, Zhuang [18] studied double domination in maximal outerplanar graphs, and proved the following.

Theorem 1.1 (Zhuang [18]). Let G be a maximal outerplanar graph of order $n \geq 3$. Then $\gamma_{\times 2}(G) \leq \lfloor \frac{2n}{3} \rfloor$.

Theorem 1.2 (Zhuang [18]). Let G be a maximal outerplanar graph of order $n \geq 3$ and t be the number of vertices of degree 2 in G. Then $\gamma_{\times 2}(G) \leq \frac{n+t}{2}$.

In this paper, we first improve Theorem 1.2 by showing that $\gamma_{\times 2}(G) \leq \frac{n+k}{2}$, where k is the number of pairs of consecutive vertices of degree two with distance at least 3 on the outer cycle. We also prove that $\gamma_{\times 2}(G) \leq \frac{2n}{3}$ for a Hamiltonian maximal planar graph G of order $n \geq 7$, which improves Theorem 1.1 and all previous bounds.

We follow the notations and method given in [12]. For a Hamiltonian maximal planar graph G with a Hamilton cycle C, let G_{in}^C be the maximal outerplanar graph consists of C and all edges inside of C and G_{out}^C be the maximal outerplanar graph consists of C and all edges outside of C. Let v_1, \ldots, v_t be all the vertices of degree 2 which appear in the clockwise direction on C. A vertex v_i is called a bad vertex if the distance between v_i and v_{i+1} on C is at least 3, for $i = 1, 2, \ldots, t$, where the subscript is taken modulo t. We make use of the following.

Theorem 1.3 (Li et al. [12]). For a Hamiltonian maximal planar graph G of order n, there exists a Hamilton cycle C of G such that G_{in}^C or G_{out}^C has at most $\frac{n}{4}$ bad vertices.

Theorem 1.4 (Whitney [17]). Every 4-connected maximal planar graph is Hamiltonian.

2. Main Results

Let G be a maximal outerplanar graph. There is an embedding of G in the plane such that all of its vertices are on the outer cycle C which is the boundary of the outer face and each inner face is a triangle. Let v_1, \ldots, v_t be all the vertices of degree 2 which appear in the clockwise direction on C. We will prove the following.

Theorem 2.1. Let G be a maximal outerplanar graph of order $n \geq 4$. If G has $k \geq 0$ bad vertices, then $\gamma_{\times 2}(G) \leq \frac{n+k}{2}$.

As a consequence of Theorems 2.1 and 1.3 we obtain the following.

Theorem 2.2. Let G be a Hamiltonian maximal planar graph of order $n \geq 7$. Then $\gamma_{\times 2}(G) \leq \frac{5n}{8}$.

As another immediate consequence of Theorems 2.2 and 1.4 we have the following.

Corollary 2.3. If G is a 4-connected maximal planar graph of order $n \geq 7$, then $\gamma_{\times 2}(G) \leq \frac{5n}{8}$.
3. Proof of Theorem 2.1

The proof is by induction on \(n + k \). The result is obvious if \(4 \leq n \leq 5 \). Let \(H_i \) be graphs shown in Figure 1 for \(i = 1, 2, 3, 4, 5, 6, 7 \).

Assume that \(n = 6 \). If \(k = 0 \), then \(G = H_1 \) in which \(\gamma_{x2}(G) = 3 = \frac{n + 0}{2} \). If \(k = 1 \), then \(G = H_2 \) in which \(\gamma_{x2}(G) = 3 < \frac{n + 1}{2} \). Thus assume that \(k = 2 \). Then \(G = H_3 \) in which \(\gamma_{x2}(G) = 4 = \frac{n + 2}{2} \). Next assume that \(n \geq 7 \). Clearly \(1 \leq k \leq 2 \). If \(k = 1 \), then \(G \in \{H_4, H_5\} \) in which \(\gamma_{x2}(G) = 4 = \frac{n + 1}{2} \). Thus assume that \(k = 2 \).

Then \(G \in \{H_6, H_7\} \) in which \(\gamma_{x2}(G) = 4 < \frac{n + 2}{2} \). These are enough for the basic step of the induction. Assume the result holds for all maximal outerplanar graphs of order \(n' \) with \(k' \) bad vertices, where \(n' + k' < n + k \).

Now consider the maximal outerplanar graph \(G \) of order \(n \geq 7 \) and with \(k \) bad vertices. If \(n = 7 \) then either \(t = k = 2 \) or \(t = 3 \) and \(k = 1 \), and in both cases \(\gamma_{x2}(G) = 4 \leq \frac{n + k}{2} \). Thus assume that \(n \geq 8 \). First assume that \(k = 0 \). Let \(C \) be the outer cycle of \(G \) and \(v_1, v_2, \ldots, v_t \) be a cyclic clockwise order of its \(t \) vertices of degree 2. Since \(G \) has no bad vertices, the distance between each \(v_i \) and \(v_{i+1} \) on \(C \) is exactly two, for \(i = 1, 2, \ldots, t \). Thus, \(n = 2t \). Then \(V(G) - \{v_1, \ldots, v_t\} \) is a double dominating set for \(G \), implying that \(\gamma_{x2}(G) \leq n - t = \frac{n}{2} = \frac{n + 0}{2} \).

Assume first that \(\deg_G(u) = 3 \). Then there exists exactly one vertex \(v \in N_G(u) \) with \(\deg_G(v) = 2 \). Let \(N_G(u) = \{v, u_1, u_2\} \), where \(u_1 \in N_G(v) \cap N_G(u) \). Since \(G \) is a maximal outerplanar graph, from \(\deg_G(u) = 3 \) we obtain that \(u_1 u_2 \in E(G) \). We may assume without loss of generality that \(u \) is after \(v \) in the cyclic clockwise order on \(C \). Thus \(v \) is a bad vertex in \(G \). Let \(u_3 \in N_G(u_2) - \{u\} \) be the vertex just after \(u_2 \) in the cyclic clockwise order on \(C \).

Assume that \(\deg_G(u_3) = 2 \). Let \(G' = (G - u) + uv_2 \). Then \(G' \) is a maximal outerplanar graph of order \(n - 1 \) with the hamiltonian cycle \((C - \{u_2, w\}) \cup \{v_2\}\). Note that \(v \) is not a bad vertex of \(G' \). Thus \(G' \) has \(k' = k - 1 \) bad vertices. Applying the inductive hypothesis, \(\gamma_{x2}(G') \leq \frac{n' + k'}{2} = \frac{n + k - 2}{2} \). Let \(D' \) be a \(\gamma_{x2}(G') \)-set. If \(v \notin D' \) then \(\{u_1, u_2\} \subseteq D' \) and so \(D' \cup \{u\} \) is a double dominating set for \(G \), implying that \(\gamma_{x2}(G) \leq \frac{n + k - 2}{2} + 1 = \frac{n + k}{2} \). Thus assume that \(v \in D' \). Then clearly we may assume that \(|D' \cap \{u_1, u_2\}| = 1 \). Then \((D' - \{v\}) \cup \{u, u_1, u_2\} \) is a double dominating set for \(G \) of cardinality \(|D'| + 1 \), implying that \(\gamma_{x2}(G) \leq \frac{n + k - 2}{2} + 1 = \frac{n + k}{2} \). Thus, \(\deg_G(u_3) \geq 3 \).

Assume that \(u_3 u_1 \in E(G) \). Let \(u_4 \in N_G(u_3) - \{u_1, u_2\} \) be the vertex just after \(u_3 \) in the cyclic clockwise order on \(C \), and let \(G' = (G - \{u, u_2\}) + uv_3 \). Then \(G' \) is a maximal outerplanar graph of order \(n - 2 \) with the hamiltonian
cycle \((C - \{u_2u_3, uw_2, uv\}) \cup \{uv_3\}\). Note that \(G'\) has \(k - 1\) bad vertices if \(\deg_G(u_v) = 2\) and \(k\) bad vertices if \(\deg_G(u_4) > 2\). Applying the inductive hypothesis, \(\gamma_{x_2}(G') \leq \frac{n + k'}{2} = \frac{n + k - 2}{2}\). Let \(D'\) be a \(\gamma_{x_2}(G')\)-set. If \(v \notin D'\) then \(\{u_1, u_3\} \subseteq D'\) and so \(D' \cup \{u\}\) is a double dominating set for \(G\), implying that \(\gamma_{x_2}(G) \leq \frac{n + k - 2}{2} + 1 = \frac{n + k}{2}\). Thus assume that \(v \in D'\). Then clearly we may assume that \(|D' \cap \{u_1, u_3\}| = 1\). Then \(|D' - \{v\}| \cup \{u, u_1, u_3\}\) is a double dominating set for \(G\) of cardinality \(|D'| + 1\), implying that \(\gamma_{x_2}(G) \leq \frac{n + k - 2}{2} + 1 = \frac{n + k}{2}\). Thus \(u_3u_1 \notin E(G)\).

Let \(u_0 \in N_G(u_1) - \{v, u_2\}\) be the vertex just before \(u_1\) in the cyclic clockwise order on \(C\), and let \(G' = G - \{u, v\}\). Then \(G'\) is a maximal outerplanar graph of order \(n - 2\) with the hamiltonian cycle \((C - \{v_1u_1, uw_2, uv\}) \cup \{u_1v_2\}\). Assume that \(\deg_G(u_0) = 2\). Then \(G'\) has at most \(k\) bad vertices. Applying the inductive hypothesis, \(\gamma_{x_2}(G') \leq \frac{n + k'}{2} = \frac{n + k - 2}{2}\). Let \(D'\) be a \(\gamma_{x_2}(G')\)-set. If \(u_0 \notin D'\) then \(u_1 \in D'\) and so \(D' \cup \{u\}\) is a double dominating set for \(G\), implying that \(\gamma_{x_2}(G) \leq \frac{n + k - 2}{2} + 1 = \frac{n + k}{2}\). Thus assume that \(u_0 \in D'\). Then clearly we may assume that \(|D' \cap N_G(u_0)| = 1\). Then \(|D' - \{u_0\}| \cup N_G(u_0) \cup \{u\}\) is a double dominating set for \(G\) of cardinality \(|D'| + 1\), implying that \(\gamma_{x_2}(G) \leq \frac{n + k - 2}{2} + 1 = \frac{n + k}{2}\). Thus we may assume that \(\deg_G(u_0) \geq 3\). Note that \(\deg_G(u_1) \geq 5\). Let \(G'\) be the graph obtained from \(G\) by removing the vertices \(u\) and \(v\) and then contracting the edge \(u_1u_2\). Then \(G'\) has \(k - 1\) bad vertices. Let \(u^*\) be the vertex in \(G'\) forming by contracting the edge \(u_1u_2\). Applying the inductive hypothesis, \(\gamma_{x_2}(G') \leq \frac{n' + k'}{2} = \frac{n + 3 + k - 1}{2}\). Let \(D'\) be a \(\gamma_{x_2}(G')\)-set. If \(u^* \notin D'\) then \(D' \cup \{u_1, u_2\}\) is a double dominating set for \(G\), implying that \(\gamma_{x_2}(G) \leq \frac{n + 2 + k - 1}{2} = \frac{n + k}{2}\). Thus assume that \(u^* \notin D'\). Then each of \(u_1\) and \(u_2\) is dominated by a vertex of \(D'\) in \(G\), and so \(D' \cup \{v, u\}\) is a double dominating set for \(G\), implying that \(\gamma_{x_2}(G) \leq \frac{n + k}{2} + 1 = \frac{n + k}{2}\).

Next assume that \(\deg_G(u_1) = 4\). Then there exist two vertices \(v_1, v_2 \in N_G(u)\) such that \(\deg_G(u_1) = \deg_G(v_2) = 2\). Let \(N_G(u) = \{v_1, v_2, u_1, u_2\}\), where in the cyclic clockwise order on \(C\), \(u_1\) is before than \(v_1\), \(v_1\) is before than \(u\), \(u\) is before than \(v_2\) and \(v_2\) is before than \(u_2\). By the choice of \(u\), \(u_1u_2 \in E(G)\). Let \(u_3 \in N_G(u_2)\) be the vertex after \(u_2\) in the cyclic clockwise order on \(C\).

Assume that \(\deg_G(u_3) = 2\). Let \(G' = G - \{v_1, v_2\}\). Then \(G'\) is a maximal outerplanar graph of order \(n - 2\) with the hamiltonian cycle \((C - \{v_2u_2, u_2v, u_1v_1\}) \cup \{u_1u, u_2u_2\}\). Note that \(G'\) has \(k\) bad vertices. Applying the inductive hypothesis, \(\gamma_{x_2}(G') \leq \frac{n' + k'}{2} = \frac{n + k - 2}{2}\). Let \(D'\) be a \(\gamma_{x_2}(G')\)-set. If \(u \notin D'\) then \(u_1, u_2 \in D'\) and so \(D' \cup \{u\}\) is a double dominating set for \(G\), implying that \(\gamma_{x_2}(G) \leq \frac{n + k - 2}{2} + 1 = \frac{n + k}{2}\). Thus assume that \(u \in D'\). Then we may assume that \(|D' \cap \{v_1, v_2\}| = 1\). Then \(|D' \cup \{u_1, u_2\}|\) is a double dominating set for \(G\) of cardinality \(|D'| + 1\), implying that \(\gamma_{x_2}(G) \leq \frac{n + k}{2} + 1 = \frac{n + k}{2}\). Thus, \(\deg_G(u_3) \geq 3\).

Thus \(v_2\) is a bad vertex of \(G\). Let \(G' = G - \{v_1, v_2\}\). Then \(G'\) is a maximal outerplanar graph of order \(n - 2\) with the hamiltonian cycle \((C - \{v_2u_2, u_2v, u_1v_1\}) \cup \{u_1u, u_2u_2\}\). Since \(v_2\) is a bad vertex of \(G\), \(u\) is a bad vertex of \(G'\), and \(G'\) has \(k\) bad vertices. Applying the inductive hypothesis, \(\gamma_{x_2}(G') \leq \frac{n' + k'}{2} = \frac{n + k - 2}{2}\). Let \(D'\) be a \(\gamma_{x_2}(G')\)-set. If \(u \notin D'\) then \(u_1, u_2 \in D'\) and so \(D' \cup \{u\}\) is a double dominating set for \(G\), implying that \(\gamma_{x_2}(G) \leq \frac{n + k}{2} + 1 = \frac{n + k}{2}\). Thus assume that \(u \in D'\). Then we may assume that \(|D' \cap \{v_1, u_2\}| = 1\). Then \(|D' \cup \{u_1, u_2\}|\) is a double dominating set for \(G\) of cardinality \(|D'| + 1\), implying that \(\gamma_{x_2}(G) \leq \frac{n + k}{2} + 1 = \frac{n + k}{2}\). Thus, \(u_1u_3 \notin E(G)\). Let \(G' = G - \{u, v_2\}\). Then \(G'\) has \(k\) bad vertices. Applying the inductive hypothesis, \(\gamma_{x_2}(G') \leq \frac{n' + k'}{2} = \frac{n + k - 2}{2}\). Let \(D'\) be a \(\gamma_{x_2}(G')\)-set. Now as before, we obtain that \(\gamma_{x_2}(G) \leq \frac{n + k}{2} + 1 = \frac{n + k}{2}\).

4. Proof of Theorem 2.2

Let \(G\) be a Hamiltonian maximal planar graph of order \(n \geq 7\). Let \(C\) be a Hamilton cycle of \(G\), and without loss of generality, assume that \(G_n^G\) has at most \(\frac{n}{4}\) bad vertices according to Theorem 1.3. Then \(k \leq \frac{n}{4}\) and by Theorem 2.1, \(\gamma_{x_2}(G) \leq \frac{n + k}{2} \leq \frac{5n}{8}\).

Acknowledgements. The authors would like to thank the referees for their careful review and helpful comments.
References

