ON 2-MATCHING COVERED GRAPHS AND 2-MATCHING DELETED GRAPHS

GUOWEI DAI*

Abstract. For a family of connected graphs \(\mathcal{A} \), a spanning subgraph \(H \) of a graph \(G \) is called an \(\mathcal{A} \)-factor of \(G \) if each component of \(H \) is isomorphic to some graph in \(\mathcal{A} \). A graph \(G \) has a perfect 2-matching if \(G \) has a spanning subgraph \(H \) such that each component of \(H \) is either an edge or a cycle, i.e., \(H \) is a \(\{P_2, C_i | i \geq 3 \} \)-factor of \(G \). A graph \(G \) is said to be 2-matching covered if, for every edge \(e \in E(G) \), there is a perfect 2-matching \(M_e \) of \(G \) such that \(e \) belongs to \(M_e \). A graph \(G \) is called a 2-matching deleted graph if, for every edge \(e \in E(G) \), \(G - e \) possesses a perfect 2-matching. In this paper, we first obtain respective new characterizations for 2-matching covered graphs in bipartite and non-bipartite graphs by new proof technologies, distinct from Hetyei’s or Berge’s classical results. Secondly, we give a necessary and sufficient condition for a graph to be a 2-matching deleted graph. Thirdly, we prove that planar graphs with minimum degree at least 4 and \(K_{1,r} \)-free graphs (\(r \geq 3 \)) with minimum degree at least \(r + 1 \) are 2-matching deleted graphs, respectively.

Mathematics Subject Classification. 05C70, 05C38.

Received June 24, 2022. Accepted October 3, 2022.

1. Introduction

All graphs in this paper are finite and simple. We refer to [5] for notation and terminologies not defined here. Let \(G = (V(G), E(G)) \) be a graph with vertex set \(V(G) \) and edge set \(E(G) \). For \(v \in V(G) \), we use \(d_G(v) \) and \(N_G(v) \) to denote the degree of \(v \) and the set of vertices adjacent to \(v \) in \(G \), respectively. For \(S \subseteq V(G) \), we write \(N_G(S) = \cup_{v \in S} N_G(v) \). We use \(\delta(G) \) to denote the minimum degree of a graph \(G \). We use \(\omega(G) \), \(i(G) \) to denote the number of components and isolated vertices of a graph \(G \), respectively.

For a connected graph \(G \), its toughness, denoted by \(\tau(G) \), was first introduced by Chvátal [6] as follows. If \(G \) is complete, then \(\tau(G) = +\infty \); otherwise,

\[
\tau(G) = \min \left\{ \frac{|S|}{\omega(G - S)} : S \subseteq V(G), \omega(G - S) \geq 2 \right\}.
\]

The binding number is introduced by Woodall [19] and defined as

\[
\text{bind}(G) = \min \left\{ \frac{|N_G(S)|}{|S|} : \emptyset \neq S \subseteq V(G), N_G(S) \neq V(G) \right\}.
\]

Received June 24, 2022. Accepted October 3, 2022.

Keywords. Graph theory, perfect 2-matching, \(\{P_2, C_i | i \geq 3 \} \)-factor, 2-matching covered graphs, 2-matching deleted graphs.

College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, P.R. China.

*Corresponding author: guowei.dai@aliyun.com

© The authors. Published by EDP Sciences, ROADEF, SMAI 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The isolated toughness, denoted by $I_t(G)$, was first introduced by Yang, Ma and Liu [20] as follows. If G is complete, then $I_t(G) = +\infty$; otherwise,

$$I_t(G) = \min \left\{ \frac{|S|}{i(G - S)} : S \subseteq V(G), i(G - S) \geq 2 \right\}.$$

For $X \subseteq V(G)$, let $G[X]$ be the subgraph of G induced by X, and define $G - X := G[V(G) - X]$. For convenience, we use $G - x$ to denote the graph $G - \{x\}$. Let $K_{1,r}$ denote the complete bipartite with partite sets of size one and r. For an integer $r \geq 3$, a graph G is said to be $K_{1,r}$-free if G does not contain an induced subgraph isomorphic to $K_{1,r}$.

Let \mathcal{A} be a family of connected graphs. If G has a spanning subgraph H such that every component of H is isomorphic to some graph in \mathcal{A}, then H is said to be an \mathcal{A}-factor of G. A graph G has a perfect 2-matching if G has a spanning subgraph H such that each component of H is either an edge or a cycle, i.e., H is a $\{P_2, C_i | i \geq 3\}$-factor of G. A graph G is said to be 2-matching covered if there is a perfect 2-matching of G including any given edge $e \in E(G)$. A graph G is called a 2-matching deleted graph if G possesses a perfect 2-matching excluding any given edge $e \in E(G)$.

A spanning subgraph H of graph G is called 1-factor (perfect matching) if $d_H(x) = 1$ holds for any $x \in V(G)$. Since Tutte proposed the well known Tutte 1-factor theorem [17], there are many results on graph factors [2, 7–9, 11–13, 18] and path-factors in claw-free graphs and cubic graphs [3, 10, 14, 15]. More results on graph factors can be found in the survey papers and books in [1, 16, 21].

For matchings in bipartite graphs, König (1931) and Hall (1935) obtained the so-called König-Hall Theorem (sometimes, known as Hall’s Theorem), respectively.

Theorem 1.1. (König-Hall [5]) Let $G = (X, Y)$ be a connected bipartite graph such that $|X| = |Y|$. Then G has a perfect matching if and only if $|N_G(S)| \geq |S|$ for any subset $S \subseteq X$.

In 1953, Tutte proved the following characterization for the existence of perfect 2-matchings in a graph.

Theorem 1.2. (Tutte [17]) A graph G has a perfect 2-matching if and only if $i(G - S) \leq |S|$ for any subset $S \subseteq V(G)$.

The equivalence as following is due mostly to Hetyei (see also Akiyama and Kano [1]).

Theorem 1.3. (Hetyei [1]) If G is a connected bipartite graph with partition (U, W), then each edge of G is contained in a 1-factor if and only if $|U| = |W|$ and $|N_G(X)| > |X|$ for any non-empty proper subset $X \subseteq U$.

A graph G is 2-matching covered if and only if G is “regularizable”, where a graph is regularizable if it can be transformed into a regular multigraph by giving each edge some positive multiplicity. Regularizable graphs were introduced and studied by Berge.

Theorem 1.4. (Berge [4]) For a connected graph G that is not a bipartite graph with partite sets of equal size, the following conditions are equivalent:

(a) G is regularizable,

(b) for each edge e of G, there exists a perfect 2-matching of G covering e,

(c) for every non-empty independent set X of vertices, $|N_G(X)| > |X|$.

2. 2-MATCHING COVERED GRAPH

Lemma 2.1. Let G be a graph such that $V(G) = X \cup Y$, $X \cap Y = \emptyset$ and $|X| = |Y|$. If Y is an independent set in G, then G has a 1-factor if and only if $i(G - S) \leq |S|$ for any $S \subseteq X$.
Proof. Necessity: Let M be a 1-factor of G, then M is a perfect 2-matching of G obviously. It follows from Theorem 1.2 that $i(G - S) \leq |S|$ for any subset $S \subseteq V(G)$. Hence, $i(G - S) \leq |S|$ holds for any $S \subseteq X$.

Sufficiency: Choose $S := \emptyset$, then $i(G) = i(G - S) \leq |S| = 0$. Let $G' = G - E(X)$, then there is no isolated vertex in G'. Otherwise, there exists a isolated vertex $u \in V(G')$ such that $u \in X$. By choosing $S := X \setminus \{u\}$, it follows that $i(G - S) = |Y \cup \{u\}| = |Y| + 1 = |X| + 1 > |S|$, a contradiction. On the one hand, it is obviously $I(G - S) \subseteq I(G' - S)$. On the other hand, all the isolated vertices of $G' - S$ are in Y since $i(G') = i(G) = 0$. Note that every edge in $E(X)$ is not adjacent to any vertex in Y. This together with $I(G' - S) \subseteq Y$ implies that $I(G' - S) \subseteq I(G - S)$. Therefore, $i(G' - S) = i(G - S) \leq |S|$ for any $S \subseteq X$. It follows immediately that $|N'_G(T)| \geq |T|$ for any $T \subseteq Y$ since $N'_G(T) \subseteq X$ and $|T| \leq i(G - N'_G(T)) \leq |N'_G(T)|$. By Theorem 1.1, G' has a 1-factor. Hence, G has a 1-factor. □

Theorem 2.2. (i) A connected bipartite graph $G = (X, Y)$ is 2-matching covered if and only if $|X| = |Y|$ and $i(G - S) \leq |S| - 1$ for any non-empty proper subset $S \subseteq X$; (ii) A connected non-bipartite graph G is 2 matching covered if and only if $i(G - S) \leq |S| - 1$ for any non-empty proper subset $S \subseteq V(G)$.

Proof. (i) Necessity: Let $G = (X, Y)$ be a connected 2-matching covered bipartite graph. Then, by Theorem 1.3, $|X| = |Y|$ and $|N_G(T)| \geq |T| + 1$ for any non-empty proper subset $T \subseteq Y$. For any non-empty proper subset $S \subseteq X$, every isolated vertex of $G - S$ belongs to Y, denoted by $T = I(G - S) \subseteq Y$. On the one hand, $|N_G(T)| \geq |T| + 1 = i(G - S) + 1$. On the other hand, $|N_G(T)| \leq |S|$ since $T = I(G - S)$. Hence, $i(G - S) \leq |N_G(T)| - 1 \leq |S| - 1$ for any non-empty proper subset $S \subseteq X$.

Sufficiency: Let $G = (X, Y)$ be a connected bipartite graph with $|X| = |Y|$ such that $i(G - S) \leq |S| - 1$ for any non-empty proper subset $S \subseteq X$. Then we argue that $|N_G(T)| \geq |T| + 1$ for any non-empty proper subset $T \subseteq Y$. Otherwise, there exists proper subset $T \subseteq Y$ such that $|N_G(T)| \leq |T|$. Note that $|N_G(T)| \neq 0$ since G is connected. Choose $S := |N_G(T)|$. As $|N_G(T)| \leq |T| < |Y| = |X|$, we have that $N_G(T) \neq X$ and thus $\emptyset \neq S \subseteq X$. It follows that $i(G - S) \leq |S| - 1$. On the other hand, $i(G - S) = i(G - N_G(T)) = |T| \geq |N_G(T)| = |S|$, a contradiction. Hence, $|N_G(T)| \geq |T| + 1$ for any non-empty proper subset $T \subseteq Y$. It follows from Theorem 1.3 that G is a 2-matching covered graph.

(ii) Necessity: By way of contradiction, assume that there exists non-empty proper subset $S \subseteq V(G)$ such that $i(G - S) \geq |S|$. Since G is a 2-matching covered graph, G has a perfect 2-matching, and thus $i(G - S') \leq |S'|$ for any $S' \subseteq V(G)$. This together with $i(G - S) \geq |S|$ implies that $i(G - S) = |S| > 0$. As G is a nonbipartite graph, $E(S) \neq \emptyset$ or there exists a nontrivial component of $G - S$.

Case 1. $E(S) \neq \emptyset$.

Suppose $e = xy \in E(S)$ such that $x, y \in S$. There must exist a perfect 2-matching F covering e since G is a 2-matching covered graph. Denote the component of F containing e by C. Note that every component of F is either an edge or a cycle by the definition of perfect 2-matchings.

- If C is an edge, then $G' = G - \{x, y\}$ has a perfect 2-matching $F - \{x, y\}$. Choose $S' := S \setminus \{x, y\}$, then $i(G' - S') = i(G - S) = |S| = |S'| + 2 > |S'|$. By Theorem 1.2, G' has no perfect 2-matching, a contradiction.

- If C is a cycle and $|C| \geq 3$, then $G'' = G - V(C)$ has a perfect 2-matching $F - V(C)$. As $e \in E(S)$, we have that $|S \cap V(C)| > |I(G - S) \cap V(C)|$. Choose $S'' := S - V(C)$, then

$$i(G'' - S'') \geq |I(G - S) - I(G - S) \cap V(C)| = i(G - S) - |I(G - S) \cap V(C)| > i(G - S) - |S \cap V(C)| \geq |S| - |S \cap V(C)| = |S'|.$$

By Theorem 1.2, G'' has no perfect 2-matching, a contradiction.
Case 2. $E(S) = \emptyset$.

In this case, $G - S$ has a nontrivial component D, and there exists an edge $e' = uv$ connecting D and S such that $u \in D, v \in S$. Then G has a perfect 2-matching covering e', denoted by F', since G is a 2-matching covered graph. Denote the component of F' containing e' by C'.

- If C' is an edge, then $G_1 = G - \{u, v\}$ has a perfect 2-matching $F' - \{u, v\}$. Choose $S_1 := S \setminus \{u\}$, then $i(G_1 - S_1) \geq i(G - S) \geq |S| > |S_1|$. By Theorem 1.2, G_1 has no perfect 2-matching, a contradiction.

- If C' is a cycle and $|C'| \geq 3$, then $G_2 = G - V(C)$ has a perfect 2-matching $F' - V(C')$. As C' is a cycle containing e', we have that $|S \cap V(C')| > |I(G - S) \cap V(C')|$. Choose $S_2 := S - V(C')$, then

$$i(G_2 - S_2) \geq |I(G - S) - I(G - S) \cap V(C')|$$
$$= i(G - S) - |I(G - S) \cap V(C')|$$
$$> i(G - S) - |S \cap V(C')|$$
$$\geq |S| - |S \cap V(C')|$$
$$= |S_2|.$$

By Theorem 1.2, G_2 has no perfect 2-matching, a contradiction.

Sufficiency: For any edge $e = xy$, $G^* := G - \{x, y\}$ has at most one isolated vertex since $i(G^*) = i(G - \{x, y\}) \leq |\{x, y\}| - 1 = 1$.

Case 1. $i(G^*) = 1$.

Let u be the isolated vertex of G^*, and C_1, C_2, \ldots, C_k be the other connected components of G^*. We first argue that C_i has a perfect 2-matching F_i for any $1 \leq i \leq k$. Otherwise, by Theorem 1.2, there exists $S_i \subseteq V(C_i)$ such that $i(C_i - S_i) \geq |S_i| + 1$. Choose $S := S_i \cup \{u, y\}$, then S is a non-empty proper subset of G, and $i(G - S) = |\{u\}| + i(C_i - S_i) \geq 1 + (|S_i| + 1) = |S|$, a contradiction. It is easy to find that there exists no pendant vertex in G since $i(G - S) \leq |S| - 1$ for any proper subset $\emptyset \neq S \subseteq V(G)$. Hence, $u \in N_G(x) \cap N_G(y)$, i.e., uxy is a cycle in G. Then, $uxy \cup \bigcup_{i=1}^k F_i$ is a perfect 2-matching of G containing e, i.e., G is a 2-matching covered graph.

Case 2. $i(G^*) = 0$.

Let C_1, C_2, \ldots, C_m be the connected components of G^*, where $m \geq 1$. If every C_i has a perfect 2-matching F_i for $1 \leq i \leq m$, then $\{xy, F_1, F_2, \ldots, F_m\}$ is a perfect 2-matching of G containing e, i.e., G is a 2-matching covered graph. If there exist $C_i, C_j (1 \leq i \neq j \leq m)$ such that both C_i and C_j has no perfect 2-matching, then, by Theorem 1.2, there exist $S_i \subseteq V(C_i), S_j \subseteq V(C_j)$ respectively such that $i(C_i - S_i) \geq |S_i| + 1$ and $i(C_j - S_j) \geq |S_j| + 1$. Choose $S := S_i \cup S_j \cup \{x, y\}$ which is a non-empty proper subset of G, then $i(G - S) = i(C_i - S_i) + i(C_j - S_j) \geq |S_i| + 1 + |S_j| + 1 = |S|$, a contradiction. Thus, there is exactly one element of $\{C_1, C_2, \ldots, C_m\}$ which has no perfect 2-matching. Without of generality, assume C_1 has no perfect 2-matching and every C_i has a perfect 2-matching F_i for $2 \leq t \leq m$. Then it is sufficient to show that

$$C'_1 := G[V(C_1) \cup \{x, y\}]$$
has a perfect 2-matching covering e.

On the one hand, since C_1 has no perfect 2-matching, by Theorem 1.2, there exists $S' \subseteq V(C_1)$ such that $i(C_1 - S') \geq |S'| + 1$. On the other hand, if $i(C_1 - S') \geq |S'| + 2$, then $S := S' \cup \{x, y\}$ is a non-empty proper subset of G and $i(G - S) = i(C_1 - S') \geq |S'| + 2 = |S|$, a contradiction. Hence, we have that $i(C_1 - S') = |S'| + 1$. Note that S' is a non-empty set since $i(G^*) = 0$. We assume that S' is a minimal barrier set of $V(C_1)$, i.e., $i(C_1 - S'') \leq |S''|$ holds for any proper subset $S'' \subseteq S'$.

Let $W := \{x_1, x_2, \ldots, x_d\}$ be the set of isolated vertices of $C_1 - S'$, where $d \geq 2$. We argue that

$$N_G(x) \cap W \neq \emptyset.$$

(2)
Otherwise, \(i(G - (S' \cup \{y\})) \geq i(C_1 - S') = |S'| + 1 = |S' \cup \{y\}| \), a contradiction. Similarly, we can obtain that

\[
N_G(y) \cap W \neq \emptyset. \tag{3}
\]

Moreover, we also argue that every nontrivial component \(C_i \) of \(i(C_1 - S') \) has a perfect 2-matching \(F_i^j \) \((j = 1, 2, \ldots, p)\). Otherwise, suppose \(C_i \) has no perfect 2-matching, then there exists \(S^1 \subseteq V(C_i) \) such that \(i(C_1 - S^1) \geq |S^1| + 1 \) by Theorem 1.2. Choose \(S := S^1 \cup S' \cup \{x, y\} \), then \(S \) is a non-empty proper subset of \(G \) and \(i(G - S) = i(C_1 - S') + i(C_i - S^1) \geq |S'| + |S^1| + 1 = |S^1 \cup S' \cup \{x, y\}| = |S| \), a contradiction.

Claim 2.3. \(\overline{G} := G[S' \cup \{x, y\} \cup W] \) has a perfect 2-matching containing \(e \).

Proof. We first argue that for any \(1 \leq i \leq d \), \(G_i := \overline{G} - \{x, y, x_i\} \) has a 1-factor \(F_i \). Suppose there is no 1-factor in \(G_i \), then by Lemma 2.1, there exists \(S'' \subseteq S' \) such that \(i(G_i - S'') \geq |S''| + 1 \). On the one hand, by the arguments similar to Lemma 2.1, we have that \(I(G_i - S'') \subseteq I(C_1 - S'') \), and thus \(i(C_i - S'') \geq i(G_i - S'') \geq |S''| + 1 \). On the other hand, it is obviously \(S'' \) is a proper subset of \(S' \), then \(i(C_i - S'' \cup S^1) \leq |S''| \), since \(S'' \) is a minimal barrier set of \(V(C_1) \), a contradiction. According to (2) and (3), we will distinguish two cases below to show that \(\overline{G} \) has perfect 2-matchings containing \(e \).

- If there exists \(u \in N_G(x) \cap N_G(y) \cap W \), then without of generality, assume \(u = x_1 \). Since \(G_1 := \overline{G} - \{x, y, x_1\} \) has a 1-factor \(F_1 \), \(x_1yx_1 \cup F_1 \) is a perfect 2-matching of \(\overline{G} \) containing \(e \).
- If \(N_G(x) \cap N_G(y) \cap W = \emptyset \), then we assume that \(x_1 \in N_G(x), x_d \in N_G(y) \). By the arguments similar to Lemma 2.1, both \(F_1 \) and \(F_d \) has no edge in \(E(G[S']) \). Note that, due to structural properties of 1-factors, there is an alternating path \(P \) from \(x_1 \) to \(x_d \) whose edges are alternately in \(E(F_1) \) and \(E(F_d) \). Then \(F_1 := F_1 - V(P) \) or \(F_d := F_d - V(P) \) is a 1-factor of \(\overline{G} - \{x, y\} - V(P) \). Thus, \(xyP \cup F_1 \) or \(xyP \cup F_d \) is a perfect 2-matching of \(\overline{G} \) containing \(e \).

Hence, Claim 2.3 is true. \(\square \)

Due to Claim 2.3, let \(\overline{F} \) be a perfect 2-matching of \(\overline{G} \) containing \(e \). Then \(\overline{F} \cup (\bigcup_{i=1}^p F_i) \) is a perfect 2-matching of \(C_i \) containing \(e \), i.e., the argument (1) holds. Thus, \((\bigcup_{i=2}^p F_i) \cup \overline{F} \cup (\bigcup_{i=1}^p F_i) \) is a perfect 2-matching of \(G \) containing \(e \), i.e., \(G \) is a 2-matching covered graph. \(\square \)

3. 2-MATCHING DELETED GRAPH

Theorem 3.1. Let \(G \) be a connected graph. Then \(G \) is a 2-matching deleted graph if and only if \(i(G - S) \leq |S| - \varepsilon(S) \) for all \(S \subseteq V(G) \), where \(\varepsilon(S) \) is defined by

\[
\varepsilon(S) = \begin{cases}
2 & \text{if there exists a component of } G - S \text{ containing exactly two vertices;} \\
1 & \text{if there exists a component } C \text{ of } G - S \text{ with pendant edges and } |V(C)| \geq 3; \\
0 & \text{otherwise.}
\end{cases}
\]

Proof.

Necessity: Let \(G \) be a 2-matching deleted graph. Obviously, \(G \) has a perfect 2-matching. Then, by Theorem 1.2, \(i(G - S) \leq |S| \) for any \(S \subseteq V(G) \). If \(i(G - S) \leq |S| - 2 \), then \(i(G - S) \leq |S| - \varepsilon(S) \) by the definition of \(\varepsilon(S) \); if \(i(G - S) = |S| - 1 \), then we argue that \(\varepsilon(S) \leq 1 \). Otherwise, \(\varepsilon(S) = 2 \), and \(G - S \) has a component with exactly one edge, denoted by \(e \). It follows that \(i(G - e - S) = i(G - S) + 2 = |S| + 1 > |S| \), and thus \(G - e \) has no perfect 2-matching, a contradiction. Hence, \(\varepsilon(S) \leq 1 \) and \(i(G - S) = |S| - 1 \leq |S| - \varepsilon(S) \). Now, we may assume that \(i(G - S) = |S| \). We argue that \(\varepsilon(S) = 0 \), otherwise \(\varepsilon(S) = 1, 2 \), then \(G - S \) has a component with pendant edges. It is easy to find that \(i(G - e - S) \geq i(G - S) + 1 = |S| + 1 \), and thus \(G - e \) has no perfect 2-matching, a contradiction. Hence, \(\varepsilon(S) = 0 \) and \(i(G - S) = |S| \leq |S| - \varepsilon(S) \).

Sufficiency: For any given \(S \subseteq V(G) \), \(i(G - S) \leq |S| - \varepsilon(S) \). Now, it suffices to show that \(i(G - e - S) \leq |S| \) for any edge \(e \in E(G) \) by Theorem 1.2. If \(e \) belongs to some component of \(G - S \) containing exactly two vertices, then \(\varepsilon(S) = 2 \), and thus \(i(G - e - S) = i(G - S) + 2 \leq |S| - \varepsilon(S) + 2 = |S| \). If \(e \) is a pendant edge belongs to a
component C of $G - S$ such that $|C| \geq 3$, then $\varepsilon(S) \geq 1$, and thus $i(G-e-S) = i(G-S) + 1 \leq |S| - \varepsilon(S) + 1 \leq |S|$; Otherwise, $i(G - e - S) = i(G - S)$, and thus $i(G - e - S) = i(G - S) \leq |S| - \varepsilon(S) \leq |S|$ by the definition of $\varepsilon(S)$. Therefore, $i(G - e - S) \leq |S|$ holds for any $S \subseteq V(G)$ and $e \in E(G)$. This completes the proof of Theorem 3.1.

Corollary 3.2. Let G be a connected graph of order $n \geq 3$. Then G is a 2-matching deleted graph if one of the following statements holds: (i) $\tau(G) > 1$; (ii) $\text{bind}(G) > 3/2$; (iii) $I_t(G) > 2$.

Proof. Suppose, to the contrary, that G is not a 2-matching deleted graph. By Theorem 3.1, there exists $S \subseteq V(G)$ such that $i(G - S) > |S| - \varepsilon(S)$. Due to the integrality, $i(G - S) \geq |S| - \varepsilon(S) + 1$.

(i) If G has a pendant edge xy such that $d_G(y) = 1$, then $\tau(G) \leq \frac{|\{x\}|}{\omega(G-xy)} \leq 1$, a contradiction. Hence, G has no pendant edge.

We argue that $S \neq \emptyset$, otherwise we have that $\varepsilon(S) = 0$, and thus $i(G) = i(G - S) > |S| - \varepsilon(S) = 0$, a contradiction.

- If $\varepsilon(S) = 0$, then $i(G-S) \geq |S| - \varepsilon(S) + 1 \geq |S| + 1 \geq 2$. Then by the definition of $\tau(G)$, we obtain $\tau(G) \leq \frac{|S|}{\omega(G-S)} \leq \frac{|S|}{i(G-S)} \leq \frac{|S|}{|S|+1} \leq 1$, a contradiction.

- If $\varepsilon(S) \in \{1,2\}$, then there is a nontrivial component of $G-S$. It follows that $i(G-S) \geq |S| - \varepsilon(S) + 1 \geq |S| - 1$ and $\omega(G-S) \geq i(G-S) + 1 \geq |S|$. Then by the definition of $\tau(G)$, we obtain $\tau(G) \leq \frac{|S|}{\omega(G-S)} \leq \frac{|S|}{|S|} = 1$, a contradiction.

(ii) If G has a pendant vertex u, then $\text{bind}(G) \leq \frac{|N_G(u)|}{|N_G(u)|} = 1$, a contradiction. Hence, G has no pendant edge.

We argue that $S \neq \emptyset$, otherwise we have that $\varepsilon(S) = 0$, and thus $i(G) = i(G - S) > |S| - \varepsilon(S) = 0$, a contradiction.

- If $\varepsilon(S) \in \{0,1\}$, then $i(G-S) \geq |S| - \varepsilon(S) + 1 \geq |S|$. Note that $I(G-S) \neq \emptyset$ and $N_G(I(G-S)) \neq V(G)$.

Let $X := I(G-S)$. Then by the definition of $\text{bind}(G)$, we obtain $\text{bind}(G) \leq \frac{|N_G(X)|}{|X|} \leq \frac{|S|}{i(G-S)} \leq 1$, a contradiction.

- If $\varepsilon(S) = 2$, then there is a component C of $G - S$ containing exactly two vertices. It follows that $i(G - S) \geq |S| - \varepsilon(S) + 1 = |S| - 1$. Let $Y := I(G - S) \cup V(C)$. By the definition of $\text{bind}(G)$, we obtain $\text{bind}(G) \leq \frac{|N_G(Y)|}{|V|} \leq \frac{|S| + |V(C)|}{\omega(G-S) + |V|} \leq \frac{|S| + 2}{|S|+1} = 1 + \frac{1}{|S|+1} \leq \frac{3}{2}$, a contradiction.

(iii) If G has a pendant edge xy such that $d_G(y) = 1$, then $I_t(G) \leq \frac{|\{x\}|}{\omega(G-xy)} \leq 1$, a contradiction. Hence, G has no pendant edge.

We argue that $S \neq \emptyset$, otherwise we have that $\varepsilon(S) = 0$, and thus $i(G) = i(G - S) > |S| - \varepsilon(S) = 0$, a contradiction.

- If $\varepsilon(S) = 0$, then $i(G-S) \geq |S| - \varepsilon(S) + 1 \geq |S| + 1 \geq 2$. Then by the definition of $I_t(G)$, we obtain $I_t(G) \leq \frac{|S|}{i(G-S)} \leq \frac{|S|}{|S|+1} \leq 1$, a contradiction.

- If $\varepsilon(S) = 1$, then $i(G-S) \geq |S| - \varepsilon(S) + 1 \geq |S|$. Then by the definition of $I_t(G)$, we obtain $I_t(G) \leq \frac{|S|}{i(G-S)} \leq 1$, a contradiction.

- If $\varepsilon(S) = 2$, then there is a component of $G - S$ containing exactly two vertices, denoted by $\{u,v\}$. It follows that $i(G - S) \geq |S| - \varepsilon(S) + 1 \geq |S| - 1$. Let $S' := S \cup \{u\}$. Then by the definition of $I_t(G)$, we obtain $I_t(G) \leq \frac{|S'|}{i(G-S')} = \frac{|S'|+1}{i(G-S')+1} \leq \frac{|S'|+1}{|S|} = 1 + \frac{1}{|S|} \leq 2$, a contradiction. □

Next, we study the relationship between planar graphs or $K_{1,r}$-free graphs and 2-matching deleted graphs, and obtain a minimum degree condition for a planar graph or a $K_{1,r}$-free graph being a 2-matching deleted graph, respectively. To prove our results, we will use an important lemma as following.

Lemma 3.3. [5] Let G be a connected planar graph with at least three vertices. If G does not contain triangles, then $|E(G)| \leq 2|G| - 4$.

Corollary 3.4. Let G be a connected graph of order $n \geq 3$. Then G is a 2-matching deleted graph if G is one of the following two special classes of graphs:

(i) planar graphs with $\delta(G) \geq 4$;

(ii) $K_{1,r}$-free graphs with $\delta(G) \geq r + 1$, where $r \geq 3$.

Proof. Suppose G is not a 2-matching deleted graph. By Theorem 3.1, there exists a subset $S \subseteq V(G)$ such that $i(G - S) \geq |S| - \varepsilon(S)$. According to the integrality of $i(G - S)$, we obtain that $i(G - S) \geq |S| - \varepsilon(S) + 1$. It is obviously that G has no pendant edge since $\delta(G) \geq 2$. We argue that $S \neq \emptyset$, otherwise we have that $\varepsilon(S) = 0$, and thus $i(G) = i(G - S) > |S| - \varepsilon(S) = 0$, a contradiction.

(i) Set $|S| = s \geq 1$. We denote by $I(G - S)$ the set of isolated vertices in $G - S$. Then we construct a simple bipartite graph $H := H[S, \overline{S}]$ as follows.

- If $\varepsilon(S) = 0$, then $i(G - S) \geq |S| - \varepsilon(S) + 1 = |S| + 1$. Choose $\overline{S} \subseteq I(G - S)$ such that $|\overline{S}| = s + 1$. For any $x \in S$ and $y \in \overline{S}$, $xy \in E(H)$ if and only if $xy \in E(G)$. As G is a connected planar graph, it is easy to see that H is also a connected planar graph. On the one hand, as $\delta(G) \geq 4$, it is clear that for each $y \in \overline{S}$, we have $|N_H(y)| \geq 4$. Hence, $|H| \geq s + (s + 1) = 2s + 1 \geq 3$ and $|E(H)| \geq 4 \times |\overline{S}| = 4s + 4$. On the other hand, according to the fact that a bipartite graph does not contain any odd cycles, Lemma 3.3 implies that $|E(H)| \leq 2|H| - 4 = 2 \times (2s + 1) - 4 = 4s - 2$, a contradiction.

- If $\varepsilon(S) = 1$, then there is a nontrivial component C of $G - S$ with pendant vertex u and $|C| \geq 3$. It follows that $i(G - S) \geq |S| - \varepsilon(S) + 1 = |S|$. Choose $\overline{S} := S'' \cup \{u\}$, where $S'' \subseteq I(G - S)$ such that $|S''| = s$. For any $x \in S$ and $y \in \overline{S}$, $xy \in E(H)$ if and only if $xy \in E(G)$. As G is a connected planar graph, it is easy to see that H is also a connected planar graph. On the one hand, as $\delta(G) \geq 4$, it is clear that $|N_H(u)| \geq 3$ and $|N_H(y)| \geq 4$ holds for each $y \in S''$. Hence, $|H| \geq s + (s + 1) = 2s + 1 \geq 3$ and $|E(H)| \geq 4 \times |S''| + 3 \times 2 = 4(s - 1) + 6 = 4s + 2$. On the other hand, according to the fact that a bipartite graph does not contain any odd cycles, Lemma 3.3 implies that $|E(H)| \leq 2|H| - 4 = 2 \times (2s + 1) - 4 = 4s - 2$, a contradiction.

(ii) Set $|S| = s \geq 1$. Note that $\delta(G) \geq r + 1 \geq 4$. We denote by $I(G - S)$ the set of isolated vertices in $G - S$.

- If $\varepsilon(S) \in \{0, 1\}$, then $i(G - S) \geq |S| - \varepsilon(S) + 1 \geq |S|$. Then we construct a bipartite subgraph $F := F[S, I(G - S)]$ of G such that $xy \in E(F)$ if and only if $xy \in E(G)$ for any $x \in S$, $y \in I(G - S)$. Note that for any $y \in I(G - S)$, we have $d_F(y) \geq \delta(G)$. Thus, $|E(F)| = \sum_{g \in I(G - S)} d_F(y) \geq \delta(G) \times i(G - S) \geq \delta(G) \times |S|$. It follows immediately that $\frac{|E(F)|}{|S|} \geq \frac{\delta(G) \times |S|}{|S|} = \delta(G) \geq r + 1 > r$. This together with pigeonhole principle implies that there exists $x \in S$ such that $d_F(x) \geq r$. Then $G[x \cup N_F(x)]$ has a subgraph isomorphic to $K_{1,r}$, a contradiction.

- If $\varepsilon(S) = 2$, then there is a component of $G - S$ containing exactly two vertices, denoted by $\{u, v\}$. It follows that $|S| \geq |N_G(u)| - 1 \geq \delta(G) - 1 \geq r + 3$, and thus $i(G - S) \geq |S| - \varepsilon(S) + 1 \geq |S| - 1$. Let $\overline{S} := I(G - S) \cup \{u, v\}$. Then we construct a bipartite subgraph $F := F[S, \overline{S}]$ of G such that $xy \in E(F)$ if and only if $xy \in E(G)$ for any $x \in S$, $y \in \overline{S}$. It is clear that $|N_F(u)| \geq \delta(G) - 1$ and $|N_F(y)| \geq \delta(G)$ holds for each $y \in I(G - S)$. Thus, $|E(F)| = d_F(u) + \sum_{g \in I(G - S)} d_F(y) \geq (\delta(G) - 1) + \delta(G) \times i(G - S) \geq \delta(G) \times |S| - 1$. It follows immediately that $\frac{|E(F)|}{|S|} \geq \frac{\delta(G) \times |S| - 1}{|S|} = \delta(G) - \frac{1}{|S|} \geq r + 1 - \frac{1}{r} > r$. This together with pigeonhole principle implies that there exists $x \in S$ such that $d_F(x) \geq r$. Then $G[x \cup N_F(x)]$ has a subgraph isomorphic to $K_{1,r}$, a contradiction. □
Acknowledgements. The author would like to thank the anonymous referees for their invaluable suggestions and comments, which greatly help to improve the manuscript. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11871239 and 11971196).

References