ON \textit{r}-HUED COLORING OF PRODUCT GRAPHS

LINGMEI LIANG, FENGXIA LIU* and BAOYINDURENG WU

Abstract. A \((k,r)\)-coloring of a graph \(G\) is a proper coloring with \(k\) colors such that for every vertex \(v\) with degree \(d(v)\) in \(G\), the color number of the neighbors of \(v\) is at least \(\min\{d(v), r\}\). The smallest integer \(k\) such that \(G\) has a \((k,r)\)-coloring is called the \(r\)-hued chromatic number and denoted by \(\chi_r(G)\). In Kaliraj et al. \textit{Taibah Univ. Sci.} 14 (2020) 168–171, it is determined the 2-hued chromatic numbers of Cartesian product of complete graph and star graph. In this paper, we extend its result and determine the \(r\)-hued chromatic number of Cartesian product of complete graph and star graph.

Mathematics Subject Classification. 05C15, 05C76.

Received December 25, 2021. Accepted October 22, 2022.

1. INTRODUCTION

All graphs are simple and finite, with undefined terminologies and notion begins referred to [1] in this paper. As in [1], \(V(G)\), \(E(G)\), \(\Delta(G)\) and \(\delta(G)\) denote the vertex set, the edge set, the maximum degree and the minimum degree of a graph \(G\), respectively. For \(v \in V(G)\), let \(N_G(v)\) denote the set of vertices adjacent to \(v\) in \(G\), and \(d_G(v) = |N_G(v)|\). For positive integers \(k\) and \(r\), a \((k,r)\)-coloring of a graph \(G\) is a mapping \(c : V(G) \to \{1, 2, 3, 4, \ldots, k\}\), satisfying both of the following conditions:

\((C1)\): \(c(u) \neq c(v)\) for every edge \(uv \in E(G)\); \n\((C2)\): \(|c(N_G(v))| \geq \min\{d_G(v), r\}\) for any \(v \in V(G)\).

Following [1], a mapping \(c : V(G) \to \{1, 2, 3, 4, \ldots, k\}\) satisfying \((C1)\) only is a proper \(k\)-coloring of \(G\). The chromatic number of \(G\), denoted by \(\chi(G)\), is the smallest integer \(k\) such that \(G\) has a proper \(k\)-coloring. The \(r\)-hued chromatic number of \(G\), denoted by \(\chi_r(G)\), is the smallest integer \(k\) such that \(G\) has a \((k,r)\)-coloring. The notion of \(r\)-hued coloring was first introduced in [7,9], where \(\chi_2(G)\) is called the dynamic number of graph \(G\), and the corresponding chromatic number is denoted \(\chi_d(G)\). In [2], Brooks’ Theorem stated that a connected graph \(G\) satisfies \(\chi(G) \leq \Delta(G) + 1\), where the equality holds if and only if \(G\) is an odd cycle or a complete graph. In [7], Lai et al. proved the best possible upper bounds of \(\chi_2(G)\) as an analogue to Brooks’ Theorem.

Theorem 1.1. Let \(G\) be a connected graph.

(i) If \(\Delta(G) \leq 3\), then \(\chi_2(G) \leq 4\), unless \(G = C_5\), in which case \(\chi_2(C_5) = 5\) [7].

(ii) If \(\Delta(G) \geq 4\), then \(\chi_2(G) \leq \Delta(G) + 1\) [7].

Keywords. \((k,r)\)-coloring, \(r\)-hued chromatic number, Cartesian product.

College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China.

*Corresponding author: xjulfx@163.com

© The authors. Published by EDP Sciences, ROADEF, SMAI 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
(iii) If G is planar graph with $G \neq C_5$, then $\chi_2(G) \leq 4$ [5].

In [10], Lai et al. proved that if G is a planar graph and $r \geq 8$, then $\chi_r(G) \leq 2r + 16$. Earlier Brooks type upper bounds of the r-hued chromatic number can be found in [3, 6, 8].

Theorem 1.2. Let G be a connected graph, and $r \geq 2$ be an integer.

(i) If $\Delta(G) \leq r$, then $\chi_r(G) \leq \Delta(G) + r^2 - r + 1$ [6].

(ii) $\chi_r(G) \leq \Delta^2(G) + 1$, where the equality holds if and only if G is a Moore graph [3].

(iii) $\chi_r(G) \leq r\Delta(G) + 1$, with equality if and only if G is r-regular with diameter 2 and girth 5 [8].

A lower bound for r-hued chromatic number of G as follows.

Theorem 1.3 ([6], Prop. 2.1). Let G be a graph, and $r \geq 2$ be an integer. Then $\chi_r(G) \geq \min\{\Delta(G), r\} + 1$, and this lower bound is sharp.

Let G and H be two graphs. The Cartesian product of G and H, denoted by $G \square H$, is a graph with the vertex set $V(G) \times V(H)$ such that two vertices (u, v) and (x, y) are adjacent if and only if $u = x$ and $vy \in E(H)$ or $v = y$ and $ux \in E(G)$. It follows by definition that $\Delta(G \square H) = \Delta(G) + \Delta(H)$.

Kaliraj et al. [4] studied 2-hued chromatic numbers of Cartesian product of complete graph and star graph, for positive integers $s \geq 2$ and n,

$$\chi_2(K_n \square K_{1,s}) = \begin{cases} 3, & \text{if } n = 1; \\ 4, & \text{if } n = 2; \\ n, & \text{otherwise.} \end{cases}$$

In this paper, we extend the above result, and prove the following theorem.

Theorem 1.4. For all fixed positive integers r, r-hued chromatic number of Cartesian product of complete graph and star graph as follows:

$$\chi_r(K_n \square K_{1,s}) = \begin{cases} n, & \text{if } r < n; \\ \max\{2n, \min\{r + 1, n + s\}\}, & \text{if } r \geq n. \end{cases}$$

2. Proofs of the Main Results

Throughout this section, $n \geq 2$, $s \geq 1$ are integers, and we always devote $V(K_n) = \{a_1, a_2, \ldots, a_n\}$, $V(K_{1,s}) = \{w, v_1, \ldots, v_s\}$, where w is the only vertex with $d(w) = s$ in $V(K_{1,s})$. By the definition of Cartesian products,

$$V(K_n \square K_{1,s}) = \bigcup_{i=1}^{n} \{a_i w\} \cup \bigcup_{i=1}^{n} \{a_i v_j : 1 \leq j \leq s\}.$$

For presentational purpose, we also write

$$V(K_n \square K_{1,s}) = \begin{bmatrix} a_1 w & a_1 v_1 & a_1 v_2 & \cdots & a_1 v_s \\ a_2 w & a_2 v_1 & a_2 v_2 & \cdots & a_2 v_s \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n-1} w & a_{n-1} v_1 & a_{n-1} v_2 & \cdots & a_{n-1} v_s \\ a_n w & a_n v_1 & a_n v_2 & \cdots & a_n v_s \end{bmatrix}_{n \times (s+1)}.$$

By the definition of $K_n \square K_{1,s}$, we have the following observations.

$$N_{K_n \square K_{1,s}}(a_i w) = \bigcup_{j=1}^{s} \{a_i v_j\} \cup \bigcup_{k=1, k \neq i}^{n} \{a_k w\} \quad (2.1)$$

$$N_{K_n \square K_{1,s}}(a_i v_j) = \bigcup_{k=1, k \neq i}^{n} \{a_k v_j\} \cup \{a_i w\} \quad (2.2)$$
We prove

Proof. Lemma 2.1. product of complete graphs K_c to c

loss of generality, we assume that

Let

Corollary 2.2. If

Since $\Delta(K_n) = \min\{r, n\}$, we first determine a lower bound for r-hued chromatic number of Cartesian product graphs K_n and K_1,s, which is useful for the proof of Theorems 2.3 and 2.4.

Lemma 2.1. If $r \geq n$, then $\chi_r(K_n \boxtimes K_1,s) \geq 2n$.

Proof. We prove $\chi_r(K_n \boxtimes K_1,s) \geq 2n$ by contradiction. Suppose that $\chi_r(K_n \boxtimes K_1,s) \leq 2n - 1$. We assume that $c_0 : V(K_n \boxtimes K_1,s) \rightarrow \{1, 2, 3, \ldots, 2n - 1\}$ is a $(2n - 1, r)$-coloring. As $s \geq 1$, K_1,s contains a subgraph isomorphic to K_2, and so $K_n \boxtimes K_1,s$ always contains an induced subgraph $H = K_n \boxtimes K_2$ (see Fig. 1 for an illustration, where $K_3 \boxtimes K_1,s$ contains $K_3 \boxtimes K_2$ as a subgraph).

Since $|V(H)| = 2n$, there always exist two vertices in H which are colored with the same color. Without loss of generality, we assume that $c_0(a_iw) = c_0(a_jv_1)$, where $i \neq j$. For the vertex $a_i v_1$, by (2.1), we have $\{a_iw, a_jv_1\} \subseteq N_{K_n \boxtimes K_1,s}(a_i v_1)$. Since $r \geq n$, $|c_0(N_{K_n \boxtimes K_1,s}(a_i v_1))| \leq n - 1 < \min\{r, n\} = n$, which contradicts to that c_0 is a $(2n - 1, r)$-coloring. Hence $\chi_r(K_n \boxtimes K_1,s) \geq 2n$.

Corollary 2.2. If $r \geq n$, then $\chi_r(K_n \boxtimes K_2) = 2n$.

Proof. Let $V(K_n) = \{a_1, a_2, a_3, \ldots, a_n\}$, and $V(K_2) = \{v_1, v_2\}$. By the definition of Cartesian products, $V(K_n \boxtimes K_2) = \bigcup_{j=1}^{n} \{a_jv_1 : 1 \leq j \leq 2\}$. The order of $K_n \boxtimes K_2$ is $|V(K_n \boxtimes K_2)| = 2n$. On the one hand, $\chi_r(K_n \boxtimes K_2) \leq |V(K_n \boxtimes K_2)| = 2n$. On the other hand, by Lemma 2.1, let $s = 1$, then $\chi_r(K_n \boxtimes K_2) \geq 2n$, so $\chi_r(K_n \boxtimes K_2) = 2n$.

We first prove the case when $s \geq r$ for Theorem 1.4.

Theorem 2.3. Let $K_n \boxtimes K_1,s$ be a Cartesian product graph. If $s \geq r$, then

$$\chi_r(K_n \boxtimes K_1,s) = \begin{cases} r + 1, & \text{if } r \geq 2n; \\ 2n, & \text{if } n \leq r < 2n; \\ n, & \text{if } r < n. \end{cases}$$

Proof. Since $\Delta(K_n) = n - 1$, $\Delta(K_1,s) = s$, then $\Delta(K_n \boxtimes K_1,s) = \Delta(K_n) + \Delta(K_1,s) = (n - 1) + s$. As $n \geq 1$, $\Delta(K_n \boxtimes K_1,s) = n - 1 + s \geq s \geq r$. We consider the following three cases to prove this theorem, and we shall use $n \times (s + 1)$ matrix to present a coloring of $V(K_n \boxtimes K_1,s)$.

![Figure 1. $K_3 \boxtimes K_1,s$: the circle is $K_3 \boxtimes K_2$.](image-url)
Case 1. $r \geq 2n$.

By Theorem 1.3, we have $\chi_r(K_\infty K_1, s) \geq \min\{\Delta(K_\infty K_1, s) + 1, \min\{n - 1 + s, r\} + 1\} = r + 1$. To show that $\chi_r(K_\infty K_1, s) \leq r + 1$, we define $c_1 : V(K_\infty K_1, s) \rightarrow \{1, 2, 3, \ldots, r + 1\}$ as follows. Since $r \geq 2n$, $r - n + 1 \geq 2n - n + 1 = n + 1$, $r - n + 1 > n$. Let $A = (a_{ij})_{n \times (s + 1)}$ be a $n \times (s + 1)$ matrix as follows,

$$A = \begin{bmatrix}
 r - n + 2 & 1 & 2 & \ldots & r - n - 1 & r - n & r - n + 1 & \ldots & r - n + 1 \\
 r - n + 3 & 2 & 3 & \ldots & r - n & r - n - 1 & 1 & \ldots & 1 \\
 r - n + 4 & 3 & 4 & \ldots & r - n + 1 & 1 & 2 & \ldots & 2 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 r + 1 & n & n - 1 & \ldots & n - 3 & n - 2 & n - 1 & \ldots & n - 1
\end{bmatrix}_{n \times (s + 1)}$$

where the s entries of ith row are $\{r - n + 1 + i, i, i + 1, \ldots, r - n, r - n + 1, 1, 2, \ldots, i - 1, i - 1, \ldots, i - 1\} \subseteq \{1, 2, 3, \ldots, r + 1\}$ when $1 \leq i \leq n$, and $a_{i,j} = a_{i-r,n+2}$ when $r - n + 3 \leq j \leq s + 1$. Define $c_1(V(K_\infty K_1, s)) = A$. For $1 \leq i \leq n$, $a_{i,j} = a_{i,j+1}$, and so $\{c_1(a_{ij}) : 1 \leq i \leq n, 1 \leq j \leq s\} = \{1, 2, 3, \ldots, r - n + 1\}$. For $1 \leq i \leq n$, $c_1(a_{i,w}) = a_{i+1} - r - n + i$, and so $\{c_1(a_{i,w}) : 1 \leq i \leq n\} = \{r - n + 1 + 1, r - n + 1 + 2, n - n + 1, \ldots, n - 1, n\}. It follows that, if $k \neq i$, then $c_1(a_{i,w}) \neq c_1(a_{j,v})$, and $c_1(a_{i,w}) \neq c_1(a_{k,w})$ and $c_1(a_{j,v}) \neq c_1(a_{k,v})$. As $r \geq 2n$, every entry $a_{i,j}$ in A satisfies $1 \leq a_{i,j} \leq r + 1$, and so c_1 is a proper $(r + 1)$-coloring of $K_\infty K_1, s$.

Next we need to show c_1 satisfies (C2). For a vertex of the form a_iw, by (2.1), we have $d(a_{i,w}) = |N_{K_\infty K_1, s}(a_{i,w})| - n - 1$. Since $c_1(N_{K_\infty K_1, s}(a_{i,w})) = \{1, 2, 3, \ldots, r + 1\} \setminus \{r - n + 1 + i\}$, $\chi_r(K_\infty K_1, s) \leq r + 1$. Thus c_1 is a $(r + 1)$-coloring of $K_\infty K_1, s$.

Case 2. $n \leq r < 2n$.

By Lemma 2.1, we have $\chi_r(K_\infty K_1, s) \geq 2n$. Since $1 \leq n \leq r \leq s, 1 \leq r - n + 1 \leq r \leq s, r - n + 1 \leq s$, and as $n \leq r < 2n$, $1 \leq r - n + 1 < n + 1$, so $r - n + 1 \leq s$. To show that $\chi_r(K_\infty K_1, s) \leq 2n$, we define $c_2 : V(K_\infty K_1, s) \rightarrow \{1, 2, 3, \ldots, n, n + 1, 2n\}$ and a $n \times (s + 1)$ matrix $B = (b_{ij})_{n \times (s + 1)}$ as follows,

$$B = \begin{bmatrix}
 n + 1 & 1 & 2 & 3 & \ldots & r - n + 1 & r - n + 1 & \ldots & r - n + 1 \\
 n + 2 & 2 & 3 & 4 & \ldots & r - n + 2 & r - n + 2 & \ldots & r - n + 2 \\
 \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 n + n - 2 & n - 2 & n - 1 & n & \ldots & r - n + 2 & r - n + 2 & \ldots & r - n + 2 \\
 n + n - 1 & n - 1 & n & \ldots & r - n + 1 & r - n + 1 & \ldots & r - n + 1 \\
 2n & n - 1 & n & \ldots & r - n & r - n & \ldots & r - n
\end{bmatrix}_{n \times (s + 1)}$$

where the n entries of jth column are $\{j - 1, j + 1, j + 2, \ldots, n - 1, n, 1, 2, \ldots, j - 2, \ldots, j - 2\} \subseteq \{1, 2, 3, \ldots, n - 1, n\}$ when $2 \leq j \leq r - n + 2$, and $b_{ij} = b_{i-r,n+2}$ when $r - n + 3 \leq j \leq s + 1, 2 \leq i \leq n$. Define $c_2(V(K_\infty K_1, s)) = B$. For $1 \leq i \leq n$, $1 \leq j \leq s, c_2(a_{i,v}) = a_{i+j+1}$, and so $\{c_2(a_{i,j}) : 1 \leq i \leq n, 1 \leq j \leq s\} = \{1, 2, 3, \ldots, n\}$. For $1 \leq i \leq n$, $c_2(a_{i,w}) = a_{i+1} - n + i$, and so $\{c_2(a_{i,w}) : 1 \leq i \leq n\} = \{n + 1, n + 2, n + 3, \ldots, 2n\}. It follows that, if $k \neq i$, then $c_2(a_{i,w}) \neq c_2(a_{j,v})$, $c_2(a_{i,w}) \neq c_2(a_{k,w})$ and $c_2(a_{j,v}) \neq c_2(a_{k,v})$. As $n \leq r < 2n$, every entry b_{ij} in B satisfies $1 \leq b_{ij} \leq 2n$, and so c_2 is a proper $2n$-coloring of $K_\infty K_1, s$.

Next we need to show c_2 satisfies (C2). For a vertex of the form a_iw, by (2.1), we have $d(a_{i,w}) = |N_{K_\infty K_1, s}(a_{i,w})| = n - 1 + s$. Since $c_2(N_{K_\infty K_1, s}(a_{i,w})) = \{1, 2, 3, \ldots, n - 1 + s\} \cup \{n + 1, n + 2, n + 3, \ldots, 2n\}$, then $\chi_r(K_\infty K_1, s) \leq 2n$. By matrix B, the color set $c_2(N_{K_\infty K_1, s}(a_{i,w}))$ contains $n - 1$ different colors of $\{1, 2, 3, \ldots, n\}$ and one color $c_2(a_{i,w}) = n + i$, we have $\{c_2(N_{K_\infty K_1, s}(a_{i,w}))\} = n$, then $\chi_r(K_\infty K_1, s) \leq 2n$. To sum up, $\chi_r(K_\infty K_1, s) \leq 2n.$
Case 3. $r < n$.

Since $K_n \Box K_{1,s}$ always contains an induced subgraph K_n, $\chi_r(K_n \Box K_{1,s}) \geq n$. To show that $\chi_r(K_n \Box K_{1,s}) \leq n$, we define $c_3 : V(K_n \Box K_{1,s}) \rightarrow \{1, 2, 3, \ldots, n\}$ and a $n \times (s+1)$ matrix $C = (c_{ij})_{n \times (s+1)}$ as follows,

$$C = \begin{bmatrix}
2 & 1 & 1 & \cdots & 1 \\
3 & 2 & 2 & \cdots & 2 \\
\vdots & \vdots & \vdots & & \vdots \\
n & n-1 & n-1 & \cdots & n-1 \\
1 & n & n & \cdots & n
\end{bmatrix}_{n \times (s+1)}$$

Define $c_3(V(K_n \Box K_{1,s})) = C$. For $1 \leq i \leq n$, $1 \leq j \leq s$, $c_3(a_{ij}) = c_{ij} + 1$, and so $\{c_3(a_{ij}) | 1 \leq i \leq n, 1 \leq j \leq s\} = \{1, 2, 3, \ldots, n\}$. For $1 \leq i \leq n - 1$, $c_3(a_iw) = i + 1$, and $c_3(a_{nw}) = 1$, so $\{c_3(a_iw) | 1 \leq i \leq n\} = \{1, 2, 3, \ldots, n\}$. It follows that, if $k \neq i$, then $c_3(a_iw) \neq c_3(a_{ivj})$, $c_3(a_iw) \neq c_3(a_kw)$ and $c_3(a_{ivj}) \neq c_3(a_{kvj})$. Since every entry c_{ij} in C satisfies $1 \leq c_{ij} \leq n$, so c_3 is a proper n-coloring of $K_n \Box K_{1,s}$.

Next we need to show c_3 satisfies $(C2)$. For a vertex of the form a_iw, by (2.1), we have $|N_{K_n \Box K_{1,s}}(a_iw)| = n - 1 + s$, so $d(a_iw) = n - 1 + s \geq n > r$. For $1 \leq i \leq n - 1$, $c_3(N_{K_n \Box K_{1,s}}(a_iw)) = \{1, 2, 3, \ldots, n\} \{i+1\}$, and for $i = n$, $c_3(N_{K_n \Box K_{1,s}}(a_iw)) = \{n\}$. For a vertex of the form a_{ivj}, by (2.2), we have $|N_{K_n \Box K_{1,s}}(a_{ivj})| = n$, so $d(a_{ivj}) = n > r$. Since $c_3(N_{K_n \Box K_{1,s}}(a_{ivj})) = \{1, 2, 3, \ldots, n\} \{i\}$, then $c_3(N_{K_n \Box K_{1,s}}(a_{ivj})) = n - 1 \geq n - 1 + s, r$. Thus c_3 is a (n, r)-coloring of $K_n \Box K_{1,s}$, hence $\chi_r(K_n \Box K_{1,s}) \leq n$. To sum up, $\chi_r(K_n \Box K_{1,s}) = n$. \hfill \Box

In the following, we prove the case $s < r$ for Theorem 1.4.

Theorem 2.4. Let $K_n \Box K_{1,s}$ be a Cartesian product graph. If $s < r$, then

$$\chi_r(K_n \Box K_{1,s}) = \begin{cases}
\max(n+s, 2n), & \text{if } r \geq n \text{ and } n - 1 + s \leq r; \\
\max(2n, r + 1), & \text{if } r \geq n \text{ and } n - 1 + s > r; \\
n, & \text{if } r < n.
\end{cases}$$

Proof. We consider the following three cases to prove this theorem, and we shall use $n \times (s+1)$ matrix to present a coloring of $V(K_n \Box K_{1,s})$.

Case 1. $r \geq n$ and $n - 1 + s \leq r$.

Since $\Delta(K_n) = n - 1$, $\Delta(K_{1,s}) = s$, then $\Delta(K_n \Box K_{1,s}) = \Delta(K_n) + \Delta(K_{1,s}) = (n - 1) + s \leq r$. We consider the following two subcases.

Subcase 1.1. $n \leq s$.

By Theorem 1.3, we have $\chi_r(K_n \Box K_{1,s}) \geq \min\{\Delta(K_n \Box K_{1,s}), r\} + 1 = \min\{n-1+s, r\} + 1 = n-1+s+1 = n+s$. To show that $\chi_r(K_n \Box K_{1,s}) \leq n+s$, we define $c_4 : V(K_n \Box K_{1,s}) \rightarrow \{1, 2, 3, \ldots, n+s\}$ and a $n \times (s+1)$ matrix $D = (d_{ij})_{n \times (s+1)}$ as follows,

$$D = \begin{bmatrix}
s+1 & 1 & 2 & \cdots & s-2 & s-1 & s \\
s+2 & 2 & 3 & \cdots & s-1 & s & 1 \\
s+3 & 3 & 4 & \cdots & s & 1 & 2 \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\
s+n & n & n+1 & \cdots & n-3 & n-2 & n-1
\end{bmatrix}_{n \times (s+1)}$$

where the $s+1$ entries of ith row are $\{s+i, i+1, \ldots, s-1, s, i, 2, \ldots, i-1\} \subseteq \{1, 2, \ldots, s+n\}$ when $1 \leq i \leq n$. Define $c_4(V(K_n \Box K_{1,s})) = D$. For $1 \leq i \leq n$, $1 \leq j \leq s$, $c_4(a_{ij}) = d_{ij}+1$, and so $\{c_4(a_{ij}) | 1 \leq i \leq n, 1 \leq j \leq s\} = \{1, 2, 3, \ldots, s\}$. For $1 \leq i \leq n$, $c_4(a_iw) = d_{1i} = s+i$, and so $\{c_4(a_iw) | 1 \leq i \leq n\} = \{s+1, s+2, s+3, \ldots, s+n\}$. It follows that, if $k \neq i$, then $c_4(a_iw) \neq c_4(a_{ivj})$,
Now, we consider the following two subcases.

Next we need to show c_4 satisfies (C2). For a vertex of the form $a_i w$, by (2.1), we have $d(a_i w) = |N_{K_n □ K_1}(a_i)| = n + 1 - s$. Since $c_1(N_{K_n □ K_1}(a_i)) = \{1, 2, 3, \ldots, s\} \cup \{s + 1, s + 2, \ldots, s + n\} \setminus \{s + i\}$, then $|c_4(N_{K_n □ K_1}(a_i))| = n + s + 1$, $|c_4(N_{K_n □ K_1}(a_i))| = \min\{d(a_i w), r\} = \min\{n - 1 + s, r\}$. For a vertex of the form $a_i v_j$, by (2.2), we have $d(a_i v_j) = |N_{K_n □ K_1}(a_i v_j)| = n$. By matrix D, the color set $c_4(N_{K_n □ K_1}(a_i v_j))$ always contains $n - 1$ different colors of $\{1, 2, 3, \ldots, s\}$ and one color $c_4(a_i w) = s + i$, so $|c_4(N_{K_n □ K_1}(a_i v_j))| = n = \min\{d(a_i v_j), r\} = \min\{n, r\}$. Thus c_4 is a $(n + s, r)$-coloring of $K_n □ K_1$, then $\chi_r(K_n □ K_1) ≤ n + s$. To sum up, $\chi_r(K_n □ K_1) = n + s$.

Subcase 1.2. $n > s$.

By Lemma 2.1, we have $\chi_r(K_n □ K_1) ≥ 2n$. To show that $\chi_r(K_n □ K_1) ≤ 2n$, we define $c_5 : V(K_n □ K_1, s) → \{1, 2, 3, \ldots, 2n\}$ and a $n \times (s + 1)$ matrix $E = (e_{i j})_{n \times (s + 1)}$ as follows,

$$E = \begin{bmatrix}
 n + 1 & 1 & 2 & 3 & \cdots & s \\
 n + 2 & 2 & 3 & 4 & \cdots & s + 1 \\
 \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 n + n - 2 & n - 2 & n - 3 & \cdots & 1 & \cdots & 3 \\
 n + n - 1 & n - 1 & n & 1 & \cdots & 2 \\
 2n & n & 1 & 2 & \cdots & s + 1 \\
\end{bmatrix}_{n \times (s + 1)}$$

where the n entries of jth column are $\{j - 1, j, j + 1, \ldots, n - 1, n, 1, 2, \ldots, j - 2\} \subseteq \{1, 2, \ldots, n\}$ when $2 \leq j \leq s + 1$. Define $c_5(V(K_n □ K_1)) = E$. For $1 \leq i \leq n$, $1 \leq j \leq s$, $c_5(a_i v_j) = e_{i j + 1}$, and so $\{c_5(a_i v_j)\}_1 \leq i \leq n, 1 \leq j \leq s = \{1, 2, 3, \ldots, n\}$. For $1 \leq i \leq n, c_5(a_i w) = e_{i 1} = n + i$, and so $\{c_5(a_i w)\}_1 \leq i \leq n = \{n + 1, n + 2, n + 3, \ldots, 2n\}$. It follows that, if $k \neq i$, then $c_5(a_i w) \neq c_5(a_i v_j)$, $c_5(a_i w) \neq c_5(a_k v_j)$ and $c_5(a_i v_j) \neq c_5(a_k v_j)$. As $n > s$, every entry $e_{i j}$ in E satisfies $1 \leq e_{i j} \leq 2n$, and so c_5 is a proper $2n$-coloring of $K_n □ K_1$.

Next we need to show c_5 satisfies (C2). For a vertex of the form $a_i w$, by (2.1), we have $d(a_i w) = |N_{K_n □ K_1}(a_i)| = n + 1 - s$. Since $c_5(N_{K_n □ K_1}(a_i)) = \{1, 2, \ldots, n + 1, n, 2, \ldots, 2n\} \setminus \{n + i\}$, then $|c_5(N_{K_n □ K_1}(a_i))| = 2n - 1 ≥ \min\{d(a_i w), r\} = \min\{n - 1 + s, r\} = n - 1 + s$. For a vertex of the form $a_i v_j$, by (2.2), we have $d(a_i v_j) = |N_{K_n □ K_1}(a_i v_j)| = n$. By matrix E, the color set $c_5(N_{K_n □ K_1}(a_i v_j))$ always contains $n - 1$ different colors of $\{1, 2, 3, \ldots, n\}$ and one color $c_5(a_i w) = n + i$, so $|c_5(N_{K_n □ K_1}(a_i v_j))| = 2n = \min\{d(a_i v_j), r\} = \min\{n, r\}$. Thus c_5 is a $(2n, r)$-coloring of $K_n □ K_1$, so $\chi_r(K_n □ K_1) ≤ 2n$. To sum up, $\chi_r(K_n □ K_1) = 2n$.

By Subcases 1.1 and 1.2, we can conclude that $\chi_r(K_n □ K_1) = \max(n + s, 2n)$, where $r ≥ n$ and $n - 1 + s ≤ r$.

Case 2. $r ≥ n$ and $n - 1 + s > r$.

Now, we consider the following two subcases.

Subcase 2.1. $r - n + 1 ≤ n$.

By Lemma 2.1, we have $\chi_r(K_n □ K_1) ≥ 2n$. To show that $\chi_r(K_n □ K_1) ≤ 2n$, we define $c_6 : V(K_n □ K_1) → \{1, 2, 3, \ldots, n + 1, \ldots, 2n\}$ and a $n \times (s + 1)$ matrix $F = (f_{i j})_{n \times (s + 1)}$ as follows,

$$F = \begin{bmatrix}
 n + 1 & 1 & 2 & 3 & \cdots & r - n + 1 & \cdots & r - n + 1 \\
 n + 2 & 2 & 3 & 4 & \cdots & r - n + 2 & \cdots & r - n + 2 \\
 \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
 n + n - 2 & n - 2 & n - 3 & \cdots & 1 & \cdots & 3 \\
 n + n - 1 & n - 1 & n & 1 & \cdots & 2 \\
 2n & n & 1 & 2 & \cdots & r - n + 1 & \cdots & r - n + 1 \\
\end{bmatrix}_{n \times (s + 1)}$$

where the n entries of jth column are $\{j - 1, j, j + 1, j + 2, \ldots, n - 1, n, 1, 2, \ldots, j - 2\} \subseteq \{1, 2, \ldots, n\}$ when $2 \leq j \leq r - n + 2$, and $f_{i j} = f_{i r - n + 2}$ when $r - n + 3 ≤ j ≤ s + 1$, $2 \leq i \leq n$. Define $c_6(V(K_n □ K_1)) = F$. For $1 \leq i \leq n, 1 \leq j \leq s$, $c_6(a_i v_j) = f_{i j + 1}$, and so $\{c_6(a_i v_j)\}_1 \leq i \leq n, 1 \leq j \leq s = \{1, 2, 3, \ldots, n\}$. For
1 ≤ i ≤ n, c₀(aᵢ,w) = fᵢ₁ = n + i, and so \{c₀(aᵢ,w)|1 ≤ i ≤ n\} = \{n + 1, n + 2, n + 3, \ldots, 2n\}. It follows that, if k ≠ i, then c₀(aᵢ,w) ≠ c₀(aᵢ⁺⁰, w), c₀(aᵢ,w) ≠ c₀(aᵢwj) and c₀(aᵢ⁺⁰, w) ≠ c₀(aᵢwj). As r - n + 1 ≤ n, every entry fᵢᵢ in F satisfies 1 ≤ fᵢᵢ ≤ 2n, and so c₀ is a proper 2n-coloring of \(K_n \square K_{1,s}\).

Next we need to show c₀ satisfies (C2). For a vertex of the form aᵢ,w, by (2.1), we have \(d(aᵢ,w) = |N\{aᵢ,w\}| = n - 1 + s\). Since \(c₀(N\{aᵢ,w\}) = \{1, 2, 3, \ldots, r - n + 1\} \cup \{n + 1, n + 2, \ldots, 2n\} \setminus \{n + i\}\), then \(c₀(N\{aᵢ,w\}) = r = \min\{d(aᵢ,w), r\} = \min\{n - 1 + s, r\}\). For a vertex of the form aᵢ⁺⁰, w, by (2.2), we have \(d(aᵢ⁺⁰, w) = |N\{aᵢ⁺⁰, w\}| = n\). By matrix F, the color set \(c₀(N\{aᵢ⁺⁰, w\})\) always contains n - 1 different colors of \(\{1, 2, 3, \ldots, n\}\) and one color c₀(aᵢ⁺⁰, w) = n + i, so \(c₀(N\{aᵢ⁺⁰, w\}) = n = \min\{d(aᵢ⁺⁰, w), r\} = \min\{n, r\}\). Thus c₀ is a \((2n, r)\)-coloring of \(K_n \square K_{1,s}\), so \(χ_r(K_n \square K_{1,s}) ≤ 2n\). To sum up, \(χ_r(K_n \square K_{1,s}) = 2n\).

Subcase 2.2. \(r - n + 1 > n\).

By Theorem 1.3, we have \(χ_r(K_n \square K_{1,s}) ≥ \min\{Δ(K_n \square K_{1,s}), r\} + 1 = \min\{n - 1 + s, r\} + 1 = r + 1\). To show that \(χ_r(K_n \square K_{1,s}) ≤ r + 1\), we define \(c₇ : V(K_n \square K_{1,s}) → \{1, 2, 3, \ldots, r + 1\}\) and a \(n \times (s + 1)\) matrix \(P = (pᵢⱼ)_{n \times (s + 1)}\) as follows,

\[
P = \begin{bmatrix}
 r - n + 2 & 1 & 2 & \cdots & r - n & r - n + 1 & \cdots & r - n + 1 \\
 r - n + 3 & 2 & 3 & \cdots & r - n + 1 & 1 & \cdots & 1 \\
 r - n + 4 & 3 & 4 & \cdots & 1 & 2 & \cdots & 2 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 r + 1 & n & n + 1 & \cdots & n - 2 & n - 1 & \cdots & n - 1 \\
\end{bmatrix}_{n \times (s + 1)}
\]

where the \(s\) entries of \(i\)th row are \(\{r - n + 1 + i, i, i + 1, i + 1, i + 2, \ldots, r - n + 1, 1, 2, \ldots, i - 1, i - 1\}\) \(\subseteq \{1, 2, \ldots, r + 1\}\) when \(1 ≤ i ≤ n\), and \(pᵢᵢ = pᵢᵢ+n+2\) when \(r - n + 3 \leq s + 1\). Define \(c₇(V(K_n \square K_{1,s})) = P\). For \(1 ≤ i ≤ n, 1 ≤ j ≤ s\), \(c₇(aᵢ⁺⁰, w) = pᵢᵢ+j+1\), and so \(c₇(aᵢ⁺⁰, w)|1 ≤ i ≤ n, 1 ≤ j ≤ s\} = \{1, 2, 3, \ldots, r - n + 1\}. For \(1 ≤ i ≤ n, c₇(aᵢ,w) = pᵢᵢ = r - n + 1 + i\), and so \(c₇(aᵢ,w)|1 ≤ i ≤ n\} = \{r - n + 2, r - n + 3, r - n + 4, \ldots, r - n + 1\}\). It follows that, if \(k ≠ i\), then \(c₇(aᵢ,w) ≠ c₇(aᵢ⁺⁰, w)\). As \(r - n + 1 > n\), every entry \(pᵢᵢ+j\) in \(P\) satisfies \(1 ≤ pᵢᵢ+j ≤ r + 1\), and so \(c₇\) is a proper \((r + 1)\)-coloring of \(K_n \square K_{1,s}\).

Next we need to show \(c₇\) satisfies (C2). For a vertex of the form aᵢ⁺⁰, w, by (2.1), we have \(d(aᵢ⁺⁰, w) = |N\{aᵢ⁺⁰, w\}| = n - 1 + s\). Since \(c₇(N\{aᵢ⁺⁰, w\}) = \{1, 2, 3, \ldots, r + 1\} \setminus \{r - n + 1 + i\}\), then \(c₇(N\{aᵢ⁺⁰, w\}) = r = \min\{d(aᵢ⁺⁰, w), r\} = \min\{n - 1 + s, r\}\). For a vertex of the form aᵢ⁺⁰, w, by (2.2), we have \(d(aᵢ⁺⁰, w) = |N\{aᵢ⁺⁰, w\}| = n\). By matrix \(P\), the color set \(c₇(N\{aᵢ⁺⁰, w\})\) always contains \(n - 1\) different colors of \(\{1, 2, 3, \ldots, n\}\) and one color c₀(aᵢ⁺⁰, w) = n + i, so \(c₇(N\{aᵢ⁺⁰, w\}) = n = \min\{d(aᵢ⁺⁰, w), r\} = \min\{n, r\}\). Thus \(c₇\) is a \((r + 1, r)\)-coloring of \(K_n \square K_{1,s}\), so \(χ_r(K_n \square K_{1,s}) ≤ r + 1\).

By Subcase 2.1 and Subcase 2.2, we can conclude that \(χ_r(K_n \square K_{1,s}) = \max\{2n, r + 1\}\), where \(r ≥ n\) and \(n - 1 + s > r\).

Case 3. \(r < n\).

The proof in this case is the same as in case 3 of Theorem 2.3.

By Theorems 2.3 and 2.4, we can get Theorem 1.4.

3. Conclusion

In this paper, we considered the \(r\)-hued chromatic number of Cartesian product of complete graph \(K_n\) and star graph \(K_{1,s}\). Firstly, we classify the positive integer \(r\) according to its different values, and then combine with the properties of chromatic number of graph \(G\), we get a lower bound of \(r\)-hued chromatic number of \(K_n \square K_{1,s}\). Secondly, we find a \((k, r)\)-coloring of \(K_n \square K_{1,s}\), so we get an upper bound of \(r\)-hued chromatic number of \(K_n \square K_{1,s}\). Finally, we determine the \(r\)-hued chromatic number of Cartesian product of complete graph and star graph.
Acknowledgements. This research was supported by NSFC (No. 11961067).

REFERENCES