TOUGHNESS AND ISOLATED TOUGHNESS CONDITIONS FOR PATH-FACTOR CRITICAL COVERED GRAPHS

GUOWEI DAI

Abstract. Given a graph G and an integer $k \geq 2$. A spanning subgraph H of G is called a P_{2k}-factor of G if every component of H is a path with at least k vertices. A graph G is said to be P_{2k}-factor covered if for any $e \in E(G)$, G admits a P_{2k}-factor including e. A graph G is called a (P_{2k}, n)-factor critical graph if $G - V'$ is P_{2k}-factor covered for any $V' \subseteq V(G)$ with $|V'| = n$. In this paper, we study the toughness and isolated toughness conditions for (P_{2k}, n)-factor critical covered graphs, where $k = 2, 3$. Let G be a $(n + 1)$-connected graph. It is shown that (i) G is a (P_{22}, n)-factor critical graph if its toughness $\tau(G) > \frac{n+2}{2}$; (ii) G is a (P_{22}, n)-factor critical graph if its isolated toughness $I(G) > \frac{n+2}{2}$; (iii) G is a (P_{23}, n)-factor critical graph if $\tau(G) > \frac{n+2}{2}$ and $|V(G)| \geq n + 3$; (iv) G is a (P_{23}, n)-factor critical graph if $I(G) > \frac{n+2}{2}$ and $|V(G)| \geq n + 3$. Furthermore, we claim that these conditions are best possible in some sense.

Keywords. Graph, Path-factor, Toughness, Isolated toughness, (P_{22}, n)-factor critical covered graph, (P_{23}, n)-factor critical covered graph.

College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, P.R. China.

*Corresponding author: daiguowei1990@163.com; daiguowei@njfu.edu.cn

Mathematics Subject Classification. 05C70, 05C38.

Received December 17, 2021. Accepted March 28, 2023.

1. Introduction

All graphs considered here are finite and simple. We refer to [5] for the notation and terminologies not defined here. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. Given a vertex $v \in V(G)$, let $d_G(v)$ denote the degree of v, that is, the number of edges incident to v in G. If $d_G(v) = 0$ for some vertex v in G, then v is said to be an isolated vertex in G. Let $i(G)$ be the number of isolated vertices of G. For any subset $S \subseteq V(G)$, let $G[S]$ denote the subgraph of G induced by S, and $G - S := G[V(G) \setminus S]$ is the resulting graph after deleting the vertices of S from G. The number of connected components of a graph G is denoted by $\omega(G)$. We write $\kappa(G)$ for the vertex connectivity of G.

Next, we introduce two parameters for a graph, namely, the toughness and the isolated toughness. The toughness of G was first introduced by Chvátal [6] as

$$
\tau(G) = \min \left\{ \frac{|X|}{\omega(G-X)} : X \subseteq V(G), \omega(G-X) \geq 2 \right\},
$$

if G is not complete; otherwise, $\tau(G) = +\infty$.

© The authors. Published by EDP Sciences, ROADEF, SMAI 2023

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The isolated toughness of G was defined by Yang et al. [20] as

$$I(G) = \min \left\{ \frac{|X|}{i(G-X)} : X \subseteq V(G), i(G-X) \geq 2 \right\},$$

if G is not complete; otherwise, $I(G) = +\infty$.

A subgraph H of G is called a spanning subgraph of G if $V(H) = V(G)$ and $E(H) \subseteq E(G)$. For a family of connected graphs \mathcal{F}, a spanning subgraph H of a graph G is called an \mathcal{F}-factor of G if each component of H is isomorphic to some graph in \mathcal{F}. A spanning subgraph H of a graph G is called a $P_{\geq k}$-factor of G if every component of H is isomorphic to a path of order at least k, where $k \geq 2$ is an integer. For example, a $P_{\geq 3}$-factor means a graph factor in which every component is a path of order at least three.

Since Tutte proposed the well-known Tutte 1-factor theorem [17], there are many results on path-factor [3, 8, 10, 12, 14, 15, 18, 27] and path-factor covered graphs [7, 9, 19, 22–26, 28]. For more other results on graph factors, we refer the reader to the survey papers and books [1, 16, 21].

Akiyama et al. [2] provided a criterion for a graph having a $P_{\geq 2}$-factor as follows.

Theorem 1.1 (Akiyama et al. [2]). A graph G has a $P_{\geq 2}$-factor if and only if $i(G-X) \leq 2|X|$ for all $X \subseteq V(G)$.

In order to characterize a graph possessing a $P_{\geq 3}$-factor, Kaneko [11] put forward the concept of a sun as follows. A graph R is called factor-critical if $R - v$ has a 1-factor for each $v \in V(R)$. Let R be a factor-critical graph and $V(R) = \{v_1, v_2, \ldots, v_n\}$. By adding new vertices $\{u_1, u_2, \ldots, u_n\}$ together with new edges $\{v_iu_i : 1 \leq i \leq n\}$ to R, the resulting graph is called a sun. Note that, according to Kaneko [11], we regard K_1 and K_2 also as a sun, respectively. Usually, the suns other than K_1 and K_2 are also called big suns. It is called a sun component of G if the component of G is isomorphic to a sun. We denote by $\text{sun}(G)$ the number of sun components in G.

Theorem 1.2 (Kaneko [11]). A graph G has a $P_{\geq 3}$-factor if and only if $\text{sun}(G-X) \leq 2|X|$ for all $X \subseteq V(G)$.

Zhang and Zhou [22] first defined a graph G to be $P_{\geq k}$-factor covered if G admits a $P_{\geq k}$-factor containing e for any $e \in E(G)$. In the same paper, they obtained a characterization for $P_{\geq 2}$-factor covered graphs and $P_{\geq 3}$-factor covered graphs, respectively.

Theorem 1.3 (Zhang and Zhou [22]). Let G be a connected graph. Then G is a $P_{\geq 2}$-factor covered graph if and only if $i(G-X) \leq 2|X| - \varepsilon_1(X)$ for all $X \subseteq V(G)$, where $\varepsilon_1(X)$ is defined by

$$\varepsilon_1(X) = \begin{cases} 2 & \text{if } X \neq \emptyset \text{ and } X \text{ is not an independent set;} \\ 1 & \text{if } X \text{ is a nonempty independent set and there exists a nontrivial component of } G - X; \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 1.4 (Zhang and Zhou [22]). Let G be a connected graph. Then G is a $P_{\geq 3}$-factor covered graph if and only if $\text{sun}(G-X) \leq 2|X| - \varepsilon_2(X)$ for all $X \subseteq V(G)$, where $\varepsilon_2(X)$ is defined by

$$\varepsilon_2(X) = \begin{cases} 2 & \text{if } X \neq \emptyset \text{ and } X \text{ is not an independent set;} \\ 1 & \text{if } X \text{ is a nonempty independent set and there exists a non \text{--} sun component of } G - X; \\ 0 & \text{otherwise.} \end{cases}$$

A graph G is a $(P_{\geq k}, n)$-factor critical covered graph if for any $V' \subseteq V(G)$ with $|V'| = n$, $G - V'$ is $P_{\geq k}$-factor covered. In this paper, we study $(P_{\geq k}, n)$-factor critical covered graphs and get some sufficient conditions for graphs to be $(P_{\geq k}, n)$-factor critical covered graphs depending on toughness and isolated toughness, which are given in Sections 2 and 3.
2. \((P_{\geq 2}, n)\)-FACTOR CRITICAL COVERED GRAPHS

In this section, using toughness and isolated toughness, we obtain two sufficient conditions for the existence of \((P_{\geq 2}, n)\)-factor critical covered graphs.

Theorem 2.1. Let \(G\) be a \((n + 1)\)-connected graph, where \(n \geq 0\) is an integer. If its toughness \(\tau(G) > \frac{n+2}{3}\), then \(G\) is a \((P_{\geq 2}, n)\)-factor critical covered graph.

Proof. If \(G\) is a complete graph, then it is easily seen that \(G\) is a \((P_{\geq 2}, n)\)-factor critical covered graph by \(\kappa(G) \geq n + 1\). Next, we consider that \(G\) is a non-complete graph.

For any \(V' \subseteq V(G)\) with \(|V'| = n\), we write \(H = G - V'\). Clearly, \(H\) is connected and \(|V(H)| \geq 2\). To justify Theorem 2.1, it suffices to verify that \(H\) is \(P_{\geq 2}\)-factor covered. Next, we assume that \(H\) is not \(P_{\geq 2}\)-factor covered. Then by Theorem 1.3, there exists a subset \(X \subseteq V(H)\) such that

\[
i(H - X) \geq 2|X| - \varepsilon_1(X) + 1. \tag{1}
\]

Claim 2.1. \(X \neq \emptyset\).

Proof. On the contrary, we assume that \(X = \emptyset\). Then \(\varepsilon_1(X) = 0\). It follows from (1) that

\[
i(H) = i(H - X) \geq 2|X| - \varepsilon_1(X) + 1 = 1. \tag{2}
\]

Note that \(H\) is connected since \(\kappa(H) \geq \kappa(G) - |V'| \geq 1\). Combining this with (2), \(1 \leq i(H) \leq \omega(H) = 1\), that is,

\[
i(H) = \omega(H) = 1. \tag{3}
\]

It follows from (3) that \(H\) is an isolated vertex, which contradicts that \(|V(H)| \geq 2\). Hence, Claim 2.1 is verified.

Next, we will distinguish two cases below to complete the proof of Theorem 2.1.

Case 1. \(|X| = 1\).

In this case, we obtain \(\varepsilon_1(X) \leq 1\). By the definition of \(\varepsilon_1(X)\), we have \(\varepsilon_1(X) = 1\) if there is a nontrivial component of \(H - X\). Otherwise, \(\varepsilon_1(X) = 0\). If \(\varepsilon_1(X) = 1\), then it follows from (1) that \(i(H - X) \geq 2|X| - \varepsilon_1(X) + 1 = 2\), and thus

\[
\omega(H - X) \geq i(H - X) + 1 \geq 3. \tag{4}
\]

If \(\varepsilon_1(X) = 0\), then by (1), we have

\[
\omega(H - X) \geq i(H - X) \geq 2|X| - \varepsilon_1(X) + 1 = 3. \tag{5}
\]

Combining (4), (5) with the definition of \(\tau(G)\), we obtain

\[
\frac{n + 2}{3} < \tau(G) \leq \frac{|X \cup V'|}{\omega(G - X \cup V')} = \frac{|V'| + |X|}{\omega(H - X)} \leq \frac{n + 1}{3},
\]

which is a contradiction.

Case 2. \(|X| \geq 2\).

By the definition of \(\varepsilon_1(X)\), we obtain \(\varepsilon_1(X) \leq 2\). It follows from (1) and \(H = G - V'\) that

\[
\omega(H - X) \geq i(H - X) \geq 2|X| - \varepsilon_1(X) + 1 \geq 2|X| - 1 \geq 3. \tag{6}
\]

According to (6), we have

\[
|X| \leq \frac{\omega(H - X) + 1}{2}. \tag{7}
\]
In terms of (6), (7) and the definition of \(\tau(G) \), we obtain

\[
\tau(G) \leq \frac{|X \cup V'|}{\omega(G - X \cup V')}
= \frac{|V'| + |X|}{\omega(H - X)}
\leq \frac{n + \omega(H - X) + 1}{2 \omega(H - X)}
= \frac{1}{2} + \frac{n}{2 \omega(H - X)} + \frac{1}{2 \omega(H - X)}
\leq \frac{n + 2}{3},
\]

which contradicts that \(\tau(G) > \frac{n+2}{3} \). This completes the proof of Theorem 2.1.

\[\square\]

Remark 2.2. The condition \(\tau(G) > \frac{n+2}{3} \) in Theorem 2.1 is sharp. Set \(G = K_{n+2} \lor 3K_1 \), where \(n \) is a nonnegative integer, and \(\lor \) denotes “join”. It is easily seen that \(\tau(G) = \frac{n+2}{3} \) and \(\kappa(G) = n+2 > n+1 \). For any \(V' \subseteq V(K_{n+2}) \) with \(|V'| = n \), let \(G' = G - V' \). We select \(X = V(K_{n+2}) \setminus V' \subseteq V(G) \), and so \(|X| = 2 \). Note that \(X \) is not an independent set. Then we admit \(\varepsilon_1(X) = 2 \). Thus, we acquire \(i(G' - X) = 3 > 2 = 2|X| - \varepsilon_1(X) \). Using Theorem 1.3, \(G' \) is not \(P_{\geq 2}\)-factor critical covered, that is, \(G \) is not \((P_{\geq 2}, n)\)-factor critical covered.

Note that a \((P_{\geq k}, 0)\)-factor critical covered graph is simply called a \(P_{\geq k}\)-factor covered graph, where \(k = 2, 3, \ldots \). Dai [7] verified that a connected graph \(G \) is a \(P_{\geq 2}\)-factor covered graph if \(I(G) > \frac{2}{3} \). We generalize the above result and give an isolated toughness condition for a graph being a \((P_{\geq 2}, n)\)-factor critical covered graph.

Theorem 2.3. Let \(G \) be a \((n + 1)\)-connected graph, where \(n \geq 1 \) is an integer. If its isolated toughness \(I(G) > \frac{n+1}{2} \), then \(G \) is a \((P_{\geq 2}, n)\)-factor critical covered graph.

Proof. If \(G \) is a complete graph, then it is easily seen that \(G \) is a \((P_{\geq 2}, n)\)-factor critical covered graph by \(\kappa(G) \geq n + 1 \). Next, we consider that \(G \) is a non-complete graph.

For any \(V' \subseteq V(G) \) with \(|V'| = n \), we write \(H = G - V' \). Clearly, \(H \) is connected and \(|V(H)| \geq 2 \). To justify Theorem 2.3, it suffices to verify that \(H \) is \(P_{\geq 2}\)-factor covered. Next, we assume that \(H \) is not \(P_{\geq 2}\)-factor covered. Then by Theorem 1.3, there exists a subset \(X \subseteq V(H) \) such that

\[
i(H - X) \geq 2|X| - \varepsilon_1(X) + 1. \tag{8}
\]

Claim 2.2. \(X \neq \emptyset \).

Proof. On the contrary, we assume that \(X = \emptyset \). Then \(\varepsilon_1(X) = 0 \). It follows from (8) that

\[
i(H) = i(H - X) \geq 2|X| - \varepsilon_1(X) + 1 = 1. \tag{9}
\]

Note that \(H \) is connected since \(\kappa(H) \geq \kappa(G) - |V'| \geq 1 \). Combining this with (9), \(1 \leq i(H) \leq \omega(H) = 1 \), that is,

\[
i(H) = \omega(H) = 1. \tag{10}
\]

It follows from (10) that \(H \) is an isolated vertex, which contradicts that \(|V(H)| \geq 2 \). Hence, Claim 2.2 is verified. \[\square\]
Case 1. $|X| = 1$.
In this case, we obtain $\varepsilon_1(X) \leq 1$. Then by (8), we get
$$i(H - X) \geq 2|X| - \varepsilon_1(X) + 1 \geq 2.$$ (11)
Combining (11) with the fact that $I(G) > \frac{n+1}{2}$, we obtain
$$\frac{n + 1}{2} < I(G) \leq \frac{|X \cup V'|}{i(G - X \cup V')} = \frac{|V'| + |X|}{i(H - X)} \leq \frac{n + 1}{2},$$
a contradiction.

Case 2. $|X| \geq 2$.
By the definition of $\varepsilon_1(X)$, we obtain $\varepsilon_1(X) \leq 2$. It follows from (8) and $H = G - V'$ that
$$i(H - X) \geq 2|X| - \varepsilon_1(X) + 1 \geq 2|X| - 1 \geq 3.$$ (12)
According to (12), we have
$$|X| \leq \frac{i(H - X) + 1}{2}.$$ (13)
In terms of (12), (13) and the definition of $I(G)$, we obtain
$$I(G) \leq \frac{|X \cup V'|}{i(G - X \cup V')} = \frac{|V'| + |X|}{i(H - X)} \leq \frac{n + \frac{i(H - X) + 1}{2}}{i(H - X)}$$
$$= \frac{1}{2} + \frac{n}{i(H - X)} + \frac{1}{2i(H - X)}$$
$$\leq \frac{1}{2} + \frac{n}{3} + \frac{1}{6}$$
$$= \frac{n + 2}{3},$$
which contradicts that $I(G) > \frac{n+2}{3}$. This completes the proof of Theorem 2.3. □

Remark 2.4. The condition $I(G) > \frac{n+1}{2}$ in Theorem 2.3 is sharp. Set $G = K_{n+1} \lor (2K_1 \lor K_2)$, where n is a positive integer. It is easily seen that $I(G) = \frac{n+1}{2}$ and $\kappa(G) = n + 1$. For any $V' \subseteq V(K_{n+1})$ with $|V'| = n$, let $G' = G - V'$.

We select $X = V(K_{n+1}) \setminus V' \subseteq V(G)$, and so $|X| = 1$. Note that X is not an independent set, and $G' - X$ has a nontrivial component. Then we admit $\varepsilon_1(X) = 1$. Thus, we acquire $i(G' - X) = 2 > 1 = 2|X| - \varepsilon_1(X)$. Using Theorem 1.3, G' is not $P_{\geq 2}$-factor covered, that is, G is not $(P_{\geq 2}, n)$-factor critical covered.

3. $(P_{\geq 3}, n)$-FACTOR CRITICAL COVERED GRAPHS

In this section, we obtain two sufficient conditions for $(P_{\geq 3}, n)$-factor critical covered graphs by toughness and isolated toughness. Bazgan et al. [4] verified that a connected graph G with $|V(G)| \geq 3$ has a $P_{\geq 3}$-factor if $\tau(G) \geq 1$. We generalize the above result and give a toughness condition for a graph being a $(P_{\geq 3}, n)$-factor critical covered graph.
Theorem 3.1. Let G be a $(n + 1)$-connected graph with $|V(G)| \geq n + 3$, where $n \geq 0$ is an integer. If its toughness $\tau(G) > \frac{n + 2}{3}$, then G is a $(P_{\geq 3}, n)$-factor critical covered graph.

Proof. If G is a complete graph, then it is easily seen that G is a $(P_{\geq 3}, n)$-factor critical covered graph by $\kappa(G) \geq n + 1$. Next, we consider that G is a non-complete graph.

For any $V' \subseteq V(G)$ with $|V'| = n$, we write $H = G - V'$. Clearly, H is connected. To justify Theorem 3.1, it suffices to verify that H is $P_{\geq 3}$-factor covered. Next, we assume that H is not $P_{\geq 3}$-factor covered. Then by Theorem 1.4, there exists a subset $X \subseteq V(H)$ such that

$$\text{sun}(H - X) \geq 2|X| - \varepsilon_2(X) + 1.$$ \hspace{1cm} (14)

Claim 3.1. $X \neq \emptyset$.

Proof. On the contrary, we assume that $X = \emptyset$. Then $\varepsilon_2(X) = 0$. It follows from (14) that

$$\text{sun}(H) = \text{sun}(H - X) \geq 2|X| - \varepsilon_2(X) + 1 = 1.$$ \hspace{1cm} (15)

Note that H is connected since $\kappa(H) \geq \kappa(G) - |V'| \geq 1$. Combining this with (15), $1 \leq \text{sun}(H) \leq \omega(H) = 1$, that is,

$$\text{sun}(H) = \omega(H) = 1.$$ \hspace{1cm} (16)

It follows from (16) and $|V(G)| \geq n + 3$ that H is a sun with $|V(H)| \geq 3$. By the definition of big sun, we denote R the factor-critical subgraph of H. Note that $|V(H)| = 2|V(R)| \geq 6$. Let $r \in V(R)$ and $R' := R \setminus \{r\}$. Choose $X' = V' \cup V(R')$, then $\omega(G - X') = |V(R')| + 1 = |V(R)| \geq 3$. Using the definition of $\tau(G)$, we obtain

$$\tau(G) \leq \frac{|X'|}{\omega(G - X')} = \frac{|V'| + |V(R')|}{|V(R)|} = 1 + \frac{n - 1}{|V(R)|} \leq \frac{n + 2}{3},$$

which contradicts that $\tau(G) > \frac{n + 2}{3}$ in Theorem 3.1. Hence, Claim 3.1 is verified. \hfill \square

Next, we will distinguish two cases below to completes the proof of Theorem 3.1.

Case 1. $|X| = 1$.

In this case, we obtain $\varepsilon_2(X) \leq 1$. By the definition of $\varepsilon_2(X)$, we have $\varepsilon_2(X) = 1$ if there is a non-sun component of $H - X$. Otherwise, $\varepsilon_2(X) = 0$. If $\varepsilon_2(X) = 1$, then it follows from (14) that $\text{sun}(H - X) \geq 2|X| - \varepsilon_2(X) + 1 = 2$, and thus

$$\omega(H - X) \geq \text{sun}(H - X) + 1 \geq 3.$$ \hspace{1cm} (17)

If $\varepsilon_2(X) = 0$, then by (14), we have

$$\omega(H - X) \geq \text{sun}(H - X) \geq 2|X| - \varepsilon_2(X) + 1 = 3.$$ \hspace{1cm} (18)

Combining (17), (18) with the the definition of $\tau(G)$, we obtain

$$\frac{n + 2}{3} < \tau(G) \leq \frac{|X \cup V'|}{\omega(G - X \cup V')} = \frac{|V'| + |X|}{\omega(H - X)} \leq \frac{n + 1}{3},$$

which is a contradiction.

Case 2. $|X| \geq 2$.

By the definition of $\varepsilon_2(X)$, we obtain $\varepsilon_2(X) \leq 2$. It follows from (14) and $H = G - V'$ that

$$\omega(H - X) \geq \text{sun}(H - X) \geq 2|X| - \varepsilon_2(X) + 1 \geq 2|X| - 1 \geq 3.$$ \hspace{1cm} (19)
According to (19), we have
\[|X| \leq \frac{\omega(H - X) + 1}{2}. \]
(20)

In terms of (19), (20) and the definition of \(\tau(G) \), we obtain
\[\tau(G) \leq \frac{|X \cup V'|}{\omega(G - X \cup V')} = \frac{|V'| + |X|}{\omega(H - X)} = \frac{n + \omega(H - X) + 1}{2 \omega(H - X)} = \frac{1}{2} + \frac{n}{3} + \frac{1}{6} = \frac{n + 2}{3}, \]
which contradicts that \(\tau(G) > \frac{n+2}{3} \). This completes the proof of Theorem 3.1. \(\square \)

Remark 3.2. The condition \(\tau(G) > \frac{n+2}{3} \) in Theorem 3.1 is sharp. Set \(G = K_{n+2} \lor 3K_1 \), where \(n \) is a nonnegative integer. It is easily seen that \(\tau(G) = \frac{n+2}{3} \) and \(\kappa(G) = n + 2 > n + 1 \). For any \(V' \subseteq V(K_{n+2}) \) with \(|V'| = n \), let \(G' = G - V' \). We select \(X = V(K_{n+2}) \setminus V' \subseteq V(G) \), and so \(|X| = 2 \). Note that \(X \) is not an independent set. Then we admit \(\varepsilon_2(X) = 2 \). Thus, we acquire \(\text{sun}(G' - X) = 3 > 2 = 2|X| - \varepsilon_2(X) \). Using Theorem 1.4, \(G' \) is not \(P_{\geq 3} \)-factor covered, that is, \(G \) is not \((P_{\geq 3}, n) \)-factor critical covered.

Zhou [28] verified that a connected graph \(G \) with \(|V(G)| \geq 3 \) is a \(P_{\geq 3} \)-factor covered graph if \(I(G) > \frac{5}{3} \). We generalize the above result and give an isolated toughness condition for \((P_{\geq 3}, n) \)-factor critical covered graphs.

Theorem 3.3. Let \(G \) be a \((n+1) \)-connected graph with \(|V(G)| \geq n+3 \), where \(n \geq 1 \) is an integer. If its isolated toughness \(I(G) > \frac{n+3}{2} \), then \(G \) is a \((P_{\geq 3}, n) \)-factor critical covered graph.

Proof. If \(G \) is a complete graph, then it is easily seen that \(G \) is a \((P_{\geq 3}, n) \)-factor critical covered graph by \(\kappa(G) \geq n+1 \). Next, we consider that \(G \) is a non-complete graph.

For any \(V' \subseteq V(G) \) with \(|V'| = n \), we write \(H = G - V' \). Clearly, \(H \) is connected. To justify Theorem 3.3, it suffices to verify that \(H \) is \(P_{\geq 3} \)-factor covered. Next, we assume that \(H \) is not \(P_{\geq 3} \)-factor covered. Then by Theorem 1.4, there exists a subset \(X \subseteq V(H) \) such that
\[\text{sun}(H - X) \geq 2|X| - \varepsilon_2(X) + 1. \]
(21)

Claim 3.2. \(X \neq \emptyset \).

Proof. On the contrary, we assume that \(X = \emptyset \). Then \(\varepsilon_2(X) = 0 \). It follows from (21) that
\[\text{sun}(H) = \text{sun}(H - X) \geq 2|X| - \varepsilon_2(X) + 1 = 1. \]
(22)

Note that \(H \) is connected since \(\kappa(H) \geq \kappa(G) - |V'| \geq 1 \). Combining this with (22), \(1 \leq \text{sun}(H) \leq \omega(H) = 1 \), that is,
\[\text{sun}(H) = \omega(H) = 1. \]
(23)
It follows from (23) and $|V(G)| \geq n + 3$ that H is a sun with $|V(H)| \geq 3$. By the definition of big sun, we denote by R the factor-critical subgraph of H. Note that $|V(H)| = 2|V(R)| \geq 6$. Choose $X' = V' \cup V(R)$, then $i(G - X') = |V(R)| \geq 3$. Using the definition of $I(G)$, we obtain

$$I(G) \leq \frac{|X'|}{i(G - X')} = \frac{|V'| + |V(R)|}{|V(R)|} = 1 + \frac{n}{|V(R)|} \leq \frac{n + 3}{3},$$

which contradicts that $I(G) > \frac{n + 3}{2}$ in Theorem 3.3. Hence, Claim 3.2 is verified.

Assume that there exist a isolated vertices, b isolated edges and c big sun components Q_1, Q_2, \ldots, Q_c, where $|V(Q_i)| \geq 6$ for $1 \leq i \leq c$, in $H - X$. By (21), we get

$$\text{sun}(H - X) = a + b + c \geq 2|X| - \varepsilon_2(X) + 1. \tag{24}$$

Case 1. $|X| = 1$.

Clearly, $\varepsilon_2(X) \leq 1$ by the definition of $\varepsilon_2(X)$. In terms of (24), we obtain

$$\text{sun}(H - X) = a + b + c \geq 2|X| - \varepsilon_2(X) + 1 \geq 2|X| = 2. \tag{25}$$

We choose one vertex from every K_2 component of $H - X$, and use Y_1 to denote the set of such vertices. For every Q_i, we denote the factor-critical subgraph of Q_i by R_i. We choose one vertex $y_i \in V(R_i)$ for $1 \leq i \leq c$, and write $Y_2 = \{y_1, y_2, \ldots, y_c\}$. Apparently, we obtain

$$i(G - (V' \cup X \cup Y_1 \cup Y_2)) = a + b + c \geq 2. \tag{26}$$

In terms of (25), (26) and the definition of $I(G)$, we obtain

$$I(G) \leq \frac{|V' \cup X \cup Y_1 \cup Y_2|}{i(G - V' \cup X \cup Y_1 \cup Y_2)} = \frac{n + 1 + b + c}{a + b + c} = \frac{n + 1 + \text{sun}(H - X) - a}{\text{sun}(H - X)} \leq 1 + \frac{n + 1}{\text{sun}(H - X)} \leq 1 + \frac{n + 1}{2} = \frac{n + 3}{2},$$

which contradicts that $I(G) > \frac{n + 3}{2}$.

Case 2. $|X| \geq 2$.

Clearly, $\varepsilon_2(X) \leq 2$ by the definition of $\varepsilon_2(X)$. In terms of (24), we obtain

$$\text{sun}(H - X) = a + b + c \geq 2|X| - \varepsilon_2(X) + 1 \geq 2|X| - 1 \geq 3. \tag{27}$$

It follows immediately that

$$|X| \leq \frac{a + b + c + 1}{2}. \tag{28}$$
We choose one vertex from every K_2 component of $H - X$, and use Y_0 to denote the set of such vertices. We use R_i to denote the factor-critical subgraph of Q_i for each Q_i, and set $Y_i = V(R_i)$, where $i = 1, 2, \ldots, c$. Obviously, $|Y_0| = b$ and $i(H_i - Y_i) = |Y_i| = |V(H_i)| / 2$. Let $Y := \bigcup_{i=0}^{c} Y_i$. Then by (27), we obtain
\[i(G - (V' \cup X \cup Y)) = a + b + \sum_{i=1}^{c} |Y_i| = a + b + \sum_{i=1}^{c} |V(H_i)| / 2 \geq a + b + c \geq 3. \] (29)

Combining (28), (29) with the definition of $I(G)$, we have
\[\frac{n + 3}{2} < I(G) \]
\[\leq \frac{|V' \cup X \cup Y|}{i(G - V' \cup X \cup Y)} \]
\[= \frac{|V'| + |X| + b + \sum_{i=1}^{c} |V(H_i)|}{a + b + \sum_{i=1}^{c} |V(H_i)| / 2} \]
\[\leq 1 + \frac{|V'| + |X|}{a + b + \sum_{i=1}^{c} |V(H_i)| / 2} \]
\[\leq 1 + \frac{n + |X|}{a + b + c} \]
\[\leq 1 + \frac{n}{a + b + c} + \frac{a + b + c + 1}{2(a + b + c)} \]
\[\leq 1 + \frac{n}{3} + \frac{2}{3} \]
\[= \frac{n + 5}{3}, \]

a contradiction. This completes the proof of Theorem 3.3. \qed

Remark 3.4. The condition $I(G) > \frac{n + 3}{2}$ in Theorem 3.3 cannot be replaced by $I(G) \geq \frac{n + 3}{2}$. Set $G = K_{n+1} \cup (2K_2 \cup K_1)$, where n is a positive integer. It is easily seen that $I(G) = \frac{n + 3}{2}$ and $\kappa(G) = n + 1$. For any $V' \subseteq V(K_{n+1})$ with $|V'| = n$, let $G' = G - V'$. We select $X = V(K_{n+1}) \setminus V' \subseteq V(G)$, and so $|X| = 1$. Then we admit $0 \leq \varepsilon_2(X) \leq 1$. Thus, we acquire $\text{sun}(G' - X) = 3 > 2 \geq 2|X| - \varepsilon_2(X)$. Using Theorem 1.4, G' is not $P_{2,3}$-factor covered, that is, G is not $(P_{2,3}, n)$-factor critical covered.

Acknowledgements. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11971196).

References

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model (S2O). We are thankful to our subscribers and supporters for making it possible to publish this journal in open access in the current year, free of charge for authors and readers.

Check with your library that it subscribes to the journal, or consider making a personal donation to the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports, is available at https://edpsciences.org/en/subscribe-to-open-s2o.