COMPUTING ROLE ASSIGNMENTS OF CARTESIAN PRODUCT OF GRAPHS

DIANE CASTONGUAY, ELISÂNGELA SILVA DIAS*, FERNANDA NEIVA MESQUITA* and JULIANO ROSA NASCIMENTO

Abstract. Network science is a growing field of study using Graph Theory as a modeling tool. In social networks, a role assignment is such that individuals play the same role, if they relate in the same way to other individuals playing counterpart roles. In this sense, a role assignment permit to represent the network through a smaller graph modeling its roles. This leads to a problem called \(r \)-Role Assignment whose goal is deciding whether it exists such an assignment of \(r \) distinct roles. This problem is known to be \(\text{NP} \)-complete for any fixed \(r \geq 2 \). The Cartesian product of graphs is a well studied graph operation, often used for modeling interconnection networks. Formally, the Cartesian product of \(G \) and \(H \) is a graph, denoted as \(G \Box H \), whose vertex set is \(V(G) \times V(H) \) and two vertices \((u, v) \) and \((x, y) \) are adjacent precisely if \(u = x \) and \(vy \in E(H) \), or \(ux \in E(G) \) and \(v = y \). In a previous work, we showed that Cartesian product of graphs are always 2-role assignable, however the 3-Role Assignment problem is \(\text{NP} \)-complete on this class. In this paper, we prove that \(r \)-Role Assignment restricted to Cartesian product graphs is still \(\text{NP} \)-complete, for any fixed \(r \geq 4 \).

Mathematics Subject Classification. 05C78, 05C76, 68Q25, 05C15.

Received February 1, 2022. Accepted April 3, 2023.

1. Introduction

Nowadays, social networks are a part of everybody’s life. Up to study their behavior, a social network is conceptualized as a graph where vertices represent individuals and edges the relationship between them. In 1980, Augluin introduced the concept of covering from which role assignment arise, as a tool for networks of processors [1]. A decade later, based on graph models for social networks, Everett and Borgatti [8] formalized role assignment under the name of role coloring.

Indeed, a \(r \)-role assignment of a simple graph \(G \) is an assignment of \(r \) distinct roles to the vertices of \(G \) such that if two vertices have the same role, then the sets of roles of their neighbors are the same. Moreover, from such an assignment, we obtain a role graph where vertices are the \(r \) distinct roles and there is an edge between two roles whenever there are two neighbors in the graph \(G \) that correspond to those roles. Note that, the role graph has no multiple edges, but permit loops since two related vertices in \(G \) can have the same role. Observe that, while a social network usually give rise to a large graph, a role assignment allows to represent the same network through a smaller graph. On the other hand, when the role graph is a graph without loops, where every pair of vertices are neighbors, role assignment coincides with \(k \)-fall coloring, introduced by Dunbar et al. [7]

Keywords. Role assignment, Cartesian product, computational complexity.

Instituto de Informática, Universidade Federal de Goiás, Goiás, Brazil.

*Corresponding author: fernandaneivamesquita@inf.ufg.br

© The authors. Published by EDP Sciences, ROADEF, SMAI 2023
as a variant of vertex coloring. More recently, Kaul and Mitillos [14] studied relations between the parameters associated to fall coloring and vertex coloring.

We define the r-ROLE ASSIGNMENT problem as follows:

<table>
<thead>
<tr>
<th>r-ROLE ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance: A simple graph G.</td>
</tr>
<tr>
<td>Question: Does G admit a r-role assignment?</td>
</tr>
</tbody>
</table>

Applications of role assignment are highlighted in several contexts such as social networks [8, 18] and distributed computing [3, 4]. Furthermore, Pekeč and Roberts [17] showed that any network represented by a graph, with minimum degree bounded by a suitable bound that depends on r, has a r-role assignment.

The first study devoted to determine the computational complexity of the problem has appeared in 2001, by Roberts and Sheng [18]. They proved the NP-completeness of 2-ROLE ASSIGNMENT. Such a result was strengthened in 2005, by Fiala and Paulusma [9], who showed that r-ROLE ASSIGNMENT is NP-complete for any fixed r ≥ 3. On the positive side, r-ROLE ASSIGNMENT can be solved in polynomial time for trees [10] and for proper interval graphs [13] for any fixed r ≥ 1. Considering chordal and split graphs, a dichotomy for the complexity of r-ROLE ASSIGNMENT arises. While for chordal graphs, the problem is solvable in linear time for r = 2 and NP-complete for r ≥ 3 [20]; for split graphs, the problem is trivial, with true answer, for r = 2, solvable in polynomial time for r = 3, and NP-complete for any fixed r ≥ 4 [6].

Cartesian product of graphs was introduced by Sabidussi [19] in 1959. Since then, it has been applied in many areas, such as space structures [15] and interconnection networks [5]. Some properties of role assignments has also been studied for Cartesian and categorical product of graphs to admit a fall coloring. After that, Laskar and Lyle [16] showed that the k-fall coloring for k ≥ 3 is NP-complete for bipartite graphs and they also determine some fall colourable Cartesian product of graphs.

In 2021, we initiated a study of the r-ROLE ASSIGNMENT problem for Cartesian product of graphs [2]. In that work, we show the NP-completeness of the problem when r = 3 and we prove that it has a true answer for r = 2. In this paper, we answer positively a conjecture opened by this previous work, by proving that the r-role assignment problem for Cartesian product of graphs is NP-complete for any fixed r ≥ 4.

This paper is organized in more two sections. In Section 2, we set notations and terminology. Our complexity results concerning the r-ROLE ASSIGNMENT problem, r ≥ 4, for Cartesian product of graphs follow in Section 3.

2. Preliminaries

All graphs considered are undirected, finite, non-trivial and have no multiple edges. A graph G is a pair (V(G), E(G)), where V(G) is the set of vertices and E(G) is the set of edges. The vertices u and v are adjacent or neighbors if they are joined by an edge e, also denoted by uv. In this case, u and v are incident to e and e is incident to u and v. A loop is an edge incident to only one vertex. The neighborhood of a vertex v, denoted by N_G(v), is the set of all neighbors of v in G. When the graph G is clear from the context, we simply write N(v).

A simple graph is a graph without loops. In a simple graph G, the degree of a vertex v is the cardinality of N_G(v). The neighborhood of a subset U of V(G), denoted as N_G(U), is the union of the neighborhoods of the vertices of U. If U is any set of vertices in G, we denote by G – U the graph obtained by deleting the vertices in U and all edges incident with any of them.

A path is a sequence of distinct vertices with an edge between each pair of consecutive vertices. For n ≥ 2, we denote a path on n vertices by P_n or by the sequence of vertices v_1 . . . v_n. A clique is a subset of vertices
that are adjacent to each other. A graph G is called bipartite graph if we can partition $V(G) = A \cup B$ so that if there is an edge $uv \in E(G)$, then $u \in A$ and $v \in B$, or vice versa. Hence, a bipartite graph with loops have edge that connects a vertex to itself same partition.

Given a simple graph G and a graph R, possibly with loops. A R-role assignment of G is a surjective vertex mapping $p : V(G) \to V(R)$ such that $p(N_G(v)) = N_R(p(v))$ for all $v \in V(G)$. A graph G has a r-role assignment if it admits a R-role assignment for some graph R, called the role graph, with $|V(R)| = r$. We set $1, \ldots , r$ the vertices of R, also called roles. For now on, all graphs (except maybe the role graph) are simple. Observe that, if the graph G is connected, then the role graph R of any role assignment of G is also connected. Also, if role graph R is bipartite, then so G is.

For Cartesian product, we follow the terminology of Hammack et al. [12]. Let G and H be two graphs. The Cartesian product of G and H is a graph, denoted as $G \square H$, whose vertex set is $V(G) \times V(H)$ and two vertices (u, v) and (x, y) are adjacent precisely if $u = x$ and $vy \in E(H)$, or $ux \in E(G)$ and $v = y$.

Remark that, if H is a trivial graph, then $G \square H \cong G$ and the complexity of the problem r-Role Assignment [18] is already known. Thus, we always consider G and H to be non-trivial graphs.

3. Results

Motivated by the constructions given by van ’t Hof et al. [20], Dourado [6] and Castonguay et al. [2], we propose a new construction to show that the decision problem related to finding a R-role assignment, with $r \geq 4$, for Cartesian product of two graphs remains NP-complete. As done in [2], we perform a polynomial time reduction from the NP-complete problem Hypergraph 2-Coloring, see [11]. A hypergraph \mathcal{H} is a pair $\mathcal{H} = (\mathcal{V}(\mathcal{H}), \mathcal{S}(\mathcal{H}))$, where $\mathcal{V}(\mathcal{H})$ is a set of vertices, and $\mathcal{S}(\mathcal{H})$ is a set of non-empty subsets of $\mathcal{V}(\mathcal{H})$ called hyperedges. We consider hypergraphs with at least one hyperedge and hyperedges with at least two elements.

A surjective mapping $c : \mathcal{V}(\mathcal{H}) \to \{1, 2\}$ is a 2-coloring of \mathcal{H}, if every hyperedge in $\mathcal{S}(\mathcal{H})$ contains at least two vertices u and v with $c(u) \neq c(v)$. The Hypergraph 2-Coloring problem asks whether a given hypergraph has a 2-coloring. Notice that this problem is NP-complete even if the hyperedges has size at most 3 [11].

In Subsection 3.1, we present our construction. We show the unicity of the role graph in Subsection 3.2. Finally, we conclude our NP-completeness result in Subsection 3.3.

3.1. Polynomial time reduction and sufficiency

Given a hypergraph \mathcal{H}, we construct a Cartesian product of two graphs that will serve as an instance of r-Role Assignment. For this, we will consider $G_r(\mathcal{H}) \sqcup P_2$. The construction of $G_r(\mathcal{H})$, defined in the sequel, is based on the incidence graph. The incidence graph $I_{\mathcal{H}} = (\mathcal{V}(I_{\mathcal{H}}), E(I_{\mathcal{H}}))$ of a hypergraph \mathcal{H} is a bipartite graph whose vertex set is $V(I_{\mathcal{H}}) = \mathcal{V}(\mathcal{H}) \cup \mathcal{S}(\mathcal{H})$, and edge set $E(I_{\mathcal{H}}) = \{vS \mid v \in \mathcal{V}(\mathcal{H}), S \in \mathcal{S}(\mathcal{H}) \text{ with } v \in S\}$.

Construction 1. Given a hypergraph \mathcal{H}, with $\mathcal{V}(\mathcal{H})$ and $\mathcal{S}(\mathcal{H}) = \{S_1, \ldots , S_m\}$, with $m \geq 1$, we construct a graph $G_r(\mathcal{H})$, arising from the incidence graph $I_{\mathcal{H}}$. We remind that $V(I_{\mathcal{H}}) = \mathcal{V}(\mathcal{H}) \cup \mathcal{S}(\mathcal{H})$.

- We add edges to make $\mathcal{V}(\mathcal{H})$ a clique;
- We add a path C denoted by $c_1 \ldots c_{r-2}$ and the edges vc_{r-2} for every $v \in \mathcal{V}(\mathcal{H})$;
- We add the subgraph F_r, illustrated in Figure 1, and the edges $b_{r-1}c_{r-2}$ and b_rc_{r-2}. We denote by A the path $a_1 \ldots a_{r-2}$ and by B the path $b_1 \ldots b_{r-2}$;
- For $j = 1, \ldots , m$, we add a path W_j, denoted by $w_{j,1} \ldots w_{j,r-3}$ connected to S_j by the vertex $w_{j,r-3}$, that is, with the edge $S_jw_{j,r-3}$.

Figure 1 contains an example of the graph $G_r(\mathcal{H})$, illustrating the Construction 1. We recall that \mathcal{H} has at least one hyperedge and therefore we have a clique of cardinality 3 in $G_r(\mathcal{H})$ and thus in $G_r(\mathcal{H}) \sqcup P_2$, which ensures that both graphs are not bipartite. Therefore, if there exist a R-role assignment of $G_r(\mathcal{H}) \sqcup P_2$, then R is not bipartite.
Figure 1. The graph $G_r(\mathcal{H})$ constructed from \mathcal{H} with $V(\mathcal{H}) = \{v_1, v_2, v_3, v_4\}$ and $S(\mathcal{H}) = \{S_1, S_2, S_3\}$, where $S_1 = \{v_1, v_2, v_3\}$, $S_2 = \{v_1, v_4\}$ and $S_3 = \{v_3, v_4\}$ and part of a r-role assignment of $G_r(\mathcal{H}) \square P_2$, with $r \geq 4$.

For short, we use the following simplified notations on $G_r(\mathcal{H}) \square P_2$. Considering $V(P_2) = \{v_1, v_2\}$ for each $u \in V(G_r(\mathcal{H}))$, we identify u with the vertex (u, v_1) and denote by u' the vertex (u, v_2). We say that u' is the corresponding vertex of u. Let $U \subseteq V(G)$, we identify U with the set $\{(u, v_1) \mid u \in U\}$ and denote by U' the set $\{(u, v_2) \mid u \in U\}$. For short, we denote $N(u) = N_{G_r(\mathcal{H}) \square P_2}(u, v_1)$ and $N(u') = N_{G_r(\mathcal{H}) \square P_2}(u, v_2)$ for any $u \in V(G_r(\mathcal{H}))$.

Let R_r be the graph presented in Figure 2. Given a hypergraph \mathcal{H} and the Construction 1 graph $G_r(\mathcal{H})$, $r \geq 4$, we show that R_r is the unique role graph for a r-role assignment of $G_r(\mathcal{H}) \square P_2$. Observe that all vertices of R_r have loops.

First, Theorem 1 presents a R_r-role assignment of $G_r(\mathcal{H}) \square P_2$ with $r \geq 4$, when a 2-coloring of \mathcal{H} is known.

Theorem 1. Let \mathcal{H} be a hypergraph and $G_r(\mathcal{H})$, with $r \geq 4$, the graph obtained from Construction 1. If \mathcal{H} has a 2-coloring, then $G_r(\mathcal{H}) \square P_2$ has a R_r-role assignment.
Proof. Let \(c: V(\mathcal{H}) \rightarrow \{r - 1, r\} \) be a 2-coloring of \(\mathcal{H} \). To simplify the definition of a role assignment, we introduce the following subsets of \(V(G_r(\mathcal{H})) \):

- For \(i = 1, \ldots, r - 3 \), \(A_i = \{a_i, b_i, c_i\} \cup \{w_{j,i} \mid j = 1, \ldots, m\} \);
- \(A_{r-2} = \{a_{r-2}, b_{r-2}, c_{r-2}\} \);
- For \(i = r - 1, r \), \(A_i = \{a_i, b_i\} \).

We define a role assignment \(p: V(G_r(\mathcal{H}) \square P_2) \rightarrow \{1, 2, \ldots, r\} \), as follows. For every \(x \in V(G_r(\mathcal{H})) \):

\[
p(x) = \begin{cases}
 i, & \text{if } x \in A_i, \text{ with } i \in \{1, \ldots, r\}; \\
 r - 2, & \text{if } x \in S(\mathcal{H}); \\
 c(i), & \text{if } x \in V(\mathcal{H}).
\end{cases}
\]

For all \(x' \), with \(x \in V(G_r(\mathcal{H})) \), we define \(p(x') = p(x) \).

See an example in Figure 1, where the labels inside the vertices indicate the role assigned to that vertex. It is easy to see that \(p \) is a \(r \)-role assignment of \(G_r(\mathcal{H}) \square P_2 \), but to make it clearer let us detail for \(x \in S(\mathcal{H}) \cup V(\mathcal{H}) \).

For \(x \in S(\mathcal{H}) \), we have that \(p(x) = r - 2 \) and \(x = S_j \), for some \(j \in \{1, \ldots, m\} \). Since \(c \) is a 2-coloring of \(\mathcal{H} \), there are \(v_s, v_t \in S_j \) (in \(\mathcal{H} \)), with \(s, t \in \{1, \ldots, n\} \) and \(c(v_s) \neq c(v_t) \). Suppose, without loss of generality, that \(c(v_s) = r - 1 \) and \(c(v_t) = r \). Thus, \(p(N(S_j)) = \{r - 3, r - 2, r - 1, r\} \), because \(p(S'_j) = r - 2 \) and \(p(w_{j,r-3}) = r - 3 \).

For \(x \in V(\mathcal{H}) \), by definition of \(p \), \(p(x) \in \{r - 1, r\} \) and \(p(N(x)) \subseteq \{r - 2, r - 1, r\} \). We observe that there exists \(y \in V(\mathcal{H}) \), such that \(p(y) \neq p(x) \) and \(\{x', c_{r-2}, y\} \subseteq N(x) \). Since \(p(x') = p(x) \) and \(p(c_{r-2}) = r - 2 \), we have that \(p(N(x)) = \{r - 2, r - 1, r\} \).

\[\square\]

3.2. Uniqueness of the role graph

In the next lemmas we show some settings where the Cartesian product of the Construction 1 graph with \(P_2 \) has no \(r \)-role assignment. In Lemma 1, we show that this is the case when \(a_2 \) and \(a'_2 \) have the same role.

Lemma 1. Let \(\mathcal{H} \) be a hypergraph and \(G_r(\mathcal{H}) \), \(r \geq 4 \), the graph obtained from Construction 1. There is no \(r \)-role assignment \(p \) of \(G_r(\mathcal{H}) \square P_2 \) with \(p(a_2) = p(a'_2) \).

Proof. By contradiction, we suppose that \(p \) is a \(r \)-role assignment of \(G_r(\mathcal{H}) \square P_2 \) with \(p(a_2) = p(a'_2) = 2 \). Let \(R \) be the role graph of \(p \). It follows that \(N_R(1) = \{2\} \). Observe that, if the graph \(G_r(\mathcal{H}) \square P_2 \) is connected, then the role graph \(R \) of any role assignment of \(G_r(\mathcal{H}) \square P_2 \) is also connected. Hence, we may assume that \(k + 1 \in N_R(\{1, \ldots, k\}) \), for \(k = 2, \ldots, r - 1 \).

First, we show by induction that \(p(a_i) = i \) and \(p(a'_i) = i + 1 \), for \(i = 1, \ldots, r - 2 \). Clearly, \(p(a_1) = 1 \) and \(p(a'_1) = 2 \). Since \(N_R(1) = \{2\} \) and \(3 \in N_R(2) \), we have that \(p(a'_2) = 3 \). Thus, \(p(a_2) = 2 \) and \(p(a'_2) = 3 \). Suppose, by induction hypothesis, that \(p(a_i) = i \) and \(p(a'_i) = i + 1 \), for \(i = 1, \ldots, k \), with \(k \in \{2, \ldots, r - 3\} \).

We observe that \(N_R(k) = N_R(p(a'_{k-1})) = \{k - 1, k + 1\} \) and \(k + 2 \in N_R(k + 1) \), thus \(p(a'_{k+1}) = k + 2 \). Since \(p(a_{k+1}) \in N_R(k) \cap N_R(k + 2) \), we have that \(p(a_{k+1}) = k + 1 \) and this proves the induction step.
Observe that $R - \{r - 1, r\}$ is isomorphic to the path P_{r-2} and $N_R(r - 2) = \{r - 3, r - 1\}$. As $r \notin N_R(\{1, \ldots, r-2\})$, we have $r \in N_R(r - 1)$. We may assume that $p(a'_{r-1}) = r$. Since $p(a_{r-1}) \in N_R(r - 2) \cap N_R(r)$, we have that $p(a_{r-1}) = r - 1$. On the other hand, R is not bipartite. Consequently, at least one of the roles $r - 1$ or r has a loop. If there is a loop on $r - 1$, then $p(a'_r) = r - 1$. However, a'_r has no neighbor with role $r - 2$, since $r - 2 \notin N_R(\{r - 2, r\})$. We conclude that R is isomorphic to the path P_r with loop on role r and we can assume that $p(b'_r) = r$.

We remind that $p(a_{r-2}) = r - 2$, $p(a_{r-1}) = p(a'_r - 2) = r - 1$ and $p(a'_r - 1) = p(b'_r - 1) = r$. Since $N_R(r) = \{r - 1, r\}$ and there is no loop on role $r - 1$, we have that $p(b_{r-1}) = p(a'_r) = r$. We deduce that $p(a_r) = r - 1$. On the other hand, $r - 1 \in \{b'_r - 2, p(c'_{r-2})\}$. Therefore, $p(b_r) = p(b'_r) = r$. We look at the possible roles for $b'_r - 2$. Recall that $p(b'_r - 2) \in \{r - 1, r\}$.

If $p(b'_r - 2) = r - 1$, then $p(b_{r-2}) = r$ and $p(b'_{r-3}) = r - 2$. We show by induction that $p(b_i) = i + 1$ and $p(b'_i) = i + 1$, for $i = 1, \ldots, r - 2$. We observe that this induction is decreasing. Clearly, the roles hold for $i = r - 2$. Suppose that $p(b_i) = i + 2$ and $p(b'_i) = i + 1$ for $i = k, \ldots, r - 2$, for some $k \in \{2, \ldots, r - 2\}$. We show that $p(b_{k-1}) = k + 1$ and $p(b'_{k-1}) = k$. We have that $p(b'_k) = k + 1$ and $N_R(k + 1) = \{k, k + 1\}$, since $k + 1 \in \{3, \ldots, r - 1\}$. On the other hand, $p(N(b'_k)) = \{p(b'_{k-1}), k + 2\}$. Hence, $p(b'_{k-1}) = k$. Since $p(b_{k-1}) \in N_R(k) \cap N_R(k + 2)$ and $N_R(k) \cap N_R(k + 2) = \{k + 1\}$, then $p(b_{k-1}) = k + 1$. Therefore, we conclude that $p(b_1) = 3$, $p(b'_1) = 2$ and b'_1 has no neighbor with role 1, a contradiction.

If $p(b'_r - 2) = r$, then we have two possibilities for the role of b_{r-2}: $r - 1$ or r. In case $p(b_{r-2}) = r - 1$, with a similar argument of the previous paragraph we get a contradiction. If $p(b_{r-2}) = r$, we have that $p(b_{r-3}) = p(b'_{r-3}) = r - 1$, a contradiction, since there is no loop on $r - 1$. \qed

In the following lemmas, we show that when the roles of a_1, a_2 and a'_1 are distinct, the Cartesian product of the Construction 1 graph with P_2, has no r-role assignment. We prove specific cases for $r = 4$, 5 and 6 in Lemmas 2–4, respectively, and the general case in Lemma 5. First, we consider, in the next lemma, the case $r = 4$.

Lemma 2. Let \mathcal{H} be a hypergraph and $G_4(\mathcal{H})$ the graph obtained from Construction 1. There is no 4-role assignment p of $G_4(\mathcal{H}) \boxtimes P_2$, when $p(a_1)$, $p(a_2)$, and $p(a'_1)$ are all distinct.

Proof. By contradiction, we suppose that p is a r-role assignment of $G_4(\mathcal{H}) \boxtimes P_2$ with $p(a_1) = 1$, $p(a'_1) = 2$ and $p(a_2) = 3$. Let R be the role graph of p. It follows that $N_R(1) = \{2, 3\}$. Since, $G_4(\mathcal{H}) \boxtimes P_2$ is connected, so R is. Therefore, we can assume that $4 \in N_R(\{2, 3\})$. We consider the possible roles for a'_2. By Lemma 1, $p(a'_2) \neq 1$.

If $p(a'_2) = 2$, then $N_R(2) = N_R(p(a'_2)) = \{1, 2\}$. This causes a contradiction, because $p(a_2) = 3$ and $p(a_2) \in N_R(2)$.

If $p(a'_2) = 3$, then $N_R(2) = \{1, 3\}$ and $N_R(3) = \{1, 2, 3, 4\}$. We may assume that $p(a_3) = 4$ and $p(a'_3) = 2$. Since $1 \in N_R(p(a_3))$ and $1 \notin N_R(4)$, we have that $p(a'_3) = 1$. Given that $N_R(2) = \{1, 3\}$, we have $p(b_3) = p(a'_3) = 3$. Since role 1 has no loop on and $1 \in N_R(3)$, we have that $1 \in p(\{b_2, c_2\})$. We remark that $N_R(1) = \{2, 3\}$ and $N_R(3) = \{1, 2, 3, 4\}$, we obtain that no vertices of degree two or three has role 3, and $2 \in p(\{b_2, c_1\})$. In both cases, this leads to a contradiction, since there is no possibility of vertices of role 3 in the neighborhood of neither b_1, nor c_1.

If $p(a'_2) = 4$, then $N_R(2) = \{1, 4\}$. Since R is not bipartite, we may suppose that role 3 has a loop on, that means $N_R(3) = \{1, 3, 4\}$. Therefore, we can assume that $p(a_3) = 3$. We now consider whether there is a loop on role 4 or not.

If there is no loop on role 4, we have that $N_R(4) = \{2, 3\}$. On the other hand, $p(a'_3) \in N_R(3) \cap N_R(4)$, hence $p(a'_3) = 3$. Looking at the neighborhood of a_3, whose role is 3, we may assume that $p(b_3) = 4$. Since $N_R(3) \cap N_R(4) = \{3\}$, we have $p(b'_3) = 3$. We consider the possible roles for b_2. We recall that $p(b_2) \in N_R(4) = \{2, 3\}$. If $p(b_2) = 2$, then $p(b_1) \in \{1, 4\}$. Consequently $p(b'_1) = 3$, a contradiction by the degree of b_1 which is two. Otherwise, $p(b_2) = 3$ and in the same way, $p(c_2) = 3$. Since $p(b_3) = 4$ and $2 \in N_R(3)$, therefore $p(a_4) = 2$. That is a contradiction, since $2 \notin N_R(3)$.
If there is a loop on role 4, we have that \(N_R(4) = \{2, 3, 4\} \) and by Construction 1 \(p(\{b_1, b'_1\}) = p(\{c_1, c'_1\}) = \{1, 2\} \) and \(p(\{b_2, b'_2\}) = p(\{c_2, c'_2\}) = \{3, 4\} \). Since \(p(a'_3) \in N_R(3) \cap N_R(4) \), we have that \(p(a'_3) \neq 1 \) and we may assume that \(p(b_3) = 1 \). Hence, \(p(b_2) = p(c_2) = 3 \) and \(p(b'_2) = p(c'_2) = 4 \). Therefore, \(p(b_1) = p(c_1) = 1 \) and \(p(b'_1) = p(c'_1) = 2 \). It follows from the fact that \(3 \in N_R(3) \), that \(p(b_4) = 3 \). Since \(1 \notin N_R(4) \) and there is no loop on the role 1, we have that \(1 \notin p(N_R(b_4)) \) is a contradiction. We remind that \(N_R(1) = \{2, 3\} \), \(N_R(3) = \{1, 3, 4\} \), and \(p(a_2) = 3 \), then \(p(a_4) = 3 \). □

Now, in Lemma 3, we consider the case \(r = 5 \).

Lemma 3. Let \(\mathcal{H} \) be a hypergraph and \(G_5(\mathcal{H}) \) the graph obtained from Construction 1. There is no 5-role assignment \(p \) of \(G_5(\mathcal{H}) \square P_2 \), when \(p(a_1), p(a_2), \) and \(p(a'_1) \) are all distinct.

Proof. By contradiction, we suppose that \(p \) is a \(r \)-role assignment of \(G_r(\mathcal{H}) \square P_2 \) \(p(a_1) = 1, p(a_2) = p(a'_1) = 2 \). Let \(R \) be the role graph of \(p \). It follows that \(N_R(1) = \{2, 3\} \). Since \(G_5(\mathcal{H}) \square P_2 \) is connected, so \(R \) is. Hence, we may assume that \(4 \in N_R(\{2, 3\}) \) and \(5 \in N_R(\{2, 3, 4\}) \). We consider the possible roles for \(a'_2 \). As before, if \(p(a'_2) = 2 \), then \(N_R(2) = \{1, 2\} \) and a contradiction, since \(3 \in p(N(a'_2)) \). By Lemma 1, \(p(a'_2) \neq 1 \).

If \(p(a'_2) = 3 \), then \(N_R(2) = \{1, 3\} \) and we conclude that \(\{1, 2, 3, 4\} \subseteq N_R(3) \). However, \(|N(a'_2)| = 3 \), so we do not have enough neighbors, a contradiction. As \(p(a'_2) \notin \{1, 2, 3\} \), we may assume that \(p(a'_2) = 4 \) and \(N_R(2) = \{1, 4\} \).

Given the configuration of the roles so far and the fact that \(5 \in N_R(\{3, 4\}) \), we may assume that \(5 \in N_R(3) \). Hence, \(p(a_3) = 5 \) and \(N_R(3) = \{1, 4, 5\} \). We consider the potential roles for \(a'_3 \). We observe that \(p(a'_3) \in N_R(5) \subseteq \{3, 4, 5\} \). If \(p(a'_3) = 3 \), then \(N_R(4) = \{2, 3\} \) and we have a loop on role 5, since \(R \) is not bipartite. Hence, \(N_R(5) = \{3, 5\} \) and we may assume that \(p(a_4) = 5 \). We have that \(p(a'_4) \in N_R(3) \cap N_R(5) \), that is, \(p(a'_4) = 5 \). Since \(1 \in N_R(3) \), we have that \(p(a'_3) = 1 \). Therefore, \(p(a_5) \in N_R(1) \cap N_R(5) \), that is, \(p(a_5) = 3 \). Hence, \(4 \notin p(N(a_5)) \), because \(p(\{b_1, b'_1\}) \subseteq N_R(5) \) is a contradiction.

If \(p(a'_3) = 4 \), then \(N_R(4) = \{2, 3, 4\} \), a contradiction, because \(p(a_3) = 5 \).

If \(p(a'_3) = 5 \), then \(N_R(4) = \{2, 3, 5\} \) and \(N_R(5) = \{3, 4, 5\} \). We may assume that \(p(a_4) = 4 \). As \(p(a'_3) \in N_R(4) \cap N_R(5) \), we have that \(p(a'_4) \notin 2 \) and we may assume that \(p(b_2) = 2 \). Since \(|N(b_1)| = |N(b'_1)| = 2 \), we have \(p(\{b_1, b'_1\}) \subseteq \{1, 2\} \). Given that there is no loop on roles 1 and 2, we conclude that \(p(\{b_1, b'_1\}) = \{1, 2\} \). Therefore, \(p(\{b_2, b'_2\}) = \{3, 4\} \) and \(p(b_3) = p(b'_3) = 5 \), a contradiction, because \(p(b_4) = 2 \) and \(2 \notin N_R(5) \). □

Next, in Lemma 4 we consider the case \(r = 6 \).

Lemma 4. Let \(\mathcal{H} \) be a hypergraph and \(G_6(\mathcal{H}) \) the graph obtained from Construction 1. There is no 6-role assignment \(p \) of \(G_6(\mathcal{H}) \square P_2 \), when \(p(a_1), p(a_2), \) and \(p(a'_1) \) are all distinct.

Proof. By contradiction, we suppose that \(p \) is a \(r \)-role assignment of \(G_r(\mathcal{H}) \square P_2 \) \(p(a_1) = 1, p(a_2) = p(a'_1) = 2 \). Let \(R \) be the role graph of \(p \). It follows that \(N_R(1) = \{2, 3\} \). Since \(G_6(\mathcal{H}) \square P_2 \) is connected, so \(R \) is. We consider \(4 \in N_R(\{2, 3\}), 5 \in N_R(\{2, 3, 4\}) \) and \(6 \in N_R(\{2, 3, 4, 5\}) \). We consider the possible roles for \(a'_2 \). As before, if \(p(a'_2) = 2 \), then \(N_R(2) = \{1, 2\} \) and a contradiction, since \(3 \in p(N(a'_2)) \). By Lemma 1, \(p(a'_2) \neq 1 \). Similar as the proof of Lemma 3, we may assume that \(p(a'_2) = 4 \) and \(N_R(2) = \{1, 4\} \).

Given the configuration of the roles so far and the fact that \(5 \in N_R(\{3, 4\}) \) and \(N_R(3) = \{1, 4, 5\} \). We may assume that \(p(a_3) = 5 \). And we consider the feasible roles for \(a'_3 \). Since \(p(a'_3) \in N_R(4) \cap N_R(5) \), we have \(p(a'_3) \in \{3, 4, 5, 6\} \).

If \(p(a'_3) = 3 \), then \(N_R(4) = \{2, 3\} \), \(6 \in N_R(5) \) and \(p(a_4) = 6 \). Since \(1 \in N_R(3) \), we have that \(p(a'_3) = 1 \), a contradiction, since \(1 \notin N_R(6) \). If \(p(a'_4) = 4 \), then \(N_R(4) = \{2, 3, 4\} \), but \(p(a'_3) = 5 \), a contradiction. If \(p(a'_3) = 5 \), then \(N_R(4) = \{2, 3, 5\} \). Accordingly, \(N_R(5) = \{3, 4, 5, 6\} \) is a contradiction, since \(|N(a'_3)| = 3 \). So, we have that \(p(a'_3) = 6 \) and \(N_R(4) = \{2, 3, 6\} \).

Since, \(R \) is not bipartite and we may assume that \(R \) has a loop on role 6. Consequently, \(p(a'_4) = 6 \) and \(N_R(6) = \{4, 5, 6\} \). As \(p(a_4) \in N_R(5) \cap N_R(6) \), we consider the potential for \(p(a_4) \) are roles 5 and 6.
If \(p(a_4) = 5 \), then \(N_R(5) = \{3,5,6\} \) and we may assume that \(p(a_5) = 3 \). Since \(p(a'_4) \in N_R(3) \cap N_R(6) \), we have that \(p(a'_4) \neq 1 \) and we may assume that \(p(b_3) = 1 \). On the other hand \(|N(b_3)| = |N(b'_3)| = 2 \), since there are no loop on roles 1 and 2, we have that \(p(\{b_1, b'_1\}) = \{1,2\} \). Therefore, \(p(\{b_2, b'_2\}) = \{3,4\} \) and \(p(\{b_3, b'_3\}) = p(\{b_4, b'_4\}) = \{5,6\} \). Note that \(1 \notin N_R(\{5,6\}) \) and we have a contradiction.

If \(p(a_4) = 6 \), then \(N_R(5) = \{3,6\} \). On the other hand, since \(N_R(6) = \{4,5,6\} \), we may assume that \(p(a'_4) = 4 \) and \(p(a'_5) = 5 \). We remind that \(2 \in N_R(4) \), but all neighbors of \(a'_5 \) are adjacent to a vertex role 5 or 6, a contradiction, given that \(2 \notin N_R(\{5,6\}) \). \(\square \)

After considered the particular cases, we conclude in Lemma 5 that, for \(r \geq 4 \), the Cartesian product of the Construction 1 graph with \(P_2 \) has no \(r \)-role assignment, when the roles of \(a_1 \), \(a_2 \) and \(a'_1 \) are distinct.

Lemma 5. Let \(\mathcal{H} \) be a hypergraph and \(G_r(\mathcal{H}) \), with \(r \geq 4 \), the graph obtained from Construction 1. There is no \(r \)-role assignment \(p \) of \(G_r(\mathcal{H}) \square P_2 \), such that \(p(a_1), p(a_2) \), and \(p(a'_1) \) are all distinct.

Proof. By the Lemmas 2, 3 and 4, the result follows, for \(r = 4, 5 \) and \(6 \), respectively. From now on, we consider, \(r \geq 7 \). By contradiction, we suppose that \(p \) is a \(r \)-role assignment of \(G_r(\mathcal{H}) \square P_2 \) and \(p(a_1) = 1 \), \(p(a'_1) = 2 \) and \(p(a_2) = 3 \). Let \(R \) be the role graph of \(p \). It follows that \(N_R(1) = \{2,3\} \). Since \(G_r(\mathcal{H}) \square P_2 \) is connected, so \(R \) is.

Hence, we may assume that \(k+1 \notin N_R(\{1,\ldots,k\}) \), for \(k = 3,\ldots, r-1 \). We consider the possible roles for \(a'_2 \).

As before, if \(p(a'_2) = 2 \), then \(N_R(2) = \{1,2\} \) is a contradiction, since \(3 \notin p(N(a'_2)) \). By Lemma 1, \(p(a'_2) \neq 1 \).

If \(p(a'_2) = 3 \), then \(\{1,2,3,4\} \subseteq N_R(3) \), but \(|N_R(a'_2)| = 3 \) and \(a'_2 \) does not have enough neighbors, a contradiction. Therefore, we can assume \(p(a'_2) = 4 \).

Let \(t \) be the largest integer, such that, \(|\{p(a_i), p(a'_i) \mid i = 1,\ldots, t\}| = 2t \). Clearly, \(t \geq 2 \) and \(2t \leq r \). For sake of simplicity, let \(p(a_i) = 2t-1 \) and \(p(a'_i) = 2t \), for \(i = 1,\ldots, t \). We observe that \(N_R(1) = \{2,3\} \), \(N_R(2) = \{1,4\} \) and for \(i = 2,\ldots, t-1 \), \(N_R(2i-1) = \{2i-3,2i,2i+1\} \), \(N_R(2i) = \{2i-2,2i-1,2i+2\} \). We analyze three cases: \(2t \leq r-2 \), \(2t = r-1 \) and \(2t = r \).

Case 2t ≤ r − 2.

In this case, \(2t+1 \in N(\{2t-1,2t\}) \) and since \(t \geq 2 \), \(t \leq r-t-2 \leq r-4 \). We may assume that \(p(a_{t+1}) = 2t+1 \). Hence, \(N_R(2t-1) = \{2t-3,2t,2t+1\} \). By the hypotheses about \(t \), \(p(a'_t+1) \neq 2t+2 \) and as we know that \(2t+2 \leq r \), \(2t+2 \in N_R(2t+1) \). On the other hand, \(t+1 \leq r-3 \) and \(|N(a_{t+1})| = 3 \), which implies that \(p(a_{t+2}) = 2t+2 \).

We show a contradiction for every possible role of \(a'_t+1 \). We observe that \(p(a'_t+1) \in \{2t-1,2t,2t+1\} \). If \(p(a'_t+1) = 2t-1 \), then \(p(a'_t+2) = 2t-3 \) is a contradiction, since \(2t+2 \notin N_R(2t-3) \).

If \(p(a'_t+1) = 2t \), then \(N_R(2t) = \{2t-2,2t-1,2t,2t+1\} \) is a contradiction, because \(|N(a'_t+1)| = 3 \).

If \(p(a'_t+1) = 2t+1 \), then \(N_R(2t+1) = \{2t-1,2t,2t+1,2t+2\} \), which again leads to a contradiction.

Case 2t = r − 1, that is, r = 2t + 1.

As \(r \geq 7 \), we have \(t \geq 3 \) and \(t \leq r-4 \). Analogously to the previous case, we may assume that \(p(a_{t+1}) = 2t+1 \) and \(N_R(2t-1) = \{2t-3,2t,2t+1\} \). We observe that \(p(a'_t+1) \in \{2t-2,2t-1,2t,2t+1\} \) and we reach a contradiction for each of the potential roles of \(a'_t+1 \).

If \(p(a'_t+1) = 2t-2 \), then we have a contradiction, because \(2t+1 \in N_R(2t+2) \). If \(p(a'_t+1) = 2t-1 \), then \(N_R(2t) = \{2t-2,2t-1\} \). As, \(t+1 \leq r-3 \), \(p(a'_t+2) = 2t-3 \). Thus, \(p(a_{t+2}) \in N_R(2t-3) \cap N_R(2t+1) \), that is \(p(a_{t+2}) = 2t-1 \). Therefore, \(N_R(2t+1) = \{2t-1\} \). Hence, \(R \) is bipartite, a contradiction. If \(p(a'_t+1) = 2t \), then \(N_R(2t) = \{2t-2,2t-1,2t,2t+1\} \), a contradiction to the fact that \(|N_R(a'_t+1)| = 3 \). We conclude that, \(p(a'_t+1) = 2t+1 \), \(N_R(2t) = \{2t-2,2t-1,2t+1\} \) and \(N_R(2t+1) = \{2t-1,2t,2t+1\} \). We observe that all neighborhood of roles of \(R \) are defined, since \(r = 2t+1 \).

Recall that \(t \leq r-4 \), that is, \(t+1 \leq r-3 \). Therefore, \(p(a_{t+2}) = 2k \) and \(p(a'_t+2) = 2t-1 \). It is easy to see, using induction, that \(p(a_i) = 2(r-i) + 2 \) and \(p(a'_i) = 2(r-i) + 1 \) for \(i = t+2, \ldots, r-2 \).

We deduce that \(p(a_{r-2}) = 2(r-(r-2)) + 2 = 6 \) and \(p(a'_{r-2}) = 5 \). Hence, \(3 \in p(\{a'_{r-1}, a'_r\}) \). We may assume that \(p(a'_{r-1}) = 3 \). Since \(1 \notin N_R(6) \), we can suppose that \(p(b'_{r-1}) = 1 \).
Clearly, $p(\{b_i, b'_i\}) = p(\{a_i, a'_i\})$, for $i = \{1, \ldots, r - 2\}$. We conclude that $p(b'_{r-2}) \in \{5, 6\}$, a contradiction, since $p(b'_{r-1}) = 1$.

Case 2t = r.

We observe that, in this case, r is even and therefore $r \geq 8$. We remind that $N_R(1) = \{2, 3\}$, $N_R(2) = \{1, 4\}$ and for $i = 2, \ldots, t - 1$, with $N_R(2i - 1) = \{2i - 3, 2i, 2i + 1\}$ and $N_R(2i) = \{2i - 2, 2i - 1, 2i + 2\}$. On the other hand, R is not bipartite and we may assume that there is a loop on the role r. As $r \geq 8$, $4 \leq t \leq r - 4$, we have that $p(a'_{t+1}) = 2t = r$ and $N_R(2t) = \{2t - 2, 2t - 1, 2t\}$.

We deduce that $p(a_{t+1}) \in N_R(2t - 1) \cap N_R(2t)$. Clearly, $p(a_{t+1}) \in \{2t - 1, 2t\}$.

If $p(a_{t+1}) = 2t$, then $N_R(2t - 1) = \{2t - 3, 2t\}$. We remark that $N_R(2t) = \{2t - 2, 2t - 1, 2t\}$ and $t + 1 \leq r - 3$. However, $p(N(a_{t+1})) = \{2t, p(a_{t+2})\}$, a contradiction. Therefore, $p(a_{t+1}) = 2t - 1$ and $N_R(2t - 1) = \{2t - 3, 2t - 1, 2t\}$. Clearly, $p(a_{t+2}) = 2t - 3$ and $p(a'_{t+2}) = 2t - 2$. It is easy to see, using induction, that $p(a_i) = 2(r - i) + 1$ and $p(a'_i) = 2(r - i) + 2$ for $i = t + 1, \ldots, r - 2$. We conclude that $p(a_{r-2}) = 5$ and $p(a'_{r-2}) = 6$. Hence, $3 \in p(\{a_{r-1}, a_r\})$. We can suppose that $p(a_{r-1}) = 3$. Since $1 \notin N_R(6)$, we can suppose that $p(b_{r-1}) = 1$.

Similarly, using induction, it is possible to show that $p(\{b_i, b'_i\}) = p(\{a_i, a'_i\})$, for $i = 1, \ldots, r - 2$. We conclude that $p(b'_{r-2}) \in \{5, 6\}$ which leads to a contradiction, since $p(b'_{r-1}) = 1$.

Now, we show that the role graph of a r-role assignment of the Cartesian product of $G_r(\mathcal{H}) \square P_2$ is unique. For this purpose, we will use the graph R_r of Figure 2. For a better use, let recall this graph in Figure 3.

The proof is separated in two lemmas: Lemma 6 for the specific case when $r = 4$ and Lemma 7 for the general case.

Lemma 6. Let \mathcal{H} be a hypergraph and $G_4(\mathcal{H})$ the graph obtained from Construction 1. If $G_4(\mathcal{H}) \square P_2$ has a R-role assignment with $|V(R)| = 4$, then $R \simeq R_4$.

Proof. Let p be a R-role assignment of $G_4(\mathcal{H}) \square P_2$, with $|V(R)| = 4$. Suppose that $p(a_1) = 1$. Since, $G_4(\mathcal{H}) \square P_2$ is connected, so R is. Hence, we may assume that $2 \in N_R(1)$, $3 \in N_R(\{1, 2\})$ and $4 \in N_R(\{1, 2, 3\})$. We observe that $2 \in p(N(a_1))$ and $N(a_1) = \{a'_1, a_2\}$. By Lemma 1, $p(a_2) \neq p(a'_1)$. It follows from the Lemma 5 that $p(a_1), p(a_2)$ and $p(a'_1)$ are not all distinct and we conclude that $p(\{a'_1, a_2\}) = \{1, 2\}$. If $p(a'_1) = 2$ and $p(a_2) = 1$, then $N_R(1) = \{1, 2\}$. Hence, $3 \in N_R(2)$ and $p(a'_2) = 3$, a contradiction. Therefore, $p(a'_1) = 1$ and $p(a_2) = 2$.

We show that $R \simeq R_4$. We remark that $p(a_1) = 1$, $p(a'_1) = 1$, $p(a_2) = 2$ and $N_R(1) = \{1, 2\}$. Hence, $p(a'_2) = 2$ and $\{1, 2, 3\} \subseteq N_R(2)$. Since $|N(b_1)| = |N(b'_1)| = 2$, we have $2 \notin p(\{b_1, b'_1\})$. In the same way, $2 \notin p(\{c_1, c'_1\})$. We may assume that $p(a_3) = 3$. We divide in two cases, depending whether role 4 belongs or not to the neighborhood of the role 2.

If $4 \notin N_R(2)$, then $4 \in N_R(3)$, $p(a'_3) \in \{2, 3\}$ and we may assume that $p(b_3) = 4$. If $p(a'_3) = 2$, then $p(a'_3) = 3$. Therefore, all neighbors of a'_3 are adjacent to the vertices with role 3 or 4, that is, $1 \notin p(N(a'_3))$ a contradiction. Thus, $p(a'_3) = 3$ and $|N_R(3)| = \{2, 3, 4\} = 3$. Again, we have that $3 \notin p(\{b_1, b'_1\})$, that is, $|p(\{b_1, b'_1\})| \subseteq \{1, 4\}$. Since there is no edge between roles 1 and 4, we have that $p(b_1) = p(b'_1)$. On the other hand, $p(b_2) \neq 2$, since $4 \notin N_R(2)$. We conclude that $p(b_1) = p(b'_1) = 4$ and $p(b_2) = p(b'_2) = 3$. In the same way, we get $p(c_2) = p(c'_2) = 3$. Observing the neighborhood of b_2, which has role 3, we obtain that $p(b_4) = 2$.

![Figure 3. Role graph R_r, with $r \geq 4$.](image)
However, all neighbors of b_4 have role 3, except for a_4. Nonetheless, $p(a_4) \neq 1$, since $p(b_3) = 4$ and $1 \not\in N_R(4)$. Therefore, $1 \not\in p(N(b_2))$, a contradiction.

If $4 \in N_R(2)$, then $N_R(2) = \{1,2,3,4\}$ and $p(a_4) = 4$. We remind that $p(b_1), p(b'_1) \in \{1,3,4\}$. If $p(b_1) = 3$, then $|N_R(3)| = 2$ and $p(b'_1) \in \{3,4\}$. In both cases, $p(b_2) = p(b'_2) = 2$. However, all neighbors of b_2 has adjacent vertices with role 3 or 4. Therefore, $1 \not\in p(N(b_2))$. In the same way, we get a contradiction when $p(b_1) = 4$. We conclude that, $p(b_1) = 1$ and thus $p(b'_1) = 1$. Hence, $p(b_2) = p(b'_2) = 2$. We conclude that $p(\{b_3,b_4\}) = \{3,4\}$ and $R \simeq R_3$.

In the following lemma, we show the uniqueness of the role graph for the general case.

Lemma 7. Let \mathcal{H} be a hypergraph, $r \geq 4$ and $G_r(\mathcal{H})$ the graph obtained from Construction 1. If $G_r(\mathcal{H}) \square P_2$ has a R-role assignment with $|V(R)| = r$, then $R \simeq R_r$.

Proof. Let p be a R-role assignment of $G_r(\mathcal{H}) \square P_2$ and $|V(R)| = r$. By Lemma 6, we can assume that $r \geq 5$. Suppose that $p(a_1) = 1$. Since, $G_r(\mathcal{H}) \square P_2$ is connected, so R is. Hence, we may assume that, $V(R) = \{1,\ldots,r\}$ and $k + 1 \in N_R(\{1,\ldots,k\})$, for $k = 1,\ldots,r - 1$. We observe that $2 \in p(N(a_1))$ and $N(a_1) = \{a'_1, a_2\}$. By Lemma 1, $p(a_2) \neq p(a'_1)$. It follows from the Lemma 5 that $p(a_1), p(a_2)$ and $p(a'_1)$ are not all distinct and we conclude that $p(\{a'_1, a_2\}) = \{1,2\}$. If $p(a'_1) = 2$ and $p(a_2) = 1$, then $N_R(1) = \{1,2\}$. Hence, $3 \in N_R(2)$ and $p(a'_2) = 3$, a contradiction. Therefore, $p(a'_1) = 1$ and $p(a_2) = 2$.

We remark that $p(a_1) = p(a'_1) = 1$ and $p(a_2) = 2$. Hence, $N_R(1) = \{1,2\}$ and $p(a'_2) = 2$. By induction, we have that $p(a_i) = p(a'_i) = i$ for $i = 1,\ldots,r - 2$. We note that in this case, except for $i = 2, N_R(i - 1) = \{i - 2, i - 1, i\}$.

We consider the path $B = b_1 \ldots b_{r-2}$ of $G_r(\mathcal{H})$. We show that $p(b_i) = p(b'_i) = i$, for $i = 1,\ldots,r - 2$. Similarly, we get the roles for the vertices of the paths C and W_j, with $j = 1,\ldots,m$.

We observe that the graph $R - \{r - 1, r\}$ is isomorphic to the path P_{r-2} with loop on all roles and $r - 1 \in N_R(r - 2)$. Hence, $\{r - 3, r - 2, r - 1\} \subseteq N_R(r - 2)$. We may assume that $p(a_{r-1}) = r - 1$. Next, we consider the potential roles for $p(b_1)$. We remark that $|N(b_1)| = 2$ and therefore $p(b_1) \in \{1, r - 1, r\}$. In the same way, $p(b'_1) \in \{1, r - 1, r\}$.

If $p(b_1) = 1$, then similarly to the path A, we have that $p(b_i) = p(b'_i) = i$, for $i = 1,\ldots,r - 2$. Hence, we may assume that, $p(b_{r-1}) = r - 1$. We remark that, $p(a_{r-1}) = r - 1$ and $r \in N_R(\{r - 2, r - 1\})$. Since all neighbors of a_{r-1} are neighbors of vertices of role $r - 2$, we have that, $r \in N_R(r - 2)$ and $N_R(r - 2) = \{r - 3, r - 2, r - 1, r\}$. Therefore, $p(a_r) = r$. In the same way, $p(b_r) = r$ and we have that, $R \simeq R_r$.

Next, we reach contradictions for the remaining cases. If $p(b_1) = r - 1$, then as $p(b'_1) \in \{1, r - 1, r\}$ we have that $p(b_2) = r - 2$. Since $|N(b_2)| = 3$ and $r \geq 5$, we have that, $N_R(r - 2) = \{r - 3, r - 2, r - 1\}$. We get that, $r \in N_R(r - 1)$ and therefore $p(b'_2) = r$. Hence, $p(b'_2) \in N_R(r - 2) \cap N_R(r)$, that is, $p(b'_2) = r - 1$, a contradiction, because $p(N(b_2)) = \{r - 1, 1, p(b_1)\}$.

If $p(b_1) = r$, then from the previous cases, we may assume that, $p(b'_1) = r$ and $r \not\in N_R(r - 2)$. We find that, $N_R(r - 2) = \{r - 3, r - 2, r - 1\}$ and $N_R(r) = \{r, r - 1\}$. Therefore, $p(b_2) = p(b'_2) = r - 1$ and the graph R is isomorphic to the path P_r with loops on all roles. Clearly, by induction, $p(b_i) = p(b'_i) = r - i + 1$, for $i = 2,\ldots,r - 2$. We conclude that, $p(b_{r-2}) = p(b'_{r-2}) = r - (r - 2) + 1 = 3$. Since $p(b_{r-3}) = 4$, we may assume that, $p(b_{r-1}) = 2$. We remark that $p(a_{r-1}) = r - 1$, a contradiction, once $r \geq 5$. □

3.3. NP-completeness

We show that one can obtain a 2-coloring of \mathcal{H} when it is given a r-role assignment of $G_r(\mathcal{H}) \square P_2$, $r \geq 4$.

Theorem 2. Let \mathcal{H} be a hypergraph and $G_r(\mathcal{H})$ with $r \geq 4$, the graph obtained from Construction 1. If $G_r(\mathcal{H}) \square P_2$ has a R-role assignment, then \mathcal{H} has a 2-coloring.

Proof. Let p be a R-role assignment of $G_r(\mathcal{H}) \square P_2$, with $|V(R)| = r \geq 4$. By Lemma 7, we may assume that, $R = R_r$.

Consider the path $A = a_1 \ldots a_{r-2}$ in $G_r(\mathcal{H})$. Similarly, we assign the roles for the paths B, C and $W_j S_j$ with $j = 1,\ldots,m$.

We show, by induction, that \(p(a_i) = p(a'_i) = i \), for \(i = 1, \ldots, r - 2 \). Since \(|N(a_1)| = |N(a'_1)| = 2\), we have that, \(P(a_i) = P(a'_i) = 1 \). Suppose that, \(p(a_i) = p(a'_i) = i \), for \(i = 1, \ldots, k \) with \(k \in \{1, \ldots, r - 3\} \). We remind that, \(N_R(1) = \{1, 2\} \) and \(N_R(i) = \{i - 1, i, i + 1\} \), for \(i = 2, \ldots, r - 3 \). Observing the neighborhood of \(a_k \), we get that \(P(a_{k+1}) = k + 1 \). In the same way, \(P(a'_{k+1}) = k + 1 \).

We want to define a 2-coloring of \(\mathcal{H} \), \(c : \mathcal{V}(\mathcal{H}) \rightarrow \{r - 1, r\} \), using \(p \). First, we show that, \(P(\mathcal{V}(\mathcal{H})) = \{r - 1, r\} \). Observe that, for \(j = 1, \ldots, m \), \(P(w_{j, r - 3}) = r - 3 \) and \(P(S_j) = P(S'_j) = r - 2 \). Since, \(m \geq 1 \) and \(N_R(r - 2) = \{r - 3, r - 2, r - 1, r\} \), we have that, \(\{r - 1, r\} \subseteq P(\mathcal{V}(\mathcal{H})) \). In the same way, \(\{r - 1, r\} \subseteq P(\mathcal{V}(\mathcal{V})) \).

Since \(\mathcal{V}(\mathcal{H}) \) induces a clique on \(G_r(\mathcal{H}) \), we have that \(P(\mathcal{V}(\mathcal{H})) \subseteq \{r - 2, r - 1, r\} \). However, if a vertex has role \(r - 2 \), then it will have no neighbor with role \(r - 3 \), a contradiction. Therefore, \(P(\mathcal{V}(\mathcal{H})) = \{r - 1, r\} \).

We define \(c(v) = p(v) \) for every \(v \in \mathcal{V}(\mathcal{H}) \). We show that \(c \) is a 2-coloring of \(\mathcal{H} \). Let \(S_j \in S(\mathcal{H}) \), for some \(j \in \{1, \ldots, m\} \). We remind that, \(P(S_j) = r - 2 \) and \(P(N(S_j)) = \{r - 2, r - 3\} \cup \{p(v) | v \in S_j \text{ in } \mathcal{H}\} \). Since \(N_R(r - 2) = \{r - 3, r - 2, r - 1, r\} \), there exists \(s, t \in \{1, \ldots, n\} \), such that, \(v_s, v_t \in S_j \) in \(\mathcal{H} \), \(p(v_s) = r - 1 \) and \(p(v_t) = r \). Therefore, \(c \) is a 2-coloring of \(\mathcal{H} \).

The above results imply directly in the \(\text{NP} \)-completeness of \(r \)-Role Assignment, \(r \geq 4 \).

Theorem 3. The problem \(r \)-Role Assignment, for any fixed \(r \geq 4 \), is \(\text{NP} \)-complete even when restricted to the Cartesian product of two non-trivial graphs.

Proof. The problem is clearly in \(\text{NP} \) (cf. Roberts and Sheng [18]). To show the \(\text{NP} \)-hardness, we use a reduction from the \(\text{NP} \)-complete problem HYPERGRAPH 2-COLORING [11]. Given a hypergraph \(\mathcal{H} \), we construct the graph \(G_r(\mathcal{H}) \) according to Construction 1, which is used to compute \(G_r(\mathcal{H}) \square P_2 \). It is easy to see that \(G_r(\mathcal{H}) \square P_2 \) may be obtained in polynomial time. By Theorems 1 and 2, we obtain that, \(\mathcal{H} \) has 2-coloring if and only if \(G_r(\mathcal{H}) \square P_2 \) has a \(r \)-role assignment for any fixed \(r \geq 4 \), and the proof is complete. \(\square \)

Acknowledgements. The authors are partially supported by FAPEG.

REFERENCES

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model (S2O). We are thankful to our subscribers and supporters for making it possible to publish this journal in open access in the current year, free of charge for authors and readers.

Check with your library that it subscribes to the journal, or consider making a personal donation to the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports, is available at https://edpsciences.org/en/subscribe-to-open-s2o.