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APPROXIMATION ALGORITHMS FOR SCHEDULING SINGLE BATCH
MACHINE WITH INCOMPATIBLE DETERIORATING JOBS

Bayi Cheng1,2,*, Haimei Yuan1,2, Mi Zhou1,2 and Tan Qi3

Abstract. Motivated by the soaking process under separate heating mode in iron and steel enterprises,
we study the parallel batch machine scheduling problem with incompatible deteriorating jobs. The
objective is to minimize makespan. A soaking furnace can be seen as a parallel batch processing machine.
In order to avoid the thermal stress caused by excessive temperature difference, initial temperature is
needed for the ingot before processing. With the increasing of waiting time, the ingot temperature
decreases and the soaking time increases. This property is called deterioration. Setup time is needed
between incompatible jobs. We show that if jobs have the same sizes, an optimal solution can be found
within 𝑂(𝑛 log 𝑛) time. If jobs have identical processing times, the problem is proved to be NP-hard
in the strong sense. We propose an approximate algorithm whose absolute and asymptotic worst-case
ratios are less than 2 and 11/9, respectively. When the jobs have arbitrary sizes and arbitrary processing
times, the model is also NP-hard in the strong sense. An approximate algorithm with an absolute and
asymptotic worst-case ratio less than 2 is proposed. The time complexity is 𝑂(𝑛 log 𝑛).
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1. Introduction

Soaking is a typical batch process in iron and steel enterprises, which consumes a large amount of heat,
usually accounting for two-thirds of the total energy consumption in the primary rolling zone. Low equipment
utilization increases energy loss, therefore, it is important to improve the efficiency of the soaking process.
Figure 1 shows the soaking process. A soaking furnace generally includes three soaking pits that can process
multiple ingots at the same time. The soaking furnace has separate heating mode and centralized heating mode.
Under the separate heating mode, ingots processed simultaneously in the same soaking pit are considered as
a batch. When the temperature of the steel ingot reaches the rolling temperature, it will be taken out and
supplied to the rolling mill for rolling. In order to reduce energy consumption, the ingot is filled as much as
possible on the basis of not exceeding the furnace capacity. To ensure the quality of rolling, the maximum rolling
temperature of all ingots in the soaking batch is usually taken as the discharge temperature of this batch. The
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Figure 1. Batch processing of ingot soaking.

ingots in the same batch have the same entry and exit times. Therefore, the soaking time of ingots within the
same batch is the same, which is equal to the maximum soaking time of ingots in the batch.

In the soaking process with hot chain characteristics, when the initial temperature of the soaking pit is much
higher than that of the ingot, thermal stress will be generated due to the great temperature difference between
the internal and external temperatures, resulting in surface cracking and internal cracking. Therefore, an initial
temperature for the ingot is needed before soaking. The initial temperature is related to the waiting time. The
increase in waiting time will reduce the ingot temperature and cause the soaking time to increase. The property
that the processing time increases as job waiting time increases is called deterioration. Steel ingots of different
materials and types cannot be processed in the same furnace. Such jobs that belong to different families and
cannot be processed in the same batch are called incompatible jobs. In addition, setup time is required between
incompatible ingots. When the number of changeovers increases, workers get more tired and need more time to
prepare for the next changeover. The actual setup time of a changeover therefore varies according to its position
in the schedule.

Based on the soaking process under separate heating mode in iron and steel enterprises, this paper studies
the parallel batch machine scheduling problem with incompatible deteriorating job families so as to minimize
the makespan.

2. Literature review

The first presentation of the deterioration can be traced back to 1988. Gupta and Gupta [1] studied the single
machine scheduling problem considering the deterioration effect, where the job processing time is a monotoni-
cally increasing function of its starting time. Since then, the related models of time-dependent processing time
have been widely studied from various perspectives. Ji et al. [2] considered parallel-machine scheduling with
deteriorating jobs and proved the total completion time minimization problem is polynomially solvable. Gao
et al. [3] presented more efficient algorithms to solve the two-agent scheduling problem on a parallel-batch
machine, where jobs have release dates and linear deteriorating processing times. Tang et al. [4], Yin et al. [5]
and Zhang et al. [6] study the linear deteriorating job scheduling problem under different environments. Liu
et al. [7] investigate a specialized two-stage hybrid flow shop scheduling problem considering job-dependent
deteriorating effect, in which the actual processing time is denoted as 𝑝𝑗𝑙𝑟 = 𝑝𝑗𝑙𝑟𝑎𝑗

. Pei et al. [8], Li et al. [9]
and Ding et al. [10] studied the sequence dependent deteriorating effects under different models.

In most research, incompatibility mainly occurs in planned production, assembly line balancing and batch
scheduling. Dauzère-Pérès and Mōnch [11], Li and Chen [12] studied the number of tardy jobs minimization
problem with incompatible job families under different constraints. Geng and Yuan [13] presented an algorithm
to solve family jobs scheduling on an unbounded parallel-batching machine. Cheng et al. [14] considered the
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scheduling problem of multiple job families on a batching machine and proposed two polynomial time heuristics.
In recent years, more complicated incompatible job family scheduling problems have been studied. Sun et al. [15]
gave polynomial time algorithms to solve the group scheduling job-dependent due date assignment problem with
learning effect and resource allocation. Kramer et al. [16] explored the parallel machine scheduling problem with
family setup time and introduced five novel mixed integer linear programs to solve it. Li et al. [17] investigated the
scheduling problem of non-identical jobs from incompatible job families on a batch processing machine, proposed
a lower bound and designed heuristics to solve this NP-hard problem. Alizadeh and Kashan [18] explored the
scheduling of a single batch processing machine, where jobs are of different sizes and have a conflicting nature
with each other. Molaee et al. [19] deal with the problem of single machine scheduling with family setup times and
random machine breakdown. Mönch and Roob [20] discussed the parallel batch processing machines scheduling
problem with incompatible jobs under an arbitrary regular sum objective, where a matheuristic framework is
proposed to exploit this insight. Abu-Marrul et al. [21] developed an ILS and a GRASP algorithm to solve a
batch scheduling problem with identical parallel machines and non-anticipatory family setup time.

Some researchers considered the incompatibility and deterioration simultaneously. Wu and Lee [22] investi-
gated the two single-machine group scheduling problem where the group setup time and the job processing time
are both increasing functions of their starting time, and prove that the makespan minimization problem remains
polynomially solvable. Lee and Lu [23] considered the single machine scheduling problem with deteriorating jobs
and setup time. Xu et al. [24] proposed a heuristic algorithm to solve single machine group scheduling problem
with deterioration effect. Zhang et al. [25] proposed a position-dependent processing time for the single-machine
group scheduling problem and presented polynomial-time algorithms to solve it.

However, few studies have been done on batch operation optimization scheduling problems with deterioration
and incompatible job families. Optimizing batch machine scheduling problems with effects are more complex
than traditional scheduling problems. These problems exist widely in practice. In this paper, the optimization
problem of single batch equipment with deterioration and incompatible job families is explored. Specific models
are given for different problems, and effective optimization algorithms are provided respectively.

The remainder of this paper is organized as follows. Section 3 describes the meaning of notations and our
problem. In Section 4, we propose an optimal algorithm for the first model, where 𝑠𝑗 = 1. In Section 5, we
propose an approximate algorithm for the second model where 𝑝𝑗 = 1 and calculate the absolute and asymptotic
worst-case ratios. In Section 6, we consider the general model, present an approximation algorithm and prove
that the absolute and asymptotic worst-case ratios are strictly less than 2. In Section 7, we provide managerial
insights for decision makers. Finally, in Section 8, we conclude this paper and give directions for future research.

3. Notations and problem description

The problem under investigation can be described as follows. A set of jobs 𝐽 = {1, 2, . . . , 𝑛} needs to be
processed, where each job 𝑗 has a size 𝑠𝑗 and a processing time 𝑝𝑗 . Jobs are divided into 𝑚 incompatible
families 𝐹 = {𝐹1, 𝐹2, . . . , 𝐹𝑚}, which means that jobs from different families cannot be processed together.
Each family contains 𝑛𝑖 jobs and

∑︀𝑚
𝑖=1 𝑛𝑖 = 𝑛. The capacity of a single batch processing machine is 𝐷, and

therefore the total size of jobs in a batch cannot exceed it. Suppose jobs within family 𝐹𝑖 are formed into
𝑧𝑖 batches, let 𝐵𝑖 = {𝐵𝑖1, 𝐵𝑖2, . . . , 𝐵𝑖𝑧𝑖

} denote the batch set of family 𝐹𝑖. Let 𝑝min = min{𝑝𝑗 |𝑗 ∈ 𝐽} and
𝑝max = max{𝑝𝑗 |𝑗 ∈ 𝐽}. We define 𝜂 = 𝑝min

𝑝max
, which represents the processing time difference among these jobs.

Obviously we have 0 < 𝜂 ≤ 1, where 𝜂 = 1 means that jobs have the same processing time and 𝜂 approaching
0 means there is a big difference between the processing time of jobs.

The normal processing time of batch 𝐵𝑖𝑙 (𝑖 = 1, 2, . . . ,𝑚; 𝑙 = 1, 2, . . . , 𝑧𝑖) is the largest processing time
among all the jobs in 𝐵𝑖𝑙. Let 𝑃𝑖𝑙 denotes the normal processing time of batch 𝐵𝑖𝑙, so 𝑃𝑖𝑙 = max{𝑝𝑗 |𝑗 ∈ 𝐵𝑖𝑙}.
The actual processing time of 𝐵𝑖𝑙 is a linear function of its starting time 𝑡. Let 𝑃𝐴

𝑖𝑙 denotes the actual processing
time of batch 𝐵𝑖𝑙. We have

𝑃𝐴
𝑖𝑙 = 𝑃𝑖𝑙 + 𝛼𝑡, 𝑖 = 1, 2, . . . ,𝑚, 𝑙 = 1, 2, . . . , 𝑧𝑖, (1)
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where 𝛼 is the deteriorating rate of batch processing time and 0 < 𝛼 < 1. All the jobs are available at time zero
and jobs’ preemption is not allowed. A setup time 𝑆𝑖 is required if the machine switches to process family 𝐹𝑖.
Jobs in the same family are processed consecutively and need no setup time. When the number of changeovers
increases, workers get more tired and need more time to prepare for the next changeover. The actual setup time
of a changeover therefore varies according to its position in the schedule. Therefore, the actual setup time for
changeover to family 𝐹𝑖 is sequence-dependent and as follows:

𝑆𝐴
𝑖 = 𝑆𝑖𝑟

𝛽 , 𝑖 = 1, 2, . . . ,𝑚, 𝑟 = 1, 2, . . . ,𝑚, (2)

where 𝛽 is the deteriorating rate of setup time, 0 < 𝛽 < 1, 𝑟 is the processing position of job family 𝐹𝑖. The
objective is to minimize makespan

𝐶max =
𝑚∑︁

𝑖=1

𝑆𝐴
𝑖 +

𝑚∑︁
𝑖=1

𝑧𝑖∑︁
𝑙=1

𝑃𝐴
𝑖𝑙 . (3)

Using the three-field notation in Lai and Lee [26], the models can be denoted respectively as follows.
𝜓1 : 1|p-batch, 𝐷, incompatible, 𝑃𝐴

𝑖𝑙 = 𝑃𝑖𝑙 + 𝛼𝑡, 𝑠𝑖 = 1, 𝑝𝑗 |𝐶max.
𝜓2 : 1|p-batch, 𝐷, incompatible, 𝑃𝐴

𝑖𝑙 = 𝑃𝑖𝑙 + 𝛼𝑡, 𝑠𝑖, 𝑝𝑗 = 1|𝐶max.
𝜓3 : 1|p-batch, 𝐷, incompatible, 𝑃𝐴

𝑖𝑙 = 𝑃𝑖𝑙 + 𝛼𝑡, 𝑠𝑖, 𝑝𝑗 |𝐶max.
In the above three models, 𝑝-batch means the processing time of a batch is equals to the longest processing

time of jobs in the batch. One batch facility with capacity of 𝐷 is used to process jobs and the objective is to
minimize makespan 𝐶max. In 𝜓1, jobs have identical sizes and arbitrary processing times, but in 𝜓2, jobs have
arbitrary sizes and identical processing times. 𝜓3 is the general model.

We introduce the definitions of the absolute worst-case ratio and the asymptotic worst-case ratio. There is
a given instance 𝐼 and an approximation algorithm 𝐴, and we denote 𝐴𝐼 and OPT𝐼 as the solution obtained
by algorithm 𝐴 and an optimal algorithm, respectively, to solve 𝐼. Let 𝑅𝐴𝐼

= 𝐴𝐼

OPT𝐼
. So in the algorithm 𝐴, we

define the absolute worst-case ratio as

𝑅𝐴 ≡ 𝑖𝑛𝑓{𝑐 ≥ 1 : 𝑅𝐴𝐼
≤ 𝑐 for all 𝐼}

and the asymptotic worst-case ratio as

𝑅∞𝐴 ≡ 𝑖𝑛𝑓{𝑐 ≥ 1 : for some 𝑁 ≥ 0, 𝑅𝐴𝐼
≤ 𝑐 for all 𝐼 with OPT𝐼 ≥ 𝑁}

In the following content, we use 𝜋 to represent solutions obtained by our algorithms. For simplicity, we use
𝑋* to represent the optimal variables. For example, 𝜋* represents an optimal solution and 𝑍* represents the
number of batches in an optimal solution.

4. Solving problem 𝜓1

In this section, we study problem 𝜓1, in which all jobs have arbitrary processing times but the same sizes
𝑠𝑗 = 1. In this case, 𝐷 jobs can be organized in one batch. We propose the Algorithm 𝐴1 to solve 𝜓1.

Algorithm 𝐴1

Step 1. Sort the jobs within each family in non-increasing order of their processing time.
Step 2. Assign the jobs into batches using the following rule. Put the first 𝐷 jobs in family 𝐹𝑖 into the first

batch 𝐵𝑖1. Put the second 𝐷 jobs into the second batch 𝐵𝑖2, Continue the assignment and obtain 𝑧𝑖 batches
for each family.

Step 3. For each family 𝐹𝑖, order the batches in non-decreasing order of their processing time and then process
the batches consecutively.

Step 4. Sort the families in non-increasing order of their setup time 𝑆𝑖, starting with the family with smallest
𝑆𝑖. �
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Figure 2. Structure of 𝑆𝐹 and 𝑆′𝐹 .

Proposition 1. For problem 𝜓1, the optimal number of batches for a family is 𝑧*𝑖 = ⌈𝑛𝑖/𝐷⌉, where ⌈𝑎⌉ repre-
sents the smallest integer greater than or equal to 𝑎.

Proposition 1 is easy to obtain and thus the proof is omitted.

Lemma 1. Step 3 of 𝐴1 can generate the optimal order of batches for each family.

Proof. By contradiction. First, we prove that batches within a family should be processed consecutively. Consider
a schedule 𝑆𝐹 where batches of a family are processed consecutively. In schedule 𝑆𝐹 , there are two adjacent
families, 𝐹𝑥 and 𝐹𝑥+1. 𝐹𝑥+1 is processed after 𝐹𝑥. We assume that the completion time of the previous batch
before family 𝐹𝑥 is 𝑡. We use 𝑡𝑖𝑙 to donate the processing start time of batch 𝐵𝑖𝑙. In this case, the completion
time of family 𝐹𝑥+1 is

𝐶 = 𝑡+ 𝑆𝐴
𝑥 +

𝑧𝑥∑︁
𝑙=1

𝑃𝐴
𝑥𝑙 + 𝑆𝐴

𝑥+1 +
𝑧𝑥+1∑︁
𝑙=1

𝑃𝐴
(𝑥+1)𝑙

= 𝑡+ 𝑆𝑥𝑥
𝛽 +

𝑧𝑥∑︁
𝑙=1

(𝑃𝑥𝑙 + 𝛼𝑡𝑥𝑙) + 𝑆𝑥+1(𝑥+ 1)𝛽 +
𝑧𝑥+1∑︁
𝑙=1

(︀
𝑃(𝑥+1)𝑙 + 𝛼𝑡(𝑥+1)𝑙

)︀
.

(4)

Without loss of generality, we process batches of family 𝐹𝑥+1 consecutively after the batch 𝐵𝑥𝑘, where 𝑘 < 𝑧𝑥.
Other batches remain the same as schedule 𝑆𝐹 . Then, we obtain a new schedule 𝑆′𝐹 . Suppose schedule 𝑆′𝐹 is
better than schedule 𝑆𝐹 . Under schedule 𝑆′𝐹 , the completion time of the family 𝐹𝑥 is

𝐶 ′ = 𝑡+ 𝑆𝐴
𝑥 +

𝑘∑︁
𝑙=1

𝑃𝐴
𝑥𝑙 + 𝑆𝐴

𝑥+1 +
𝑧𝑥+1∑︁
𝑙=1

𝑃𝐴
(𝑥+1)𝑙 + 𝑆𝐴

𝑥 +
𝑧𝑥∑︁

𝑙=𝑘+1

𝑃𝐴
𝑥𝑙

= 𝑡+ 𝑆𝑥𝑥
𝛽 +

𝑘∑︁
𝑙=1

(𝑃𝑥𝑙 + 𝛼𝑡𝑥𝑙) + 𝑆𝑥+1(𝑥+ 1)𝛽 +
𝑧𝑥+1∑︁
𝑙=1

(𝑃(𝑥+1)𝑙 + 𝛼𝑡(𝑥+1)𝑙)

+ 𝑆𝑥(𝑥+ 2)𝛽 +
𝑧𝑥∑︁

𝑙=𝑘+1

(𝑃𝑥𝑙 + 𝛼𝑡′𝑥𝑙).

(5)

Thus, we have

𝐶 ′ − 𝐶 = 𝑆𝑥(𝑥+ 2)𝛽 + 𝛼

𝑧𝑥∑︁
𝑙=𝑘+1

(𝑡′𝑥𝑙 − 𝑡𝑥𝑙). (6)
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Figure 3. Structure of 𝑆𝐵 and 𝑆′𝐵 .

In schedule 𝑆′𝐹 , the batches {𝐵𝑥(𝑘+1), . . . , 𝐵𝑥𝑧𝑥
} have longer processing waiting time. So, we have 𝑡′𝑥𝑙 larger than

𝑡𝑥𝑙. Therefore, 𝐶 ′ − 𝐶 > 0. which means that after the interruption, the total processing time became longer.
This contradicts with that 𝑆′𝐹 betters than 𝑆𝐹 , which proves that batches of a family should be processed
consecutively to minimize the makespan.

Now we prove that it is optimal to arrange the batches of every family in a non-decreasing order. For an
arbitrary family 𝐹𝑖, consider an optimal schedule 𝑆𝐵 where batches 𝑆𝐵 = (𝐵𝑖1, 𝐵𝑖2, . . . , 𝐵𝑖𝑧𝑖

) are arranged by
non-increasing order of their processing time. In this schedule, there must be two adjacent batches 𝐵𝑖𝑗 and 𝐵𝑖𝑘

scheduled in the rth and (𝑟 + 1)th positions, respectively. Such that 𝑃𝑖𝑗 ≥ 𝑃𝑖𝑘. Furthermore, we assume that
the starting time for the 𝑟𝑡ℎ batch in schedule 𝑆𝐵 is 𝑡. We now interchange the sequence of 𝐵𝑖𝑗 and 𝐵𝑖𝑘, leaving
the remaining batches in their original position. Thus, we form a new schedule 𝑆′𝐵 . Let 𝐶(𝑟 + 1) and 𝐶 ′(𝑟 + 1)
denote the completion time of (𝑟 + 1)th batch under 𝑆𝐵 and 𝑆′𝐵 respectively. Figure 3 shows the structure of
𝑆𝐵 and 𝑆′𝐵 . Under 𝑆𝐵 , we have

𝐶(𝑟 + 1) = 𝑡+ 𝑃𝐴
𝑖𝑗 + 𝑃𝐴

𝑖𝑘

= 𝑡+ (𝑃𝑖𝑗 + 𝛼𝑡) + [𝑃𝑖𝑘 + 𝛼(𝑡+ 𝑃𝑖𝑗 + 𝛼𝑡)]
= (1 + 2𝛼+ 𝛼2)𝑡+ (1 + 𝛼)𝑃𝑖𝑗 + 𝑃𝑖𝑘,

(7)

whereas under 𝑆′𝐵 , we can obtain

𝐶 ′(𝑟 + 1) = 𝑡+ 𝑃𝐴
𝑖𝑘 + 𝑃𝐴

𝑖𝑗

= 𝑡+ (𝑃𝑖𝑘 + 𝛼𝑡) + [𝑃𝑖𝑗 + 𝛼(𝑡+ 𝑃𝑖𝑘 + 𝛼𝑡)]
= (1 + 2𝛼+ 𝛼2)𝑡+ (1 + 𝛼)𝑃𝑖𝑘 + 𝑃𝑖𝑗 .

(8)

Thus, we have
𝐶 ′(𝑟 + 1)− 𝐶(𝑟 + 1) = 𝛼(𝑃𝑖𝑘 − 𝑃𝑖𝑗) ≤ 0 (9)

since 𝑃𝑖𝑘 ≤ 𝑃𝑖𝑗 . It implies that the (𝑟 + 2)𝑡ℎ batch under 𝑆𝐵 has a later starting time than the same batch
under 𝑆′𝐵 , which means that the processing time of 𝐹𝑖 under 𝑆𝐵 is longer than that under 𝑆′𝐵 . This contradicts
the optimality of 𝑆𝐵 and proves that batches should be ordered according to Step 3 of Algorithm 𝐴1 rule. �

Lemma 2. Step 4 of 𝐴1 can generate the optimal order of families.

Proof. By contradiction. Let 𝜋 = (𝐹1, . . . , 𝐹𝑝, 𝐹𝑞, . . . , 𝐹𝑚) denote the optimal schedule that families process in
non-decreasing order of their setup time. 𝐹𝑝 and 𝐹𝑞 denote the family scheduled in the 𝑟th and (𝑟+1)th position
respectively, 𝑆𝑝 ≤ 𝑆𝑞. Let 𝜋′ = (𝐹1, , . . . , 𝐹𝑞, 𝐹𝑝, , . . . , 𝐹𝑚), where 𝐹𝑝 and 𝐹𝑞 are in an opposite order and the
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remaining families in their original positions. Let 𝑇𝑆* and 𝑇𝑆′ denote the total setup time consumption of 𝜋
and 𝜋′. Then, under 𝜋′ we have

𝑇𝑆′ =
𝑚∑︁

𝑖=1

𝑆𝐴
𝑖 =

𝑟−1∑︁
𝑖=1

𝑆𝐴
𝑖 + 𝑆𝑞𝑟

𝛽 + 𝑆𝑝(𝑟 + 1)𝛽 +
𝑚∑︁

𝑖=𝑟+2

𝑆𝐴
𝑖 , (10)

and under 𝜋 we have

𝑇𝑆* =
𝑚∑︁

𝑖=1

𝑆*𝐴
𝑖

=
𝑟−1∑︁
𝑖=1

𝑆*𝐴
𝑖

+ 𝑆𝑝𝑟
𝛽 + 𝑆𝑞(𝑟 + 1)𝛽 +

𝑚∑︁
𝑖=𝑟+2

𝑆*𝐴
𝑖
. (11)

Thus, we can obtain
𝑇𝑆* − 𝑇𝑆 = (𝑆𝑝 − 𝑆𝑞)𝑟𝛽 + (𝑆𝑞 − 𝑆𝑝)(𝑟 + 1)𝛽

= (𝑆𝑞 − 𝑆𝑝)[(𝑟 + 1)𝛽 − 𝑟𝛽 ]
≥ 0.

(12)

The total setup time consumption of optimal schedule 𝜋 is greater than or equal to that of 𝜋′ , which disproves
the Lemma 2. �

Theorem 1. Algorithm 𝐴1 finds an optimal solution for problem 𝜓1 in 𝑂(𝑛 log 𝑛) time.

Proof. In Algorithm 𝐴1, we use the following rule to generate batches. Assigned 𝑗1 to 𝐵𝑖1. Since 𝑠𝑗 = 1 and
the machine capacity is 𝐷, we can assign 𝐷 jobs into the first batch. Therefore, 𝑃𝑖1 = 𝑃 *𝑖1 = 𝑝1. Assign the
next 𝐷 jobs to the second batch 𝐵𝑖2, we have 𝑃𝑖2 = 𝑃 *𝑖2 = 𝑝2. Repeat the above operation until all jobs of 𝐹𝑖

are allocated, we can obtain that 𝑃𝑖𝑙 = 𝑃 *𝑖𝑙. Lemmas 1 and 2 prove an optimal batch processing sequence and
an optimal family sequence, respectively. Therefore, we prove Algorithm 𝐴1 finds an optimal solution for 𝜓1.
Step 1, Step 3 and Step 4 of Algorithm 𝐴1 cost 𝑂(𝑛 log 𝑛) time, and Step 2 costs 𝑂(𝑛) time. Thus,the overall
running time of Algorithm 𝐴1 is 𝑂(𝑛 log 𝑛). �

5. Solving problem 𝜓2

Proposition 2. Problem 𝜓2 is NP-hard in the strong sense.

Proof. We first consider a relaxed problem, in which the setup time is not considered, and the job has an
arbitrary size but identical processing time, that is, 𝑝𝑗 = 1. Additionally, deterioration is not considered. In
this case, the problem is equivalent to the Bin Packing Problem (BPP). Since BPP is known to be a NP-hard
problem in the strong sense, 𝜓2 is NP-hard in the strong sense. �

Now we propose an approximation Algorithm 𝐴2 to solve it.

Algorithm 𝐴2

Step 1. Sorting jobs for each family in a non-increasing order of job sizes.
Step 2. Assign jobs into batches by the First Fit Decreasing rule and obtain 𝑧𝑖 batches for family 𝐹𝑖 (𝑖 =

1, 2, . . . ,𝑚).
Step 3. Sorting families in a non-increasing order of their setup time 𝑆𝑖. Then process every family of jobs in

consecutive batches. �

Proposition 3. 𝑧𝑖 ≤ 11
9 𝑧
*
𝑖 + 6

9 (Dósa et al. [27]).

We can find two integers 𝑚 and 𝑖 to make 𝑧*𝑖 = 9𝑚+ 𝑖, where 1 ≤ 𝑖 ≤ 9 and 𝑚 ≥ 0. We consider the worst
case of 𝑧𝑖, that is, 𝑧𝑖 =

⌊︀
11
9 𝑧
*
𝑖 + 6

9

⌋︀
. The values of 𝑧*𝑖 and the worst case of 𝑧𝑖 are shown in Table 1.
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Table 1. 𝑧𝑖 and the worst case of 𝑧*𝑖 .

𝑧*𝑖 9𝑚 + 1 9𝑚 + 2 9𝑚 + 3 9𝑚 + 4 9𝑚 + 5 9𝑚 + 6 9𝑚 + 7 9𝑚 + 8 9𝑚 + 9

11
9 𝑧*𝑖 + 6

9 11𝑚 + 17
9 11𝑚 + 28

9 11𝑚 + 39
9 11𝑚 + 50

9 11𝑚 + 61
9 11𝑚 + 72

9 11𝑚 + 83
9 11𝑚 + 94

9 11𝑚 + 105
9

𝑧𝑖 11𝑚 + 1 11𝑚 + 3 11𝑚 + 4 11𝑚 + 5 11𝑚 + 6 11𝑚 + 8 11𝑚 + 9 11𝑚 + 10 11𝑚 + 11

Lemma 3. For 𝜓2, 𝑅𝐴2 ≤ 2, 𝑅∞𝐴2
= 11/9.

Proof. From Lemma 2, we have proven that Step 3 generates the optimal family sequence. Now we consider the
total processing time for each family.

Case 1: 𝑧*𝑖 ≤ 3.
when 𝑧*𝑖 = 1, we have

𝑧𝑖∑︁
𝑙=1

𝑃𝐴
𝑖𝑙 =

𝑧*𝑖∑︁
𝑙=1

𝑃 *𝐴𝑖𝑙 = 1. (13)

When 𝑧*𝑖 = 2, from Table 1, the worst case of 𝑧𝑖 is 𝑧𝑖 = 3, we have∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙∑︀𝑧*𝑖

𝑙=1 𝑃
*𝐴
𝑖𝑙

=
3 + 2𝛼+ 𝛼2

2 + 𝛼
< 2. (14)

When 𝑧*𝑖 = 3, from Table 1, the worst case of the 𝑧𝑖 is 𝑧𝑖 = 4, we have∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙∑︀𝑧*𝑖

𝑙=1 𝑃
*𝐴
𝑖𝑙

=
4 + 3𝛼+ 2𝛼2 + 𝛼3

3 + 2𝛼+ 𝛼2
< 1.67. (15)

Case 2: 𝑧*𝑖 ≥ 4. ∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙∑︀𝑧*𝑖

𝑙=1 𝑃
*𝐴
𝑖𝑙

=
∑︀𝑧𝑖

𝑙=1 (1− 𝛼𝑧𝑖−𝑙+1)𝑃𝑖𝑙∑︀𝑧*𝑖
𝑙=1 (1− 𝛼𝑧*𝑖−𝑙+1)𝑃 *𝑖𝑙

=
𝑧𝑖 − 𝛼

1−𝛼 (1− 𝛼𝑧𝑖)
𝑧*𝑖 − 𝛼

1−𝛼 (1− 𝛼𝑧*𝑖 )

= 2−
(2𝑧*𝑖 − 𝑧𝑖) + 𝛼

1−𝛼 (1− 𝛼𝑧𝑖 − 2 + 2𝛼𝑧*𝑖 )
𝑧*𝑖 − 𝛼

1−𝛼 (1− 𝛼𝑧*𝑖 )

≤ 2−
(2𝑧*𝑖 − 𝑧𝑖) + 𝛼

1−𝛼 (𝛼𝑧*𝑖 − 1)
𝑧*𝑖 − 𝛼

1−𝛼 (1− 𝛼𝑧*𝑖 )

= 2− (1− 𝛼)(2𝑧*𝑖 − 𝑧𝑖)− 𝛼(1− 𝛼𝑧*𝑖 )
(1− 𝛼)𝑧*𝑖 − 𝛼(1− 𝛼𝑧*𝑖 )

≤ 2−
7
9𝑧
*
𝑖 (1− 𝛼)− 6

9 (1− 𝛼)− 𝛼(1− 𝛼𝑧*𝑖 )
(1− 𝛼)𝑧*𝑖 − 𝛼(1− 𝛼𝑧*𝑖 )

≤ 11
9
−

6
9 (1− 𝛼) + 2

9𝛼(1− 𝛼𝑧*𝑖 )
(1− 𝛼)𝑧*𝑖

<
11
9
·

(16)
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Hence, the asymptotic worst-case ratio of Algorithm 𝐴2 is

𝑅𝐴2 =
𝐶max

𝐶*max

=
∑︀𝑚

𝑖=1 𝑆
𝐴
𝑖 +

∑︀𝑚
𝑖=1

∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙∑︀𝑚

𝑖=1 𝑆
*𝐴
𝑖

+
∑︀𝑚

𝑖=1

∑︀𝑧*𝑖
𝑙=1 𝑃

*𝐴
𝑖𝑙

<

∑︀𝑚
𝑖=1 𝑆

*𝐴
𝑖

+ 2
∑︀𝑚

𝑖=1

∑︀𝑧*𝑖
𝑙=1 𝑃

*𝐴
𝑖𝑙∑︀𝑚

𝑖=1 𝑆
*𝐴
𝑖

+
∑︀𝑚

𝑖=1

∑︀𝑧*𝑖
𝑙=1 𝑃

*𝐴
𝑖𝑙

< 2.

(17)

We now examine the asymptotic worst-case ratio. Since 𝑛 approaches infinity, the number of jobs within 𝐹𝑖

approaches infinity, we have

𝑅∞𝐴2
= lim

𝑛→∞

𝐶max

𝐶*max

= lim
𝑛→∞

∑︀𝑚
𝑖=1 𝑆

𝐴
𝑖 +

∑︀𝑚
𝑖=1

∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙∑︀𝑚

𝑖=1 𝑆
*𝐴
𝑖

+
∑︀𝑚

𝑖=1

∑︀𝑧*𝑖
𝑙=1 𝑃

*𝐴
𝑖𝑙

<

∑︀𝑚
𝑖=1 𝑆

*𝐴
𝑖

+ 11
9

∑︀𝑚
𝑖=1

∑︀𝑧*𝑖
𝑙=1 𝑃

*𝐴
𝑖𝑙∑︀𝑚

𝑖=1 𝑆
*𝐴
𝑖

+
∑︀𝑚

𝑖=1

∑︀𝑧*𝑖
𝑙=1 𝑃

*𝐴
𝑖𝑙

<
11
9
·

(18)

Theorem 2 follows. �

Theorem 2. The running time of Algorithm 𝐴2 is 𝑂(𝑛 log 𝑛) time. The absolute worst-case ratio 𝑅𝐴2 < 2,
and the asymptotic worst-case ratio 𝑅∞𝐴2

< 11/9.

6. Solving problem 𝜓3

In this section, we consider the general case 𝜓3 where the jobs have arbitrary sizes and processing times.
Since 𝜓3 is more difficult than 𝜓2, 𝜓3 is also NP-hard in the strong sense. We have the following proposition.

Proposition 4. Problem 𝜓3 is NP-hard in the strong sense.

Algorithm 𝐴3

Step 1. Sorting jobs for each family in a non-increasing order of their processing times.
Step 2. Assign the jobs into batches by the First Fit Decreasing rule and obtain 𝑧𝑖 batches for each family.
Step 3. For each family 𝐹𝑖, order the batches in non-decreasing order of their processing time and then process

the batches consecutively.
Step 4. Sorting families in non-increasing order of their setup time 𝑆𝑖 and starting with the smallest 𝑆𝑖.

After the execution of Step 1 and Step 2 of Algorithm 𝐴3, batches are sorted in non-increasing order of their
processing times. For simplicity, we denote batches and their processing time as 𝐻𝑖𝑙 and 𝐾𝑖𝑙, respectively. By
contrast, in Step 3, batches are ordered in the reverse order and batches and processing times are denoted as
𝐵𝑖𝑙 and 𝑃𝑖𝑙, respectively.

Lemma 4. The processing time of batches in 𝐹𝑖 satisfies 𝑃𝑖(2𝑙−1) ≤ 𝑃𝑖(2𝑙) ≤ 𝑃 *𝑖𝑙.
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Proof. Consider a family 𝐹𝑖 which contains a set of jobs 𝐽𝑖 ∈ {1, 2, . . . , 𝑛𝑖}. Assume batches in optimal schedule
order in non-increasing sequence, that is, 𝐾*𝑖1 ≥ 𝐾*𝑖2 ≥ · · · ≥ 𝐾*𝑖𝑧𝑖

. Consider an arbitrary job 𝑓 in this family,
which satisfies

𝑓−1∑︁
𝑗=1

𝑠𝑗 ≤ (𝑙 − 1)𝐷 (19)

and
𝑓∑︁

𝑗=1

𝑠𝑗 > (𝑙 − 1)𝐷. (20)

Then, in the optimal solution, the jobs in {1, 2, . . . , f} cannot all be assigned to the first 𝑙 − 1 batches. If job 𝑓
is assigned to 𝐻*𝑖𝑙, we have 𝐾*𝑖𝑙 = 𝑝𝑓 . If job 𝑓 is assigned to a batch later than 𝐻*𝑖𝑙, then since the batches are
in non-increasing order of their processing time, we have 𝐾*𝑖𝑙 ≥ 𝑝𝑓 . In both cases, we can conclude that

𝐾*𝑖𝑙 ≥ 𝑝𝑓 . (21)

Now, we consider problem 𝜓3. The worst case occurs when only one job can be put in each batch. In this case,
job 𝑓 is assigned to 𝐻𝑖𝑓 . The batching result is the same as the case when each job has the same size 𝑠0, where
𝐷/2 < 𝑠0 ≤ 𝐷. We have (𝑓 − 1)𝐷/2 < (𝑓 − 1)𝑠0 ≤ (𝑙 − 1)𝐷. So 𝑓 < 2𝑙 − 1, which indicates that job 𝑓 can be
assigned to a batch before 𝐵𝑖(2𝑙−1). Since the batches are in non-increasing order of their processing times, we
have

𝐾𝑖(2𝑙−1) ≤ 𝑝𝑓 . (22)

By (21) and (22), we can obtain
𝐾𝑖(2𝑙) ≤ 𝐾𝑖(2𝑙−1) ≤ 𝐾*𝑖𝑙. (23)

In Step 3 of Algorithm 𝐴3, the batches are assigned in non-decreasing order of their processing times, and now
we use 𝐵𝑖𝑙 and 𝑃𝑖𝑙 to denote the batches and their processing times respectively. Obviously, we have

𝑃𝑖(2𝑙−1) ≤ 𝑃𝑖(2𝑙) ≤ 𝑃 *𝑖𝑙. (24)

�

Lemma 5. For 𝜓3, 𝑅𝐴3 ≤ 2, 𝑅∞𝐴2
= 2.

Proof. From Lemma 2, we have proven Step 3 generates the optimal family sequence. Now we consider the ratio
of total processing time for family 𝐹𝑖.∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙∑︀𝑧*𝑖

𝑙=1 𝑃
*𝐴
𝑖𝑙

=
∑︀𝑧𝑖

𝑙=1 (1− 𝛼𝑧𝑖−𝑙+1)𝑃𝑖𝑙∑︀𝑧*𝑖
𝑙=1 (1− 𝛼𝑧*𝑖−𝑙+1)𝑃 *𝑖𝑙

= 2−
2

∑︀𝑧*𝑖
𝑙=1 (1− 𝛼𝑧*𝑖−𝑙+1)𝑃 *𝑖𝑙 −

∑︀𝑧𝑖

𝑙=1 (1− 𝛼𝑧𝑖−𝑙+1)𝑃𝑖𝑙∑︀𝑧*𝑖
𝑙=1 (1− 𝛼𝑧*𝑖−𝑙+1)𝑃 *𝑖𝑙

·
(25)

Case 1: 𝑧*𝑖 ≤ 3.
If 𝑧*𝑖 ≤ 3, 𝑧𝑖 − 𝑧*𝑖 − 𝑙 + 1 ≤ 0(𝑙 = 1, 2, . . . , 𝑧𝑖

2 ), we have 𝛼𝑧*𝑖−𝑙+1 − 𝛼𝑧𝑖−2𝑙+2 ≥ 0.
When 𝑧*𝑖 = 1, we have

𝑧𝑖∑︁
𝑙=1

𝑃𝐴
𝑖𝑙 =

𝑧*𝑖∑︁
𝑙=1

𝑃 *𝐴𝑖𝑙 = 𝑃𝐴
𝑖1 = max{𝑝𝑗 |𝑗 ∈ 𝐹𝑖}. (26)
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Figure 4. The value of
∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙 /

∑︀𝑧*𝑖
𝑙=1 𝑃

*𝐴
𝑖𝑙 when 𝑧𝑖 = 2.

When 𝑧*𝑖 = 2, consider the worst case that 𝑧𝑖 = 3,∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙∑︀𝑧*𝑖

𝑙=1 𝑃
*𝐴
𝑖𝑙

=
(1 + 𝛼+ 𝛼2)𝑃𝑖1 + (1 + 𝛼)𝑃𝑖2 + 𝑃𝑖3

(1 + 𝛼)𝑃 *𝑖1 + 𝑃 *𝑖2

≤ (2 + 2𝛼+ 𝛼2)𝑃 *𝑖1 + 𝑃 *𝑖2
(1 + 𝛼)𝑃 *𝑖1 + 𝑃 *𝑖2

= 2− 𝑃 *𝑖2 − 𝛼2𝑃 *𝑖1
(1 + 𝛼)𝑃 *𝑖1 + 𝑃 *𝑖2

≤ 2− (1− 𝛼2)𝜂
2 + 𝛼

·

(27)

When 𝑧*𝑖 = 3, consider the worst case that 𝑧𝑖 = 4, we have∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙∑︀𝑧*𝑖

𝑙=1 𝑃
*𝐴
𝑖𝑙

= 2−
2

∑︀3
𝑙=1 (1− 𝛼4−𝑙)𝑃 *𝑖𝑙 − 2

∑︀4
𝑙=1 (1− 𝛼5−𝑙)𝑃𝑖𝑙∑︀3

𝑙=1 (1− 𝛼4−𝑙)𝑃 *𝑖1

≤ 2− (𝛼4 − 𝛼3)𝑃 *𝑖1 + (𝛼− 𝛼2)𝑃 *𝑖2 + 2(1− 𝛼)𝑃 *𝑖3
(1− 𝛼3)𝑃 *𝑖1 + (1− 𝛼2)𝑃 *𝑖2 + (1− 𝛼)𝑃 *𝑖3

= 2− −𝛼3𝑃 *𝑖1 + (𝛼+ 𝛼2)𝑃 *𝑖2 + 2(1− 𝛼)𝑃 *𝑖3
(1 + 𝛼+ 𝛼2)𝑃 *𝑖1 + (1 + 𝛼)𝑃 *𝑖2 + 𝑃 *𝑖3

≤ 2− (2 + 𝛼+ 𝛼2 − 𝛼3)𝜂
3 + 2𝛼+ 𝛼2

·

(28)

The value of
∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙 /

∑︀𝑧*𝑖
𝑙=1 𝑃

*𝐴
𝑖𝑙 when 𝑧*𝑖 = 2 and 𝑧*𝑖 = 3 are shown in Figures 4 and 5, respectively.

Case 2: 𝑧*𝑖 ≥ 4.
If 𝑧*𝑖 ≥ 4, there exit 𝑘, when 𝑙 ≥ 𝑘, 𝑧*𝑖 − 𝑘 + 1 ≥ 𝑧𝑖 − 2𝑘 + 2, 𝑘 = 𝑧𝑖 − 𝑧*𝑖 .
Case 2.1: When 𝑧𝑖 belongs to even.



1278 B. CHENG ET AL.

By Lemma 4, we have 𝑃𝑖(2𝑙−1) ≤ 𝑃𝑖(2𝑙) ≤ 𝑃 *𝑖𝑙, therefore,∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙∑︀𝑧*𝑖

𝑙=1 𝑃
*𝐴
𝑖𝑙

≤ 2−
2

∑︀𝑧*𝑖
𝑙=𝑧𝑖/2+1

(︀
1− 𝛼𝑧*𝑖−𝑙+1

)︀
𝑃 *𝑖𝑙 + 2

∑︀𝑧𝑖/2
𝑙=1

(︀
𝛼𝑧𝑖−2𝑙+2 − 𝛼𝑧*𝑖−𝑙+1

)︀
𝑃 *𝑖𝑙∑︀𝑧*𝑖

𝑙=1 𝑃
*
𝑖𝑙

= 2−
2

∑︀𝑧*𝑖
𝑙=𝑧𝑖/2+1 (1− 𝛼𝑧*𝑖−𝑙+1)𝑃 *𝑖𝑙∑︀𝑧*𝑖

𝑙=1 𝑃
*
𝑖𝑙

+
2

∑︀𝑧𝑖−𝑧*𝑖
𝑙=1

(︀
𝛼𝑧*𝑖−𝑙+1 − 𝛼𝑧𝑖−2𝑙+2

)︀
𝑃 *𝑖𝑙∑︀𝑧*𝑖

𝑙=1 𝑃
*
𝑖𝑙

−
2

∑︀𝑧𝑖/2
𝑙=𝑧𝑖−𝑧*𝑖 +1

(︀
𝛼𝑧𝑖−2𝑙+2 − 𝛼𝑧*𝑖−𝑙+1

)︀
𝑃 *𝑖𝑙∑︀𝑧*𝑖

𝑙=1 𝑃
*
𝑖𝑙

≤ 2−
2(1− 𝛼)

∑︀𝑧*𝑖
𝑙=𝑧𝑖/2+1 𝑃

*
𝑖𝑙∑︀𝑧*𝑖

𝑙=1 𝑃
*
𝑖𝑙

+
2𝑃 *𝑖(𝑧𝑖−𝑧*𝑖 )

∑︀𝑧𝑖−𝑧*𝑖
𝑙=1

(︀
𝛼𝑧*𝑖−𝑙+1 − 𝛼𝑧𝑖−2𝑙+2

)︀
∑︀𝑧*𝑖

𝑙=1 𝑃
*
𝑖𝑙

−
2𝑃 *𝑖(𝑧𝑖−𝑧*𝑖 +1)

∑︀𝑧𝑖/2
𝑙=𝑧𝑖−𝑧*𝑖 +1

(︀
𝛼𝑧𝑖−2𝑙+2 − 𝛼𝑧*𝑖−𝑙+1

)︀
∑︀𝑧*𝑖

𝑙=1 𝑃
*
𝑖𝑙

·

(29)

Since (𝑧𝑖 − 𝑧*𝑖 )−
(︀
𝑧*𝑖 − 𝑧𝑖

2

)︀
≤ 3

2

(︀
11
9 𝑧
*
𝑖 + 6

9

)︀
− 2𝑧*𝑖 = − 3

18𝑧
*
𝑖 + 1 < 0, we have∑︀𝑧𝑖−𝑧*𝑖

𝑙=1 (𝛼𝑧*𝑖−𝑙+1 − 𝛼𝑧𝑖−2𝑙+2)∑︀𝑧𝑖/2
𝑙=𝑧𝑖−𝑧*𝑖 +1 (𝛼𝑧𝑖−2𝑙+2 − 𝛼𝑧*𝑖−𝑙+1)

=
∑︀𝑧𝑖−𝑧*𝑖

𝑙=1 𝛼𝑧*𝑖−𝑙+1(1− 𝛼𝑧𝑖−𝑧*𝑖−𝑙+1)∑︀𝑧𝑖/2
𝑙=𝑧𝑖−𝑧*𝑖 +1 𝛼

𝑧𝑖−2𝑙+2(1− 𝛼𝑧*𝑖−𝑧𝑖+𝑙−1)

≤
𝛼2𝑧*𝑖−𝑧𝑖+1

∑︀𝑧𝑖−𝑧*𝑖
𝑙=1 (1− 𝛼𝑧𝑖−𝑧*𝑖−𝑙+1)

𝛼2𝑧*𝑖−𝑧𝑖
∑︀𝑧𝑖/2

𝑙=𝑧𝑖−𝑧*𝑖 +1 (1− 𝛼𝑧*𝑖−𝑧𝑖+𝑙−1)

=
𝛼[(1− 𝛼𝑧𝑖−𝑧*𝑖 ) + · · ·+ (1− 𝛼2) + (1− 𝛼)][︀

(1− 𝛼𝑧*𝑖−𝑧𝑖/2−1) + · · ·+ (1− 𝛼2) + (1− 𝛼)
]︀

=
𝛼

1 +
[︁∑︀𝑧*𝑖−𝑧𝑖/2−1

𝑙=𝑧𝑖−𝑧*𝑖 +1 (1− 𝛼𝑙)
⧸︁∑︀𝑧𝑖−𝑧*𝑖

𝑙=1 (1− 𝛼𝑧𝑖−𝑧*𝑖−𝑙+1)
]︁

< 1,

(30)

therefore,
𝑧𝑖−𝑧*𝑖∑︁
𝑙=1

(︁
𝛼𝑧*𝑖−𝑙+1 − 𝛼𝑧𝑖−2𝑙+2

)︁
<

𝑧𝑖/2∑︁
𝑙=𝑧𝑖−𝑧*𝑖 +1

(︁
𝛼𝑧𝑖−2𝑙+2 − 𝛼𝑧*𝑖−𝑙+1

)︁
. (31)

According to Step 3 of 𝐴3, batches are in non-decreasing order of their processing time, thus,

𝑃 *𝑖(𝑧𝑖−𝑧*𝑖 ) ≤ 𝑃 *
𝑖(𝑧𝑖−𝑧*𝑖 +1). (32)

By (31) and (32), we can conclude that

2𝑃 *
𝑖(𝑧𝑖−𝑧*𝑖 )

∑︀𝑧𝑖−𝑧*𝑖
𝑙=1

(︀
𝛼𝑧*𝑖−𝑙+1 − 𝛼𝑧𝑖−2𝑙+2

)︀
∑︀𝑧*𝑖

𝑙=1 𝑃
*
𝑖𝑙

−
2𝑃 *𝑖(𝑧𝑖−𝑧*𝑖 +1)

∑︀𝑧𝑖/2
𝑙=𝑧𝑖−𝑧*𝑖 +1

(︀
𝛼𝑧𝑖−2𝑙+2 − 𝛼𝑧*𝑖−𝑙+1

)︀
∑︀𝑧*𝑖

𝑙=1 𝑃
*
𝑖𝑙

≤ 0.

(33)
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Therefore, we have ∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙∑︀𝑧*𝑖

𝑙=1 𝑃
*𝐴
𝑖𝑙

≤ 2−
2(1− 𝛼)

∑︀𝑧*𝑖
𝑙=𝑧𝑖/2+1 𝑃

*
𝑖𝑙∑︀𝑧*𝑖

𝑙=1 𝑃
*
𝑖𝑙

= 2− 2(1− 𝛼)

1 +
∑︀𝑧𝑖/2

𝑙=1 𝑃
*
𝑖𝑙

⧸︁∑︀𝑧*𝑖
𝑙=𝑧𝑖/2+1 𝑃

*
𝑖𝑙

≤ 2− 2(1− 𝛼)
1 +

[︀
𝑃 *𝑖 max

(︀
𝑧𝑖

2

)︀]︀⧸︀[︀
𝑃 *𝑖 min

(︀
𝑧*𝑖 −

𝑧𝑖

2

)︀]︀
≤ 2−

2(1− 𝛼)
(︀

7
9𝑧
*
𝑖 − 6

9

)︀
𝜂

𝑧*𝑖 𝜂 + 11
9 𝑧
*
𝑖 + 6

9

= 2−
2(1− 𝛼)

(︁
7
9 −

6
9𝑧*𝑖

)︁
𝜂

𝜂 + 11
9 + 6

9𝑧*𝑖

≤ 2− 22(1− 𝛼)𝜂
18𝜂 + 25

·

(34)

Case 2.2: When 𝑧𝑖 belongs to odd.

∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙∑︀𝑧*𝑖

𝑙=1 𝑃
*𝐴
𝑖𝑙

≤ 2−
2

∑︀𝑧*𝑖
𝑙=1

(︀
1− 𝛼𝑧*𝑖−𝑙+1

)︀
𝑃 *𝑖𝑙 − 2

∑︀(𝑧𝑖+1)/2
𝑙=1 (1− 𝛼𝑧𝑖−2𝑙+2)𝑃 *𝑖𝑙 + (1− 𝛼)𝑃 *

𝑖
𝑧𝑖+1

2∑︀𝑧*𝑖
𝑙=1 𝑃

*
𝑖𝑙

≤ 2−
2

∑︀𝑧*𝑖
𝑙=(𝑧𝑖+1)/2+1

(︀
1− 𝛼𝑧*𝑖−𝑙+1

)︀
𝑃 *𝑖𝑙 + 2

∑︀(𝑧𝑖+1)/2
𝑙=1

(︀
𝛼𝑧𝑖−2𝑙+2 − 𝛼𝑧*𝑖−𝑙+1

)︀
𝑃 *𝑖𝑙∑︀𝑧*𝑖

𝑙=1 𝑃
*
𝑖𝑙

= 2−
2

∑︀𝑧*𝑖
𝑙=(𝑧𝑖+1)/2+1

(︀
1− 𝛼𝑧*𝑖−𝑙+1

)︀
𝑃 *𝑖𝑙∑︀𝑧*𝑖

𝑙=1 𝑃
*
𝑖𝑙

+
2

∑︀𝑧𝑖−𝑧*𝑖
𝑙=1 (𝛼𝑧*𝑖−𝑙+1 − 𝛼𝑧𝑖−2𝑙+2)𝑃 *𝑖𝑙∑︀𝑧*𝑖

𝑙=1 𝑃
*
𝑖𝑙

−
2

∑︀(𝑧𝑖+1)/2
𝑙=𝑧𝑖−𝑧*𝑖 +1

(︀
𝛼𝑧𝑖−2𝑙+2 − 𝛼𝑧*𝑖−𝑙+1

)︀
𝑃 *𝑖𝑙∑︀𝑧*𝑖

𝑙=1 𝑃
*
𝑖𝑙

≤ 2−
2(1− 𝛼)

∑︀𝑧*𝑖
𝑙=(𝑧𝑖+1)/2+1 𝑃

*
𝑖𝑙∑︀𝑧*𝑖

𝑙=1 𝑃
*
𝑖𝑙

≤ 2− 2(1− 𝛼)

1 +
[︁∑︀(𝑧𝑖+1)/2

𝑙=1 𝑃 *𝑖𝑙

⧸︁∑︀𝑧*𝑖
𝑙=(𝑧𝑖+1)/2+1 𝑃

*
𝑖𝑙

]︁
≤ 2− 2(1− 𝛼)

1 +
[︀
𝑃 *𝑖 max

(︀
𝑧𝑖+1

2

)︀]︀⧸︀[︀
𝑃 *𝑖 min

(︀
𝑧*𝑖 −

𝑧𝑖+1
2

)︀]︀
= 2− 2(1− 𝛼)(2𝑧*𝑖 − 𝑧𝑖 − 1)𝜂

(2𝑧*𝑖 − 𝑧𝑖 − 1)𝜂 + 𝑧𝑖 + 1

≤ 2−
2(1− 𝛼)

(︀
7
9𝑧
*
𝑖 − 15

9

)︀
𝜂

(𝑧*𝑖 − 1)𝜂 + 11
9 𝑧
*
𝑖 + 6

9

= 2−
2(1− 𝛼)

(︁
7
9 −

15
9𝑧*𝑖

)︁
𝜂

𝜂 + 11
9 + 6

9𝑧*𝑖

≤ 2− 13(1− 𝛼)𝜂
18𝜂 + 25

·

(35)
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Figure 5. The value of
∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙 /

∑︀𝑧*𝑖
𝑙=1 𝑃

*𝐴
𝑖𝑙 when 𝑧𝑖 = 3.

Figure 6. The value of
∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙 /

∑︀𝑧*𝑖
𝑙=1 𝑃

*𝐴
𝑖𝑙 when 𝑧𝑖 belongs to even.

The value of
∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙 /

∑︀𝑧*𝑖
𝑙=1 𝑃

*𝐴
𝑖𝑙 when 𝑧𝑖 belongs to even and odd are shown in Figures 6 and 7,

respectively.
In all cases, the ratio of family processing time under Algorithm 𝐴3 and the optimal schedule is less than
2. Therefore, we have

𝑅𝐴3 =
𝐶max

𝐶*max

=
∑︀𝑚

𝑖=1 𝑆
𝐴
𝑖 +

∑︀𝑚
𝑖=1

∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙∑︀𝑚

𝑖=1 𝑆
*𝐴
𝑖

+
∑︀𝑚

𝑖=1

∑︀𝑧*𝑖
𝑙=1 𝑃

*𝐴
𝑖𝑙

≤
∑︀𝑚

𝑖=1 𝑆
*𝐴
𝑖

+ 2
∑︀𝑚

𝑖=1

∑︀𝑧*𝑖
𝑙=1 𝑃

*𝐴
𝑖𝑙∑︀𝑚

𝑖=1 𝑆
*𝐴
𝑖

+
∑︀𝑚

𝑖=1

∑︀𝑧*𝑖
𝑙=1 𝑃

*𝐴
𝑖𝑙

< 2. (36)
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Figure 7. The value of
∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙 /

∑︀𝑧*𝑖
𝑙=1 𝑃

*𝐴
𝑖𝑙 when 𝑧𝑖 belongs to odd.

When the scale of 𝜓3 approaches infinity, the asymptotic worst-case ratio are as follows. If 𝑧𝑖 belongs to
even, we have

lim
𝑧𝑖→∞

∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙∑︀𝑧*𝑖

𝑙=1 𝑃
*𝐴
𝑖𝑙

≤ lim
𝑧𝑖→∞

2−
2(1− 𝛼)( 7

9 −
15
9𝑧*𝑖

)𝜂

𝜂 + 11
9 + 6

9𝑧*𝑖

= 2− 14(1− 𝛼)𝜂
9𝜂 + 11

< 2. (37)

The same result can be obtained when 𝑧𝑖 is odd. Figure 8 shows the value of
∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙 /

∑︀𝑧*𝑖
𝑙=1 𝑃

*𝐴
𝑖𝑙 when

𝑧𝑖 approaching to infinity. Then we can find that 𝑅∞𝐴3
is strictly less than 2.

𝑅∞𝐴3
= lim

𝑛→∞

𝐶max

𝐶*max

≤ lim
𝑛→∞

∑︀𝑚
𝑖=1 𝑆

𝐴
𝑖 +

∑︀𝑚
𝑖=1

∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙∑︀𝑚

𝑖=1 𝑆
*𝐴
𝑖

+
∑︀𝑚

𝑖=1

∑︀𝑧*𝑖
𝑙=1 𝑃

*𝐴
𝑖𝑙

<

∑︀𝑚
𝑖=1 𝑆

*𝐴
𝑖

+ 2
∑︀𝑚

𝑖=1

∑︀𝑧*𝑖
𝑙=1 𝑃

*𝐴
𝑖𝑙∑︀𝑚

𝑖=1 𝑆
*𝐴
𝑖

+
∑︀𝑚

𝑖=1

∑︀𝑧*𝑖
𝑙=1 𝑃

*𝐴
𝑖𝑙

< 2. (38)

�

Theorem 3. For 𝜓3, the running time of 𝐴3 is 𝑂(𝑛 log 𝑛), and 𝑅𝐴3 < 2, 𝑅∞𝐴2
< 2.

7. Discussion

By the theoretical analysis of the parallel batch machine scheduling problem with incompatible deteriorating
job families, we provide the following managerial insights to decision-makers of manufacturing enterprises.

First, a balance should be found between product categories and production costs. By comparing the three
models, we find that the optimal scheduling can be obtained in polynomial time when the jobs have identical
sizes. However, when the jobs have arbitrary sizes, the problem becomes NP-hard, which shows that the job
size makes our problem complex. In addition, we find that the worst-case ratio is 𝜂 decreasing function. When
𝜂 approaches 1, the result of Algorithm 𝐴3 is closer to the optimal solution. Based on the above, we propose
that the diversity of products should be carefully considered in optimizing operation. Therefore, decision-makers
should pay attention to the balance between product categories and cost. Moreover, measures should be taken
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Figure 8. The value of
∑︀𝑧𝑖

𝑙=1 𝑃
𝐴
𝑖𝑙 /

∑︀𝑧*𝑖
𝑙=1 𝑃

*𝐴
𝑖𝑙 when 𝑧𝑖 approaching to infinity.

to reduce the impact of job diversity on scheduling complexity, such as standardizing product size and adopting
a delay strategy.

Second, it is important to improve the collaborative efficiency between processes. In order to minimize the
impact of deterioration, decision-makers should take measures to improve the coordination efficiency between
processes and reduce the waiting time of jobs. Firstly, manufacturers should optimize the layout of workshops
and processing equipment, so as to reduce the transportation time in the workshop. Secondly, optimize the
production scheduling. Develop a detailed scheduling plan to maintain workshop efficiency and operations
between processes.

Third, measures should be taken to reduce the deteriorating rate. Based on the research in this paper, we find
that when 𝛼 increases, the worst-case ratio increases, indicating that deterioration not only reduces production
efficiency, but also makes the scheduling problem more complex. Decision makers should take measures to
reduce the deterioration rate. For example, in the soaking process, the initial temperature of the ingot can be
maintained by thermal insulation packaging and increasing the ambient temperature.

8. Conclusions

In this paper, we study the single parallel batch machine scheduling problem with deteriorating incompatible
jobs. The objective is to minimize makespan. Three models are considered and algorithms are proposed. In the
first model, we propose an optimal polynomial time algorithm for the special case where the jobs have identical
sizes. The optimality is proved. In the second model, we propose an approximate algorithm for the special case
where the jobs have identical processing time. In the third model, an approximate algorithm is proposed for a
more general case, that is, jobs have arbitrary sizes and arbitrary processing times. The latter two cases are
proved to be NP-hard in the strong sense, and we show the absolute and asymptotic worst-case ratios of these
two algorithms. All of the proposed algorithms run in 𝑂(𝑛 log 𝑛) time.

There are some interesting directions for future work. First, only single batch equipment is considered in
this paper. Facility configuration is complex in practice and problems with other machine configurations, such
as flow shops or parallel batch, are valuable to be researched. Since the single machine scheduling problem is
NP-hard in the strong sense as studied in this paper, problems with complex facility configurations are also
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NP-hard in the strong sense. Approximation algorithms and intelligent algorithms can be considered. Second, we
only consider minimizing the makespan while multi-objective problems deserve study. For example, scheduling
problems of purchasing, inventory and distribution. More objective functions are also interesting directions for
future work, such as minimum service span or minimum total cost. Third, how to coordinate the scheduling of
incompatible jobs and weaken the impact of deterioration is a direction worthy of research.

Acknowledgements. This work is partly supported by the National Natural Science Foundation of China under Grants
71671055, 72071056. This work is also partly supported by the National Key Research and Development Program of
China 2019YFE0110300.
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