
RAIRO-Oper. Res. 57 (2023) 1045–1058 RAIRO Operations Research
https://doi.org/10.1051/ro/2023052 www.rairo-ro.org

ALGORITHMS FOR THE GENOME MEDIAN UNDER A RESTRICTED
MEASURE OF REARRANGEMENT

Helmuth O.M. Silva1, Diego P. Rubert1 , Eloi Araujo1, Eckhard Steffen2 ,
Daniel Doerr3 and Fábio V. Martinez1,*

Abstract. Ancestral reconstruction is a classic task in comparative genomics. Here, we study the
genome median problem, a related computational problem which, given a set of three or more genomes,
asks to find a new genome that minimizes the sum of pairwise distances between it and the given
genomes. The distance stands for the amount of evolution observed at the genome level, for which we
determine the minimum number of rearrangement operations necessary to transform one genome into
the other. For almost all rearrangement operations the median problem is NP-hard, with the exception
of the breakpoint median that can be constructed efficiently for multichromosomal circular and mixed
genomes. In this work, we study the median problem under a restricted rearrangement measure called
𝑐4-distance, which is closely related to the breakpoint and the DCJ distance. We identify tight bounds
and decomposers of the 𝑐4-median and develop algorithms for its construction, one exact ILP-based
and three combinatorial heuristics. Subsequently, we perform experiments on simulated data sets. Our
results suggest that the 𝑐4-distance is useful for the study the genome median problem, from theoretical
and practical perspectives.

Mathematics Subject Classification. 90C10, 90C27, 90C35, 90C59.

Received December 6, 2022. Accepted April 9, 2023.

1. Introduction

An important branch of research with applications in biology and medicine concerns the inference of ancestral
genomes from whole genome sequencing data of living organisms. In this work, we study the problem of finding
a median of genomes that evolve by large-scale mutations, also called rearrangements. These alter the order and
orientation of genomic markers within and between chromosomal sequences. It is common to assume that the
underlying evolutionary scenario is parsimonious, thus the minimum number of rearrangements between two
genomes provides a notion of their rearrangement distance. Whereas pairwise rearrangement distances can be
computed efficiently in some settings, finding a median of three or more genomes, i.e., a genome that minimizes

Keywords. Median problem, optimization, integer linear programming, heuristics.

1 Faculdade de Computação, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil.
2 Department of Mathematics, Paderborn University, Paderborn, Germany.
3 Institute for Medical Biometry and Bioinformatics, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf,
Düsseldorf, Germany.
*Corresponding author: fabio.martinez@ufms.br; fabio.viduani@gmail.com

c○ The authors. Published by EDP Sciences, ROADEF, SMAI 2023

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2023052
https://www.rairo-ro.org
https://orcid.org/0000-0002-4131-7309
https://orcid.org/0000-0002-9808-7401
https://orcid.org/0000-0002-3720-6227
https://orcid.org/0000-0001-6809-3547
mailto:fabio.martinez@ufms.br
mailto:fabio.viduani@gmail.com
https://creativecommons.org/licenses/by/4.0

1046 H.O.M. SILVA ET AL.

the sum of rearrangement distances between itself and the given genomes, is computationally intractable even
for highly simplified rearrangement distances.

The distance between two genomes depends on the chosen rearrangement operation. For instance, the number
of breakpoints between two genomes, i.e., the number of pairs of genomic markers that appear consecutive in
one genome but not in the other, gives rise to a simple rearrangement distance. While, strictly speaking, the
breakpoint distance underlies no rearrangement operation [6], other distances do, such as the double-cut-and-join
(DCJ) distance [14]. A DCJ operation breaks a genome, represented by a set of sequences of genomic markers,
at two arbitrary positions and subsequently reconnects the thus created four open ends in a new combination.

Almost all known rearrangement distances can be computed efficiently in linear time under the assumption
that genomic markers appear unique in each genome [2,6,14]. However, considering one step forward, construct-
ing a median of three genomes is NP-hard under almost all rearrangement distances, including DCJ [10], with
two notable exceptions: the breakpoint distance and the closely related single-cut-or-join (SCJ) are tractable
for multichromosomal circular and mixed genomes [5, 10].

The breakpoint graph is a common aid in computing rearrangement distances. When comparing two genomes
that are permutations of one another, the graph consists of cycles of even length. The contained number of
cycles plays an essential role. For instance, the smallest cycles, i.e., cycles of length 2 represent adjacencies in
the breakpoint graph, which are the counterpart of breakpoints. Larger cycles represent the requirement of one
or more DCJ operations to transform one genome into the other. Thus, to compute the breakpoint distance,
cycles of length 2 are counted (and this quantity is then subtracted from the number or markers of the two
genomes). Likewise, to compute the DCJ distance, cycles of any length are counted.

It is natural to also consider intermediary distance measures. In this work we study the 𝑐4-distance between
two genomes, which is based on the number of cycles of length up to 4 in the breakpoint graph. In other words,
only those cycles are counted that require at most one DCJ operation to be transformed into adjacencies. It
is important to highlight that the 𝑐4-distance violates the triangle inequality and therefore is not a metric –
unlike the breakpoint and DCJ distance. Here, we address the 𝑐4-median problem, i.e., the construction of a
new genome that minimizes the sum of pairwise 𝑐4-distances between it and each member of a set of three or
more genomes. In particular, we are interested in finding 𝑐4-medians for three genomes.

This work is an extension of the abstract submitted to the 7th Theoretical Computer Science Meeting (VII
ETC – Encontro de Teoria da Computação, in portuguese) and the main new contributions are the following:

– We present properties and upper bounds to the 𝑐4-distance (Sects. 3, 4);
– We improve the first version of the ILP, making it faster, and now it can handle instances with up to 2000

markers with neglegible gaps (Sect. 5.1);
– We develop two new combinatorial heuristics to compute the 𝑐4-distance of given genomes (Sects. 5.2, 5.3);
– We extend the experiments with different data sets for the new algorithms (Sect. 6).

This paper is structured as follows. Section 2 provides basic definitions and notation, including the definition
of the median problem. We then present bounds for the median in Section 3. Section 4 addresses the character-
ization of decomposers, which are building blocks of median genomes. In Section 5, we describe algorithms to
compute the 𝑐4-median, including one exact ILP-based and three heuristics. Experimental results on simulated
instances are presented in Section 6. Section 7 concludes this paper and presents future works.

2. Preliminaries

A marker is an oriented DNA fragment. We denote a marker either by 𝑚 or by 𝑚, depending on its orientation
in the DNA strand. A chromosome is a sequence of markers and can be linear or circular. A linear chromosome
has two extremities and each one is a telomere. We use a string of markers to represent a chromosome and we
add parentheses at the extremities of the represented string to denote a circular chromosome. A genome is a
collection of chromosomes.

A marker 𝑚 has two distinct extremities, called tail and head, represented by 𝑚𝑡 and 𝑚ℎ, respectively. An
adjacency in a chromosome is conformed by either the extremity of a marker adjacent to a telomere, or by a

ALGORITHMS FOR THE GENOME MEDIAN 1047

pair of consecutive marker extremities. As an example, the adjacencies 1𝑡5ℎ, 5𝑡2𝑡, 2ℎ4𝑡, 4ℎ3𝑡, 3ℎ6𝑡 and 6ℎ1ℎ

define a circular chromosome. Another representation to it is (5 2 4 3 6 1). A multichromosomal genome is a set
of chromosomes such as {(3), 5 2 6, (4 1)}, which is composed of three chromosomes, one linear and two circular.

2.1. Classical distances

One can compute a rearrangement distance between two given genomes with support of an equivalent struc-
ture known as breakpoint graph [1]. Let M be a set of 𝑛 markers and define M𝑥 the set of extremities of all
markers in M, with |M𝑥| = 2𝑛. For two genomes 𝐴 and 𝐵, each one with 𝑛 markers from M, the breakpoint
graph BG(𝐴, 𝐵) is the multigraph whose vertex set is M𝑥 and the edges are of two types: 𝐴-edges and 𝐵-edges,
corresponding to adjacencies in genomes 𝐴 and 𝐵, respectively. This graph has vertices with degree zero, one
or two, and thus it is a collection of paths and cycles. If 𝑎 is the number of common non-telomeric adjacencies
between 𝐴 and 𝐵 and 𝑡 is the number of common telomeres, the breakpoint distance [10] between 𝐴 and 𝐵 is

dbkp(𝐴, 𝐵) = 𝑛− 𝑎− 𝑡/2.

Notice that the breakpoint distance is equivalent to the so called single-cut-or-join (SCJ) distance [5]. Since
𝑎 is the number of nontelomeric adjacencies in BG(𝐴, 𝐵), each one of these adjacencies represents a cycle of
length 2 in BG(𝐴, 𝐵) and one can denote it by 𝑐2 = 𝑎. We call a cycle of length 𝑗 a 𝑗-cycle.

On the other hand, if 𝑐 is the number of cycles (of any length) and 𝑒 is the number of paths with an even
number of edges in BG(𝐴, 𝐵), the double-cut-and-join (DCJ) distance [14] between 𝐴 and 𝐵 is

ddcj(𝐴, 𝐵) = 𝑛− 𝑐− 𝑒/2.

Breakpoint/SCJ and DCJ distances can be computed efficiently [2, 5, 10].

2.2. Multichromosomal circular genomes

Chromosomes and plasmids of single-celled organisms such as bacteria and archaea, mitochondrial DNA
within eukaryotic cells, and chloroplast DNA in plants are examples of circular chromosomes/genomes and
motivate the study of the circular genome median. Confining to circular chromosome also avoids a lengthy
treatment of distance formulas to account for telomeric adjacencies [7,8,11]. Therefore, from now on we consider
only multichromosomal genomes with circular chromosomes.

Notice that if two genomes 𝐴 and 𝐵 have only circular chromosomes, we have dbkp(𝐴, 𝐵) = 𝑛 − 𝑐2 and
ddcj(𝐴, 𝐵) = 𝑛− 𝑐 = 𝑛− 𝑐2 − 𝑐4 − 𝑐6 − . . ., where 𝑐𝑗 denotes the number of 𝑗-cycles in the breakpoint graph of
𝐴 and 𝐵.

2.3. Median problem

Let Π be a set with 𝑝 ≥ 3 genomes, each one with 𝑛 markers from M. The (genome) median problem on
Π asks for finding a genome Γ with 𝑛 markers from M minimizing the pairwise distances between Γ and each
genome in Π, under a rearrangement operation. If the operation is the breakpoint/SCJ, then the median can
be computed in polynomial time [5]. However, for the DCJ operation, the median problem is NP-hard, even for
𝑝 = 3 [3,10].

Motivated by the searching for where is the boundary of efficiency-hardness of the median problem, one can
define a new measure. The 𝑐4-distance, denoted by d4, between Π𝑖 and Π𝑗 is given by d4(Π𝑖, Π𝑗) = 𝑛− 𝑐2 − 𝑐4,
where 𝑛 is the number of markers in M and in both Π𝑖 and Π𝑗 , and 𝑐ℓ is the number of ℓ-cycles in BG(Π𝑖, Π𝑗),
ℓ ∈ {2, 4}. As mentioned before, the triangle inequality does not hold for d4 as we can see in a simple example:
Given genomes Π1 = (1 3 2 4), Π2 = (1 2 3 4) and Π3 = (1 2 3 4), we have that

d4(Π1, Π3) = 3 ̸≤ 1 + 1 = d4(Π1, Π2) + d4(Π2, Π3).

1048 H.O.M. SILVA ET AL.

Let Π = {Π1, . . . , Π𝑝} be a set of 𝑝 ≥ 3 genomes and Γ be a genome. The 𝑐4-cost 𝐾(Π, Γ) of Γ given Π is

𝐾(Π, Γ) =
∑︁

Π𝑖∈Π

d4(Π𝑖, Γ).

We say that a genome Γ is a 𝑐4-median of a set of 𝑝 ≥ 3 genomes Π if Γ minimizes the 𝑐4-cost 𝐾(Π, Γ). For
a given set of genomes Π, we denote by 𝐾⋆(Π) the value of its 𝑐4-median:

𝐾⋆(Π) = min{𝐾(Π, Γ) : genomes in Π and genome Γ}.

Thus, we can formally state the following:

Problem 𝑐4-Median(Π): given 𝑝 ≥ 3 genomes in Π, each with 𝑛 markers from M, find a genome Γ with 𝑛
markers from M such that 𝐾⋆(Π) = 𝐾(Π, Γ).

We are particularly interested in the simplest version of the 𝑐4-Median problem, when 𝑝 = 3.

2.4. Graph formulation

We can rephrase the 𝑐4-Median in terms of graphs. We assign each extremity of a marker from the set of 𝑛
markers M to a vertex in a graph 𝐺 and thus |𝑉 (𝐺)| = 2𝑛. An adjacency in a given genome Π𝑖 is represented
as an edge in 𝐺 with color 𝑖, that is, an adjacency 𝑢𝑣 in Π𝑖 is an edge 𝑢𝑣 in 𝐺 with color 𝑖. Thus, 𝐺 is a
𝑝-edge-colored multigraph. Observe that 𝐺 is a generalization of the breakpoint graph [1] for at least three
genomes, and we call it an extended breakpoint graph for Π, denoted by BG𝑥(Π) = 𝐺.

Let Γ be a subset of unsorted pairs from 𝑉 (𝐺), i.e., a subset of 𝑉 (𝐺)(2) =
(︀
𝑉 (𝐺)

2

)︀
, such that |Γ| = 𝑛 and

𝑒 ∩ 𝑓 = ∅ for each pair 𝑒, 𝑓 in Γ. Thus, Γ is a 1-regular graph with 𝑛 elements. We do not distinguish between
Γ and 𝐸(Γ).

Define 𝐺Γ := 𝐺 + Γ as the multigraph such that 𝑉 (𝐺Γ) = 𝑉 (𝐺) and 𝐸(𝐺Γ) = 𝐸(𝐺) ∪ Γ. Hence, 𝐺Γ is
a (𝑝 + 1)-edge-colored multigraph with a new color 𝑝 + 1. We say that a cycle in 𝐺Γ is 𝑖-colored if its edges
have colors alternating between 𝑖 and 𝑝 + 1. We also say that a cycle in 𝐺 is bicolored if its edges have colors
alternating between 𝑖 and 𝑗, 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ {1, . . . , 𝑝}.

We denote by 𝑘(𝐺Γ) the number of 𝑖-colored 2- and 4-cycles in 𝐺Γ. And we denote by 𝑘(𝐺) the maximum
number of 𝑖-colored 2- and 4-cycles in 𝐺Γ for all possible 1-regular graphs Γ with vertex set 𝑉 (𝐺):

𝑘(𝐺) = max
{︀
𝑘
(︀
𝐺Γ

)︀
: Γ is a 1-regular graph on 𝑉 (𝐺)

}︀
.

Hence, we have the following problem, equivalent to 𝑐4-Median:

Problem Max-2/4-Cycles(𝐺): given a 𝑝-edge-colored multigraph 𝐺 with 𝑝 ≥ 3 and |𝑉 (𝐺)| = 2𝑛 > 0, find a
1-regular graph Γ with vertex set 𝑉 (𝐺) such that 𝑘(𝐺) = 𝑘(𝐺Γ).

See Figure 1 for an example. We are interested in the simplest version of the Max-2/4-Cycles problem,
when 𝑝 = 3.

3. Bounds

In this section we give upper bounds to Max-2/4-Cycles, such that the instance 𝐺 is a 3-edge-colorable
graph with 2𝑛 vertices.

We consider graphs without loops. Let 𝐺 be a graph and 𝑣, 𝑤 ∈ 𝑉 (𝐺). The number of edges between 𝑣 and
𝑤 is the multiplicity of 𝑣, 𝑤, which is denoted by 𝜇(𝑣, 𝑤). Let 𝑒 be an edge which is incident to 𝑣 and 𝑤. If
there is no harm of confusion, then we write 𝑒 = 𝑣𝑤 and we say that 𝑒 is an edge of multiplicity 𝜇(𝑣, 𝑤). An
edge of multiplicity 1 is also called a simple edge, and an edge of multiplicity at least 2 is called a multiedge. If
𝜇(𝑣, 𝑤) ≤ 1 for all 𝑣, 𝑤 ∈ 𝑉 (𝐺), then 𝐺 is called a simple graph.

ALGORITHMS FOR THE GENOME MEDIAN 1049

Figure 1. (a) Three given genomes Π1 = {(1 4 3), (2)}, Π2 = {(1 2 3 4)} and Π3 =
{(1), (2), (3), (4)} for the 𝑐4-Median and its equivalent given graph 𝐺 for the Max-2/4-
Cycles. (b) An optimal solution Γ = {(1 3 4), (2)} with 7 cycles: 5 cycles of length 2 (two
1-colored cycles (red), two 2-colored (blue) and one 3-colored (green)) plus 2 cycles of length 4
(one 1-colored cycle (red) and one 2-colored (blue)). Therefore, 𝐾⋆(Π) = 𝐾(Π, Γ) = 3 ·4−7 = 5
and 𝑘(𝐺Γ) = 𝑘(𝐺) = 7.

A 3-regular graph is also called a cubic graph. A cubic graph is 3-edge-colorable if its edges set can be
partitioned into three perfect matchings, which are also called the color classes of a 3-edge-coloring of 𝐺.

Let 𝐺 be a 3-edge-colorable cubic graph of order 2𝑛 and Γ be a color class of 𝐺. Then 𝐺Γ has 𝑛 𝑖-colored
2-cycles and hence, 𝑘(𝐺) ≥ 𝑛 = |𝑉 (𝐺)|

2 .
Note that every edge of 𝐺 is contained in at most one 𝑖-colored cycle of 𝐺Γ and that an 𝑖-colored 2-cycle

contains precisely one edge of 𝐺 and an 𝑖-colored 4-cycle contains precisely two edges of 𝐺. Let 𝐾3
2 be the

unique cubic graph with two vertices.

Proposition 1. Let 𝐺 be a connected cubic 3-edge-colorable graph. Then 𝑘(𝐺) ≤ 3
2 |𝑉 (𝐺)|. Furthermore, 𝑘(𝐺) =

3
2 |𝑉 (𝐺)| if and only if 𝐺 = 𝐾3

2 .

Proof. The first part follows directly from the 𝑐4-distance definition. If 𝐺 = 𝐾3
2 , then 𝑘(𝐺) = 3. For the other

direction, choose Γ such that 𝑘(𝐺Γ) = 𝑘(𝐺). If 𝑘(𝐺) = 3
2 |𝑉 (𝐺)|, then it follows by the remarks above that 𝐺Γ

has 𝑖-colored 2-cycles only. Hence, 𝐺 = 𝐾3
2 . �

Theorem 2. Let 𝑚 be a positive integer and 𝐺 ̸= 𝐾3
2 be a connected 3-edge-colorable cubic graph. If 𝐺 has 𝑚

multiedges, then 𝑘(𝐺) ≤ |𝑉 (𝐺)|+ ⌊𝑚
2 ⌋. Furthermore, the bound is tight.

Proof. Since 𝐾3
2 is the unique connected cubic graph which contains an edge 𝑒 with 𝜇(𝑒) = 3, it follows that 𝐺

has 𝑚 edges of multiplicity 2. Let |𝑉 (𝐺)| = 2𝑛 > 2.
Let Γ be a 1-regular graph with vertex set 𝑉 (𝐺). For 𝑖 ∈ {1, 2} let 𝐸𝑖(𝐺) = {𝑒 : 𝑒 ∈ 𝐸(𝐺) and 𝜇(𝑒) = 𝑖},

and 𝑚𝑖 = |𝐸𝑖(𝐺)∩Γ|. Since 𝑚1 + 𝑚2 counts the number of edges in a subset of Γ, it follows that 𝑚1 + 𝑚2 ≤ 𝑛.
Furthermore, 𝑚2 ≤ 𝑚.

The graph 𝐺Γ has 2𝑚2 +𝑚1 many 𝑖-colored 2-cycles, which cover 2𝑚2 +𝑚1 edges of 𝐺. Since every 𝑖-colored
4-cycle contains precisely two edges of 𝐺 and each edge of 𝐺 is in at most one 𝑖-colored cycle, it follows that
there are at most 1

2 (3𝑛− (2𝑚2 + 𝑚1)) 𝑖-colored 4-cycles. Hence,

𝑘
(︀
𝐺Γ

)︀
≤ 2𝑚2 + 𝑚1 +

1
2

(3𝑛− (2𝑚2 + 𝑚1)) =
1
2

(𝑚1 + 𝑚2) +
1
2
𝑚2 +

3
2
𝑛 ≤ 2𝑛 + 1

2𝑚2.

Since 𝑚2 ≤ 𝑚 and 𝑘(𝐺Γ) is an integer, it follows that 𝑘(𝐺Γ) ≤ 2𝑛 + ⌊𝑚
2 ⌋ = |𝑉 (𝐺)| + ⌊𝑚

2 ⌋. And since Γ was
chosen arbitrarily, the first statement of the theorem is proved.

To see that the bound is tight, check Figure 2. �

1050 H.O.M. SILVA ET AL.

Figure 2. A linear ladder, i.e., a connected cubic 3-edge-colorable graph 𝐺 with |𝑉 (𝐺)| =
2𝑛 = 12, edges with colors 1 (red), 2 (blue) and 3 (green), 𝑚 = 2 multiedges, and a 1-regular
graph Γ (black edges) such that 𝑘(𝐺Γ) = 𝑘(𝐺) = 13 = 2𝑛 + ⌊𝑚

2 ⌋.

Let 𝑛 ≥ 2 and 𝑃𝑛 be a path on vertices 𝑣1, . . . , 𝑣𝑛 in this order and let 𝑃 ′
𝑛 be a copy of 𝑃𝑛. Let L(𝑛) be the

cubic graph obtained from 𝑃𝑛 and 𝑃 ′
𝑛 by adding the edges 𝑣𝑖𝑣

′
𝑖 for 𝑖 ∈ {1, . . . , 𝑛} and duplicating edges 𝑣1𝑣

′
1

and 𝑣𝑛𝑣′𝑛. We call a graph a linear ladder if it is isomorphic to L(𝑛) for an integer 𝑛 ≥ 2. See Figure 2 for an
example.

Let 𝐺3
4 be the connected cubic graph on 4 vertices which has multiedges. Note that 𝑘(𝐺3

4) = 5 = |𝑉 (𝐺3
4)|+⌊𝑚

2 ⌋.
Therefore, the bound of Theorem 2 is tight for this graph. However, this graph can be characterized by its 𝑐4-
median.

Proposition 3. Let 𝐺 be a connected cubic 3-edge-colorable graph. Then 𝑘(𝐺) = 5
4 |𝑉 (𝐺)| if and only if 𝐺 = 𝐺3

4.

Proof. Let 𝐺 be of order 2𝑛. It follows with Theorem 2, that 𝑚 = 𝑛. Hence, the edges of multiplicity 2 form a
perfect matching in 𝐺. Thus, 𝐺 is obtained from an even cycle by doubling every second edge. Now it easy to
see that 𝐺3

4 is the only graph with 𝑘(𝐺) = 5
2𝑛. The other direction is trivial. �

Corollary 4. Let 𝐺 be a connected 3-edge-colorable cubic graph. If |𝑉 (𝐺)| > 4, then 𝑘(𝐺) < 5
4 |𝑉 (𝐺)|.

As we will see in Section 4, a special type of ladder introduced below, called circular ladder, is a strong
decomposer and this is a motivation to show the next results on simple graphs. That is, for simple graphs we
can prove some better bounds. For 𝑚 ∈ {0, 2} there are infinitely many graphs which attain the bound of
Theorem 2. Maybe, it is true that the family of Figure 2 characterizes the graphs with maximum 𝑘(𝐺) and two
multiedges. It is unclear whether such graphs exist for 𝑚 > 2. It could be that if a connected cubic graph 𝐺
has more than two multiedges, then 𝑘(𝐺) < 2𝑛 + ⌊𝑚

2 ⌋.
Let 𝑛 ≥ 3 and 𝐶𝑛 be a cycle on vertices 𝑣1, . . . , 𝑣𝑛 in this order and let 𝐶 ′

𝑛 be a copy of 𝐶𝑛. Let 𝐿1(𝑛) be the
cubic graph obtained from 𝐶𝑛 and 𝐶 ′

𝑛 by adding the edges 𝑣𝑖𝑣
′
𝑖 for 𝑖 ∈ {1, . . . , 𝑛} and 𝐿2(𝑛) be the cubic graph

which is obtained from 𝐿1(𝑛) − {𝑣𝑛𝑣1, 𝑣
′
𝑛𝑣′1} by adding the edges 𝑣𝑛𝑣′1 and 𝑣′𝑛𝑣1. Graph 𝐿2(𝑛) is also called a

Möbius ladder.
We call a graph a circular ladder if it is isomorphic to 𝐾4 or to 𝐿1(𝑛) or 𝐿2(𝑛) for an integer 𝑛 ≥ 3.

Theorem 5. If 𝐺 is a connected simple 3-edge-colorable cubic graph, then 𝑘(𝐺) ≤ |𝑉 (𝐺)|. Furthermore, 𝑘(𝐺) =
|𝑉 (𝐺)| if and only if 𝐺 is a circular ladder.

Proof. The first part follows from Theorem 2, since 𝐺 is simple. If 𝐺 is a circular ladder, then 𝑘(𝐺Γ) = 2𝑛 =
|𝑉 (𝐺)| for Γ = {𝑣𝑖𝑣

′
𝑖 : 𝑖 ∈ {1, . . . , 𝑛}}.

Let Γ be a 1-regular graph on 𝑉 (𝐺) such that 𝑘(𝐺Γ) = 𝑘(𝐺). For 𝑗 ∈ {2, 4} let 𝑐𝑗 be the number of 𝑖-colored
𝑗-cycles. We have 𝑘(𝐺Γ) = 𝑐2 + 𝑐4 = 2𝑛. Consequently, 𝑐4 = 1

2 (3𝑛 − 𝑐2) and therefore, 𝑐2 = 𝑐4 = 𝑛. Hence, Γ
is a perfect matching of 𝐺. Let 𝑒 ∈ Γ, say 𝑒 = 𝑣𝑤, and let 𝑣1, 𝑣2 and 𝑤1, 𝑤2 be the two other neighbors of 𝑣
and 𝑤, respectively. The edges 𝑣𝑣𝑖 and 𝑤𝑤𝑖 cannot be in a 2-cycle since 𝐺 is simple and Γ is a matching. Thus,
each of them is in an 𝑖-colored 4-cycle, and therefore, Γ induces a perfect matching on 𝐺[{𝑣, 𝑣1, 𝑣2, 𝑤, 𝑤1, 𝑤2}];
say 𝑣1𝑤1, 𝑣2𝑤2 ∈ Γ. It follows that 𝑣1𝑤1, 𝑣2𝑤2 ∈ 𝐸(𝐺), since Γ is a perfect matching of 𝐺. If |𝑉 (𝐺)| = 2𝑛 = 4,
then 𝐺 = 𝐾4. If |𝑉 (𝐺)| = 2𝑛 > 4, then 𝐺 is isomorphic to a circular ladder on 2𝑛 vertices. �

ALGORITHMS FOR THE GENOME MEDIAN 1051

Figure 3. A connected cubic 3-edge-colorable graph 𝐺 with two optimal 𝑐4-medians: (a) with
six (all) 2-cycles and (b) with two 2-cyles and four 4-cycles. Notice that 2𝑡3𝑡 and 2ℎ3ℎ are
decomposers but not strong decomposers.

4. Decomposers

A popular strategy for constructing solutions to median problems is to decompose 𝐺 into smaller parts and
then identify partial solutions thereof. These are subsequently integrated into a complete median [4, 9–13]. In
the following, we make use of notation from [12] to characterize such partial solutions for Max-2/4-Cycles.

Let 𝐺 be a 3-edge-colorable cubic graph and Γ be a 1-regular graph with vertex set 𝑉 (𝐺) such that 𝑘(𝐺) =
𝑘(𝐺Γ). For any vertex-induced subgraph 𝐻 ⊂ 𝐺, Γ is 𝐻-crossing if and only if it contains an edge 𝑢𝑣 ∈ Γ such
that |{𝑢, 𝑣} ∩ 𝑉 (𝐻)| = 1. Conversely, a vertex-induced subgraph 𝐻 ⊂ 𝐺 is a decomposer if and only if there
exists a 1-regular graph Γ with vertex set 𝑉 (𝐺) such that 𝑘(𝐺) = 𝑘(𝐺Γ) and Γ is not 𝐻-crossing. And 𝐻 is
a strong decomposer if every 1-regular graph Γ with 𝑘(𝐺) = 𝑘(𝐺Γ) is not 𝐻-crossing. From Propositions 1, 3,
and Theorem 5 directly follows:

Corollary 6. 𝐾3
2 , 𝐺3

4, and any linear and circular ladder are strong decomposers.

Decomposers of related problems. In dissecting the computational problem of finding 𝑐4-medians, a straightfor-
ward question is whether some decomposers of its related problems, the breakpoint and the DCJ median, are
also decomposers of a 𝑐4-median. Here, we look at simple decomposers, in particular 𝐾2

2 , a graph of two vertices
connected by two distinctly colored parallel edges, and 𝐾3

2 , a graph of two vertices connected by parallel edges
of all three distinct colors.

Proposition 7 ([9]). 𝐾2
2 and every connected component in 𝐺 is a decomposer. Further, 𝐾3

2 is a strong decom-
posers of the breakpoint median of three.

Proposition 8 ([12,13]). 𝐾2
2 is a decomposer and 𝐾3

2 is a strong decomposer of the DCJ median of three.

While 𝐾3
2 is a strong decomposer of the 𝑐4-median as shown above, we observe that 𝐾2

2 may be a decomposer,
as we can see in Figure 3.

Adequate subgraphs [12] are a family of decomposers of the DCJ median of three genomes: A subgraph
𝐻 ⊂ 𝐺 is an adequate subgraph if 𝑘(𝐻) ≥ 3

4 |𝑉 (𝐻)|.

Proposition 9. Adequate subgraphs are not decomposers of Max-2/4-cycles.

Proof. Figure 3 is a trivial counterexample. A more illustrative example is the following: Cycles of four vertices
𝑣1, . . . , 𝑣4 are adequate subgraphs [12]. Figure 4 depicts a counterexample where all 𝑐4-medians are 𝐻-crossing
for the highlighted cycle 𝐻. �

1052 H.O.M. SILVA ET AL.

Figure 4. (a) 3-edge-colorable cubic graph 𝐺 with embedded adequate subgraph highlighted
in gray and (b) graph 𝐺Γ with 𝑘(𝐺) = 𝑘(𝐺Γ) = 12.

5. Algorithms

In this section we present four algorithms for the Max-2/4-cycles: one exact ILP-based algorithm and
three greedy heuristics.

Suppose we have an instance of Max-2/4-cycles: a graph 𝐺 with 2𝑛 vertices, 𝑛 > 0, and a set of three
1-regular graphs Π = {Π1, Π2, Π3} such that each Π𝑖 has vertex set 𝑉 (𝐺). Saying in other words, Π𝑖 has 𝑛
edges, i.e., it is a perfect matching in 𝐺. Algorithms in this section receive 𝐺 and Π and build and return an
1-regular graph Γ in 𝐺 maximizing the number of 2- and 4-cycles in 𝐺Γ.

5.1. ILP formulation

Our exact ILP algorithm translates the minimization formula for the 𝑐4-median problem in a straightforward
way. See Algorithm 1.

Algorithm 1. ILP for computing the 𝑐4-median.

min 3𝑛−
∑︁

𝜋∈𝐸

𝑐𝜋 𝑦𝜋 −
∑︁

𝜋,𝜎∈𝐸,𝜋 ̸=𝜎

𝑐𝜋,𝜎 𝑥𝜋,𝜎

subject to
∑︁

𝜋∼𝑣

𝑦𝜋 = 1 ∀ 𝑣 ∈ 𝑉 (C.01)

𝑥𝜋,𝜎

𝑥𝜋,𝜎

≤
≤

𝑦𝜋

𝑦𝜎

}︂
∀ {𝜋, 𝜎} ∈ 𝐹 (C.02)

and 𝑦𝜋 ∈ {0, 1} ∀ 𝜋 ∈ 𝐸 (D.01)

𝑥𝜋,𝜎 ∈ {0, 1} ∀ 𝜋, 𝜎 ∈ 𝐸, 𝜋 ̸= 𝜎 (D.02)

We establish that one, and only one, edge in the solution is chosen for each possible 𝑣 in 𝑉𝑖 and if the edge
𝜋 in 𝐸 is chosen, then the binary variable 𝑦𝜋 receives 1, otherwise it receives 0 (constraint (C.01) and binary
variable (D.01)). If the pair of distinct edges 𝜋 and 𝜎 is chosen in 𝐸, then the binary variable 𝑥𝜋,𝜎 receives 1.
Otherwise, 𝑥𝜋,𝜎 gets 0 (constraint (C.02), binary variable (D.02)). Finally, we maximize the amount of 2- and
4-cycles with the variables 𝑐𝜋 and 𝑐𝜋,𝜎, respectively, which correspond to the ILP objective function.

Observe that the choices of edges conforming 2-cycles are linked to the counter 𝑐𝜋 when an edge is chosen to
be part of the solution. And the choice of edge pairs for 4-cycles in the variable 𝑐𝜋,𝜎 it is performed when the

ALGORITHMS FOR THE GENOME MEDIAN 1053

pair is in 𝐸𝑖, with 𝑖 ∈ {1, 2, 3}. The constraint is divided into two parts, since this speeds up the process in the
search for the optimal solution.

Lastly, observe that we have 𝑂(𝑛2) constraints and binary variables in the Algorithm 1.

5.2. Induced bicolored cycles

The basic idea behind Algorithm 2 is the following. We take two of the perfect matchings Π𝑖 and Π𝑗 from
Π in 𝐺, with 𝑖, 𝑗,∈ {1, 2, 3} and 𝑖 ̸= 𝑗, and build an induced graph 𝐻𝑖,𝑗 = 𝐺[Π𝑖 ∪ Π𝑗]. Observe that 𝐻𝑖,𝑗 is a
collection of bicolored cycles, with alternating 𝑖- and 𝑗-colored edges. For each bicolored cycle 𝐶 in 𝐻𝑖,𝑗 , we add
edges 𝑒 = 𝑢𝑣 in Π𝑘 to 𝐶 such that both extremities 𝑢 and 𝑣 are vertices of 𝐶, obtaining the subgraph 𝐶 ′ which
is a linear ladder. Notice that 𝐶 ′ may have vertices of degree either 2 or 3. Then we find a set of edges Γ𝑖,𝑗 that
maximizes the number of 2- and 4-cycles in 𝐶 ′. We repeat this process to each pair 𝑖, 𝑗 ∈ {1, 2, 3}, 𝑖 ̸= 𝑗, and
return the best of three.

Algorithm 2. Induced bicolored cycles.
Input: Graph 𝐺 with perfect matchings Π1, Π2, Π3

Output: 1-regular graph Γ maximizing 𝑘(𝐺Γ)

1: for each pair 𝑖, 𝑗 ∈ {1, 2, 3}, 𝑖 ̸= 𝑗 do
2: build an induced graph 𝐻𝑖,𝑗 from genomes Π𝑖, Π𝑗

3: Γ𝑖,𝑗 ← ∅
4: for each cycle 𝐶 in 𝐻𝑖,𝑗 do
5: find a set of edges 𝐴′ such that 𝐶 ∪𝐴′ is a linear ladder and maximizes the number of 2- and 4-cycles in 𝐺
6: Γ𝑖,𝑗 ← Γ𝑖,𝑗 ∪𝐴′

7: return Γ such that Γ = Γ𝑖,𝑗 for some pair 𝑖, 𝑗 ∈ {1, 2, 3}, 𝑖 ̸= 𝑗, and 𝑘(𝐺Γ) is minimum

The running time of line 5 is 𝑂(𝑛) and thus Algorithm 2 can be implemented in 𝑂(𝑛3) time, as shows a
simple inspection of the nested loops.

5.3. Shrinking adjacencies

Shrinking adjacencies is a greedy strategy to find an 1-regular graph Γ with vertex set 𝑉 (𝐺) of a given graph
𝐺 defined by three 1-regular graphs Π1, Π2 and Π3 each one with vertex set 𝑉 (𝐺).

Remember that 𝐺 has 2𝑛 vertices and 3𝑛 edges. Let 𝑢, 𝑣 be vertices in 𝑉 (𝐺). Let 𝑢𝑖 and 𝑣𝑖 be vertices in
𝑉 (𝐺) such 𝑢𝑖 ̸= 𝑣, and 𝑣𝑣𝑖, 𝑢𝑢𝑖 are 𝑖-colored edges. For each color 𝑖 ∈ {1, 2, 3}, let 𝐺′ := 𝐺 + 𝑢𝑖𝑣𝑖 − 𝑢𝑣 and set
color 𝑖 for the new edge 𝑢𝑖𝑣𝑖. We call the edge 𝑢𝑣 a shrinked adjacency in 𝐺. Notice that 𝐺′ is a 3-edge-colorable
graph. Moreover, notice that a shrinking procedure removes three to six edges and adds zero to three new edges
from 𝐺 to 𝐺′, depending on how many edges with endpoints 𝑢 and 𝑣 there exist in 𝐺. Thus, the number of
edges in 𝐺′ is 3𝑛− 3. Algorithm 3 implements this idea.

Algorithm 3. Shrinking adjacencies.
Input: 3-edge-colorable cubic graph 𝐺 obtained by the perfect matching in Π = {Π1, Π2, Π3}
Output: 1-regular graph Γ with vertex set 𝑉 (𝐺) obtained by edges chosen by the shortest cycle criterion

1: while there exists an edge in 𝐺 do
2: choose an edge 𝑢𝑣 in 𝐸(𝐺) according to the shortest cycle criterion
3: let 𝑢𝑖 and 𝑣𝑖 be vertices in 𝑉 (𝐺) such that 𝑢𝑖 ̸= 𝑣, and 𝑣𝑣𝑖, 𝑢𝑢𝑖 are 𝑖-colored edges
4: return 𝑢𝑣 plus the result of the recursive call of shrinking adjacencies for 𝐺 + 𝑢𝑖𝑣𝑖 − 𝑢𝑣

The criterion in the line 2 of Algorithm 3 is described below.

1054 H.O.M. SILVA ET AL.

Shortest cycle criterion: for ℎ ≥ 1, let 𝐺ℎ be a 3-edge-colorable graph given as an instance of ℎ-th recursive call
of Algorithm 3.

Notice that each edge in a 3-edge-colorable graph belongs to exactly two bicolored cycles. Thence, in order
to describe the shortest cycle criterion, consider a quadruple (vl(𝑒), rl(𝑒), sh(𝑒), lg(𝑒)), for each edge 𝑒 = 𝑢𝑣 ∈
𝐸(𝐺ℎ) such that vl(𝑒) ∈ {0, 1} denotes the contribution value of the edge 𝑒; rl(𝑒) = T denotes an edge in 𝐺,
and rl(𝑒) = F otherwise; and sh(𝑒) and lg(𝑒) are the lengths of the two bicolored cycles whose edge 𝑒 belongs
to, with sh(𝑒) ≤ lg(𝑒) (longest and shortest cycles).

Initially, in graph 𝐺 = 𝐺1, vl(𝑒) = 1 and rl(𝑒) = T for each edge 𝑒 ∈ 𝐸(𝐺). Algorithm 3 chooses an 𝑖-colored
edge 𝑒 ∈ 𝐸(𝐺ℎ) according to the following. Suppose that 𝑒 = 𝑢𝑣 and 𝑢𝑖, 𝑣𝑖 are vertices such that 𝑢𝑖 ̸= 𝑣,
𝑒𝑢 = 𝑢𝑢𝑖 and 𝑒𝑣 = 𝑣𝑣𝑖 are 𝑖-colored edges. When vertices 𝑢 and 𝑣 are removed from 𝐺ℎ then, for each 𝑖, we
define an 𝑖-colored edge 𝑒𝑖 = 𝑢𝑖𝑣𝑖, set rl(𝑒𝑖) = F and vl(𝑒𝑖) = 1 if rl(𝑣𝑣𝑖) = rl(𝑢𝑢𝑖) = T; otherwise, vl(𝑒𝑖) = 0.
Notice that removing vertices 𝑢 and 𝑣 implies in removing edges which, in turn, implies that the quadruple
attributes of all remaining edges, of cycles where those edges belong to, must be updated. This means that in
each recursive call 𝑂(𝑛) edges must have their attributes updated.

Considering the quadruple attributes, we define a total order ⪯ on the set of edges of 𝐺ℎ. Given two edges
𝑒1 and 𝑒2, we say that 𝑒1 ⪯ 𝑒2 if one and only one of the following conditions holds:

(1) vl(𝑒1) > vl(𝑒2), or
(2) vl(𝑒1) = vl(𝑒2), rl(𝑒1) = T and rl(𝑒2) = F, or
(3) vl(𝑒1) = vl(𝑒2), rl(𝑒1) = rl(𝑒2), sh(𝑒1) < sh(𝑒2) , or
(4) vl(𝑒1) = vl(𝑒2), rl(𝑒1) = rl(𝑒2), sh(𝑒1) = sh(𝑒2) and lg(𝑒1) ≤ lg(𝑒2).

We say that 𝑒 ∈ 𝐸(𝐺ℎ) is an optimal edge for the shortest cycle criterion if 𝑒 ⪯ 𝑔 for each 𝑔 ∈ 𝐸(𝐺ℎ). In
each recursion call of Algorithm 3, an optimal edge is chosen.

Finally observe that, in each recursive call, we have to find an edge 𝑒 = 𝑢𝑣 according to the shortest cycle
criterion, which takes 𝑂(𝑛) time, and we have to remove 𝑢 and 𝑣 from 𝐺ℎ, which takes 𝑂(1) time. Then, we
have to update the quadruple attributes of all edges in cycles involved in this operation and it can be performed
in 𝑂(𝑛) time. Thus, Algorithm 3 spends time 𝑂(𝑛) in each recursive call and therefore its running time is 𝑂(𝑛2).

5.4. Edge scores

Let R be the set of reliable edges, and an edge 𝑒 in 𝐺 belongs to R if 𝜇(𝑒) ≥ 2. Let Γ be a 1-regular graph with
vertex set 𝑉 (𝐺). Define the score 𝑠 of an edge 𝑢𝑣 in Γ as 𝑠(𝑢𝑣) = 𝑡+ 1

2𝑓 , where 𝑡 is the number of 𝑖-colored 2-cycles
and 𝑓 is the number of 𝑖-colored 4-cycles such that 𝑢𝑣 belongs to them in 𝐺Γ, with 𝑖 ∈ {1, 2, 3}. It is easy to see
that 0 ≤ 𝑡 + 𝑓 ≤ 3. Let 𝑠(Γ) :=

∑︀
𝑢𝑣∈Γ 𝑠(𝑢𝑣) and observe that 𝑠(Γ) = 𝑘(𝐺Γ). The two edges in Γ of an 𝑖-colored

4-cycle in 𝐺Γ are called sibling edges. Figure 1b shows 𝐺Γ such that 𝑠(1𝑡4ℎ) = 3
2 , 𝑠(1ℎ3𝑡) = 1, 𝑠(3ℎ4𝑡) = 2, and

𝑠(2𝑡2ℎ) = 5
2 .

Afterwards, for each edge 𝑢𝑣 in Γ, define its cycle potential 𝜆 in 𝐺Γ as 𝜆(𝑢𝑣) = 1
2 (𝜇(𝑢𝑣) + 3) − 𝑠(𝑢𝑣). The

cycle potential 𝜆(𝑢𝑣) of an edge 𝑢𝑣 in Γ represents the possibility of collaboration of 𝑢𝑣 in other 2- and 4-cycles
in 𝐺Γ. Referring again to the graph 𝐺Γ in Figure 1b, we have 𝜆(1𝑡4ℎ) = 𝜆(1ℎ3𝑡) = 𝜆(3ℎ4𝑡) = 1

2 and 𝜆(2𝑡2ℎ) = 0.
Algorithm 4 starts choosing reliable edges and arbitrary remaining edges to be part of an initial solution,

obtaining a 1-regular graph Γ with vertex set 𝑉 (𝐺). Then, it computes score and cycle potential for each edge
in Γ. The next step is trying to increase the score of an edge, and to decrease the cycle potential of a small
subset of edges as well, through local changes. Let 𝑢𝑣 be an edge in Γ such that 𝜆(𝑢𝑣) > 0. Subsequently, for
𝑖 ∈ {1, 2, 3}, there is at least one pair of 𝑖-colored edges in 𝐺, say 𝑢𝑢1 and 𝑣𝑣1, such that 𝑢1𝑣1 ̸∈ Γ. Since Γ
is a perfect matching, 𝑢1 and 𝑣1 are saturated vertices and let 𝑢1𝑢2 and 𝑣1𝑣2 be these edges in Γ. Now, the
algorithm removes 𝑢1𝑢2, 𝑣1𝑣2 and adds 𝑢1𝑣1, 𝑢2𝑣2 to Γ and the score and cycle potential of the edge 𝑢𝑣 must
be updated, as well as for the sibling edges of the removed edges 𝑢1𝑢2 and 𝑣1𝑣2. Additionally, the score and
cycle potential of the new edges 𝑢1𝑣1 and 𝑢2𝑣2 must be computed. Algorithm allows this operation if and only
if 𝑢1𝑢2 and 𝑣1𝑣2 are not reliable edges. It repeats this process while the sum of the scores of all edges increases
from one step to the next and there is an edge with positive cycle potential.

ALGORITHMS FOR THE GENOME MEDIAN 1055

Algorithm 4. Edge scores.
Input: 3-edge-colorable cubic graph 𝐺 obtained by the perfect matchings in Π = {Π1, Π2, Π3}
Output: 1-regular graph Γ with vertex set 𝑉 (𝐺) such that 𝑠(Γ) is maximum

1: let R be the set of reliable edges of 𝐺
2: let Γ be a 1-regular graph comprised of R and arbitrary remaining edges
3: compute 𝑠(𝑢𝑣), 𝜆(𝑢𝑣) for each edge 𝑢𝑣 in Γ
4: if there exists an edge 𝑢𝑣 in Γ such that 𝜆(𝑢𝑣) > 0 then
5: let 𝑢𝑢1, 𝑣𝑣1 be 𝑖-colored edges, 𝑢1𝑣1 ̸∈ Γ, 𝑖 ∈ {1, 2, 3}
6: let 𝑢1𝑢2, 𝑣1𝑣2 be edges in Γ
7: if 𝑢1𝑢2, 𝑣1𝑣2 /∈ R then
8: Γ = Γ + {𝑢1𝑣1, 𝑢2𝑣2} − {𝑢1𝑢2, 𝑣1𝑣2}
9: update 𝑠(𝑢𝑣), 𝜆(𝑢𝑣)

10: update 𝑠, 𝜆 for sibling edges of 𝑢1𝑢2, 𝑣1𝑣2, 𝑢1𝑣1, 𝑢2𝑣2

11: compute 𝑠(𝑢1𝑣1), 𝜆(𝑢1𝑣1) and 𝑠(𝑢2𝑣2), 𝜆(𝑢2𝑣2)
12: repeat lines 4–11 while 𝑠(Γ) can be increased without removing edges in R

13: return Γ

Figure 5. For multiple genome sizes and 𝑘 values, running times of the ILP solver in minutes.

Observe that the search in line 4, for an edge in Γ with cycle potential positive, takes 𝑂(𝑛) time. Besides
that, each line from 5 to 11 can be performed in constant time. Since 𝑠(Γ) can be increased 𝑂(𝑛) times, we have
that the running time of Algorithm 4 is 𝑂(𝑛2).

6. Experiments and performance evaluation

We simulated multiple genomes in order to (i) sketch the boundaries where our ILP (Algorithm 1) can perform
in reasonable time whilst providing an acceptable accuracy, and (ii) evaluate the quality and running times of
our heuristics (Algorithms 2–4). Experiments were run using 3.6 GHz CPUs. We implemented the heuristics in
Python 3 and used Gurobi 9.0.2 as ILP solver with 8 cores.

The simulated instances were built as follows. Given a root genome with 𝑛 markers, a descendant trio is a
set of three genomes, each one generated by simulating independently 𝑛

100 · 𝑘 random DCJs in the root genome
(i.e., 𝑘 is a percentage of the root genome size 𝑛 ranging in {10, 15, 20, 25}).

1056 H.O.M. SILVA ET AL.

Figure 6. For genomes with number of markers ranging in 1000 to 10 000 and 𝑘 = 25, (a)
running times and (b) 𝑐4-distances of the heuristics.

Figure 7. Optimal distances obtained by the exact ILP algorithm versus distances obtained
by the heuristics, for genome sizes in {50, 100, 150, . . . , 500} and 𝑘 = 25.

In order to evaluate the performance of Algorithm 1 for large genomes, we generated root genomes with
1000, 1100, 1200, . . . , 2000 markers distributed in several circular chromosomes and then for each root genome,
four descendent trios ranging 𝑘 in {10, 15, 20, 25}. In the solver execution command, we set the time limit to
10 h. For this dataset, the solver exceeded the time limit for genomes with 𝑛 > 1100 markers when 𝑘 = 25. See
Figure 5.

Second, in order to stress the heuristics and evaluate their performance, we simulated datasets with large
genomes, from 1000 to 10 000 markers and 𝑘 = 25. Figure 6 shows running times and 𝑐4-distances for Algo-
rithms 2–4. Algorithm 4 always returned the smallest 𝑐4-distances, followed by Algorithm 3 with a difference of
0.71%, on average.

Finally, after performing experiments with ILP and heuristics, we compare the returned distances. Due
to the ILP limitations, we first generate root genomes with 50, 100, 150, . . . , 500 markers spread over several
circular chromosomes and then, for each root genome, four descending triplets with 𝑘 = 25. We then carried
out comparisons of the results obtained by the three heuristics with the optimal distances obtained by the ILP.

ALGORITHMS FOR THE GENOME MEDIAN 1057

Figure 7 shows that the “Edge scores” heuristic returns distances closer to the optimal ones with a difference of
2.8% on average. Then the heuristics “Shrinking adjacencies” and “Induced bicolored cycles” have, respectively,
differences of 5.5% and 15.9% on average in comparison to the optimal distances.

7. Conclusion

In this work we study the genome median problem under the 𝑐4-distance, a restricted measure of rearrange-
ment. We show bounds and properties concerning this measure, and establish connections with previous works
on the breakpoint and the DCJ median problems. We also develop algorithms, one exact ILP-based and three
combinatorial heuristics, which allow us to perform experiments on simulated data sets and to provide many
insights about the problem. Moreover, this work offers many perspectives for future research as detailed below.

From the theoretical perspective, the computational complexity of the problem is still open, although we
conjecture it is NP-hard. Additionally, there is room to deepen the relationships between this and Xu’s work [12],
especially with respect to decomposers and adequate subgraphs.

Algorithms proposed in this work give a practical perspective to the problem and allow to compare their
results to those for the breakpoint and the DCJ median, and we will do so in future work. Particularly, the bounds
obtained in Section 3 can give support to design a strategy to speed up Algorithm 1, such as a branch and bound
algorithm. On the other hand, these bounds can help us to establish approximations factors to the developed
heuristics (Algorithms 2–4). Besides that, a real data analysis, of single-celled organisms or mitochondrial DNA
of more complex organisms should give us more information about the behaviour of this measure in practice.
Furthermore, we can possibly extend this work to multichromosomal linear genomes, using a classic approach
to deal with capping [7, 8, 11], in which we can safely transform linear into circular chromosomes and preserve
the distances.

Acknowledgements. We want to thank Jens Stoye and Cedric Chauve for introducing this topic and for all the fruitful
discussions about it.

References

[1] V. Bafna and P.A. Pevzner, Genome rearrangements and sorting by reversals. SIAM J. Comput. 25 (1996) 272–289.

[2] A. Bergeron, J. Mixtacki and J. Stoye, A unifying view of genome rearrangements, in Proc. of WABI. Vol. 4175 of LNBI.
Springer Berlin Heidelberg (2006) 163–173.

[3] A. Caprara, The reversal median problem. INFORMS J. Comput. 15 (2003) 93–113.

[4] D. Doerr, M. Balaban, P. Feijão and C. Chauve, The gene family-free median of three. Algorithm Mol. Biol. 12 (2017) 1–14.

[5] P. Feijão and J. Meidanis, SCJ: a breakpoint-like distance that simplifies several rearrangement problems. IEEE/ACM Trans.
Comput. Biol. Bioinf. 8 (2011) 1318–1329.

[6] G. Fertin, A. Labarre, I. Rusu, E. Tannier and S. Vialette, Combinatorics of Genomes Rearrangements. The MIT Press (2009).

[7] S. Hannenhalli and P. Pevzner, Transforming men into mice (polynomial algorithm for genomic distance problem), in Proc. of
FOCS 1995. IEEE (1995) 581–592.

[8] G. Jean and M. Nikolski, Genome rearrangements: a correct algorithm for optimal capping. Inf. Process. Lett. 104 (2007)
14–20.

[9] J. Kováč, On the complexity of rearrangement problems under the breakpoint distance. J. Comput. Biol. 21 (2013) 1–15.

[10] E. Tannier, C. Zheng and D. Sankoff, Multi-chromosomal median and halving problems under different genomic distances.
BMC Bioinf. 10 (2009) 1–15.

[11] A.W. Xu, DCJ median problems on linear multichromosomal genomes: graph representation and fast exact solutions, in Proc. of
RECOMB-CG. Vol. 5817 of LNCS. Springer Berlin Heidelberg (2009) 70–83.

[12] A.W. Xu, A fast and exact algorithm for the median of three problem: a graph decomposition approach. J. Comput. Biol. 16
(2009) 1369–1381.

[13] A.W. Xu and D. Sankoff, Decompositions of multiple breakpoint graphs and rapid exact solutions to the median problem, in
Proc. of WABI. Volume 5251 of LNBI. Springer (2008) 25–37.

[14] S. Yancopoulos, O. Attie and R. Friedberg, Efficient sorting of genomic permutations by translocation, inversion and block
interchanges. Bioinformatics 21 (2005) 3340–3346.

1058 H.O.M. SILVA ET AL.

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model
(S2O). We are thankful to our subscribers and supporters for making it possible to
publish this journal in open access in the current year, free of charge for authors and
readers.

Check with your library that it subscribes to the journal, or consider making a personal donation to
the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports,
is available at https://edpsciences.org/en/subscribe-to-open-s2o.

mailto:subscribers@edpsciences.org
https://edpsciences.org/en/subscribe-to-open-s2o

	Introduction
	Preliminaries
	Classical distances
	Multichromosomal circular genomes
	Median problem
	Graph formulation

	Bounds
	Decomposers
	Algorithms
	ILP formulation
	Induced bicolored cycles
	Shrinking adjacencies
	Edge scores

	Experiments and performance evaluation
	Conclusion
	References

