DEGREE CONDITIONS FOR THE EXISTENCE OF A \(\{P_2, P_3\}\)-FACTOR IN A GRAPH

SUFANG WANG\(^1\)* AND WEI ZHANG\(^2\)

Abstract. A subgraph of a graph \(G \) is spanning if the subgraph covers all vertices of \(G \). A path-factor of a graph \(G \) is a spanning subgraph \(H \) of \(G \) such that every component of \(H \) is a path. In this article, we prove that (i) a connected graph \(G \) with \(\delta(G) \geq 5 \) admits a \(\{P_2, P_3\}\)-factor if \(G \) satisfies \(\delta(G) > \frac{2\omega(G) - 4}{3} \); (ii) a connected graph \(G \) of order \(n \) with \(n \geq 7 \) has a \(\{P_2, P_3\}\)-factor if \(G \) satisfies \(\max\{d_G(x), d_G(y)\} \geq \frac{3n}{4} \) for any two nonadjacent vertices \(x \) and \(y \) of \(G \).

Mathematics Subject Classification. 05C70, 05C38.

Received August 3, 2022. Accepted July 27, 2023.

1. Introduction

In this article, we deal only with finite and undirected graphs that have neither loops nor multiple edges. Let \(G \) be a graph with vertex set \(V(G) \) and edge set \(E(G) \). For \(x \in V(G) \), we denote by \(d_G(x) \) the degree of \(x \) in \(G \). Let \(\delta(G) \) and \(\alpha(G) \) denote minimum degree and independence number of a graph \(G \), respectively. We denote by \(\omega(G) \) the number of connected components in \(G \), and by \(i(G) \) the number of isolated vertices in \(G \). The order of a graph \(G \) is the number \(n = |V(G)| \) of its vertices and its size is the number \(q = |E(G)| \) of its edges. For any \(X \subseteq V(G) \), \(G[X] \) denotes the subgraph of \(G \) induced by \(X \) and \(G - X \) denotes the subgraph derived from \(G \) by removing the vertices in \(X \) and the edges incident to vertices in \(X \). For disjoint sets \(X, Y \subseteq V(G) \), we use \(E_G(X, Y) \) to denote the set of edges of \(G \) joining a vertex in \(X \) and a vertex in \(Y \), and write \(e_G(X, Y) = |E_G(X, Y)| \). Let \(G_1 \) and \(G_2 \) be two disjoint graphs. The union \(G_1 \cup G_2 \) denotes the graph with vertex set \(V(G_1) \cup V(G_2) \) and edge set \(E(G_1) \cup E(G_2) \). The join \(G_1 \vee G_2 \) is the graph with vertex set \(V(G_1) \cup V(G_2) \) and edge set \(E(G_1) \cup E(G_2) \cup \{uv : u \in V(G_1), v \in V(G_2)\} \). For a graph \(G \) and an integer \(k \geq 2 \), we use \(kG \) to denote the disjoint union of \(k \) copies of \(G \). The path and the complete graph of order \(n \) are denoted by \(P_n \) and \(K_n \), respectively.

A subgraph of a graph \(G \) is spanning if the subgraph covers all vertices of \(G \). For a set \(\mathcal{H} \) of connected graphs, a spanning subgraph \(H \) of a graph \(G \) is called an \(\mathcal{H} \)-factor of \(G \) if every component of \(H \) is isomorphic to a member of \(\mathcal{H} \). An \(\mathcal{H} \)-factor is also referred as a component factor. A path-factor of a graph \(G \) is a spanning

Keywords. Graph, independence number, degree condition, \(\{P_2, P_3\}\)-factor.

1 School of Public Management, Jiangsu University of Science and Technology, Jiangsu 212100, Zhenjiang, P.R. China.
2 School of Economics and Management, Wenzhou University of Technology, Wenzhou 325000, Zhejiang, P.R. China.
*Corresponding author: wangsufangjust0163.com

© The authors. Published by EDP Sciences, ROADEF, SMAI 2023
subgraph H of G such that every component of H is a path. Note that a perfect matching can be regarded as a $\{P_2\}$-factor. Let $d \geq 2$ be an integer. A $\{P_d, P_{d+1}, \ldots\}$-factor is simply denoted by a $P_{\geq d}$-factor.

For a graph G and an integer $i \geq 1$, let $\mathcal{C}_i(G)$ denote the set of components of order i in G, and set $c_i(G) = |\mathcal{C}_i(G)|$. Obviously, $c_1(G)$ is the number of isolated vertices in G (that is, $c_1(G) = i(G)$).

Egawa and Furuya [2] obtained a sufficient condition for a graph to admit a $\{P_2, P_5\}$-factor.

Theorem 1.1 (2). Let G be a graph. If G satisfies

$$c_1(G - X) + \frac{2}{3}c_3(G - X) \leq \frac{4}{3}|X| + \frac{1}{3},$$

for any vertex subset X of G, then G admits a $\{P_2, P_5\}$-factor.

In this article, we also study the existence of $\{P_2, P_5\}$-factors in graphs, and derive two sufficient conditions for graphs to possess $\{P_2, P_5\}$-factors with respect to independence number or degree, respectively. Our main results are the following.

Theorem 1.2. A connected graph G with $\delta(G) \geq 5$ admits a $\{P_2, P_5\}$-factor if G satisfies

$$\delta(G) > \frac{3\alpha(G) - 1}{4}.$$

Theorem 1.3. Let G be a connected graph of order n with $n \geq 7$. If G satisfies

$$\max\{d_G(x), d_G(y)\} \geq \frac{3n}{7}$$

for any two nonadjacent vertices x and y of G, then G has a $\{P_2, P_5\}$-factor.

2. The Proof of Theorem 1.2

Proof of Theorem 1.2. Suppose, to the contrary, that G has no $\{P_2, P_5\}$-factor. Then in terms of Theorem 1.1, we possess

$$c_1(G - X) + \frac{2}{3}c_3(G - X) > \frac{4}{3}|X| + \frac{1}{3}$$ (2.1)

for some vertex subset X of G.
Claim 1. $X \neq \emptyset$.

Proof. If $X = \emptyset$, then it follows from (2.1) that

$$c_1(G) + c_3(G) \geq c_1(G) + \frac{2}{3} c_3(G) > \frac{1}{3}.$$

By virtue of the integrity of $c_1(G) + c_3(G)$, we infer

$$c_1(G) + c_3(G) \geq 1. \quad (2.2)$$

Note that G is a connected graph. Then we obtain $c_1(G) = i(G) = 0$ and $\omega(G) = 1$. Combining these with (2.2), we have $1 \leq c_3(G) \leq \omega(G) = 1$, which implies $c_3(G) = \omega(G) = 1$. Thus, we deduce $\delta(G) \leq 2$, which contradicts $\delta(G) \geq 5$. This completes the proof of Claim 1.

Using (2.1) and Claim 1, we get

$$c_1(G - X) + c_3(G - X) \geq c_1(G - X) + \frac{2}{3} c_3(G - X) > \frac{4}{3} |X| + \frac{1}{3} \geq \frac{5}{3}. \quad (2.3)$$

In what follows, we consider two cases by the value of $c_1(G - X)$.

Case 1. $c_1(G - X) = 0$.

By means of (2.3), we have $c_3(G - X) > \frac{5}{3}$. Thus, we may choose $v \in V(C_3(G - X))$, and so $d_{G - X}(v) \leq 2$. Then we infer $\delta(G) \leq d_{G}(v) = d_{G - X}(v) + |X| = |X| + 2$. Combining this with (2.1), $\delta(G) \geq 5$ and $c_1(G - X) = 0$, we deduce

$$\alpha(G) \geq c_3(G - X) = \frac{3}{2} \left(c_1(G - X) + \frac{2}{3} c_3(G - X) \right) \geq \frac{3}{2} \left(\frac{4}{3} |X| + \frac{2}{3} \right) = 2|X| + 1$$

$$\geq 2(\delta(G) - 2) + 1 = 2\delta(G) - 3 = \frac{4}{3} \delta(G) + \frac{2}{3} \delta(G) - 3$$

$$\geq \frac{4}{3} \delta(G) + \frac{10}{3} - 3 = \frac{4}{3} \delta(G) + \frac{1}{3},$$

which implies

$$\delta(G) \leq \frac{3\alpha(G) - 1}{4},$$

which contradicts that $\delta(G) > \frac{3\alpha(G) - 1}{4}$.

Case 2. $c_1(G - X) \neq 0$.

Since $c_1(G - X) \neq 0$, we may choose an isolated vertex v of $G - X$. Thus, we see $d_{G - X}(v) = 0$ and $\delta(G) \leq d_{G}(v) = d_{G - X}(v) + |X| = |X|$. It follows from (2.1), $c_1(G - X) \neq 0$ and $\delta(G) \leq |X|$ that

$$\alpha(G) \geq c_1(G - X) + c_3(G - X) \geq c_1(G - X) + \frac{2}{3} c_3(G - X)$$

$$\geq \frac{4}{3} |X| + \frac{1}{3} \geq \frac{4}{3} \delta(G) + \frac{1}{3},$$

which implies

$$\delta(G) < \frac{3\alpha(G) - 1}{4},$$

which contradicts that $\delta(G) > \frac{3\alpha(G) - 1}{4}$. This completes the proof of Theorem 1.2.
3. The proof of Theorem 1.3

Proof of Theorem 1.3. Suppose, to the contrary, that G has no $\{P_2, P_3\}$-factor. Then it follows from Theorem 1.1 that

$$c_1(G - X) + \frac{2}{3}c_3(G - X) > \frac{4}{3}|X| + \frac{1}{3}$$ \hspace{1cm} (3.1)

for some vertex subset X of G.

Claim 2. $X \neq \emptyset$.

Proof. Assume that $X = \emptyset$. Then by (3.1), we obtain

$$c_1(G) + c_3(G) \geq c_1(G) + \frac{2}{3}c_3(G) > \frac{1}{3},$$

According to the integrity of $c_1(G) + c_3(G)$, we admit

$$c_1(G) + c_3(G) \geq 1.$$ \hspace{1cm} (3.2)

Since G is a connected graph, we deduce $c_1(G) = 0$ and $\omega(G) = 1$. Combining these with (3.2), we derive

$$1 \leq c_1(G) + c_3(G) = c_3(G) \leq \omega(G) = 1,$$

which implies $c_3(G) = \omega(G) = 1$. Thus, we see $n = |V(G)| = 3$, which contradicts $n \geq 7$. This concludes the proof of Claim 2. \qed

The following proof will be divided into three cases by the value of $c_1(G - X)$, and derive a contradiction in every case.

Case 1. $c_1(G - X) = 0$.

By virtue of (3.1) and Claim 2, we get

$$\frac{2}{3}c_3(G - X) = c_1(G - X) + \frac{2}{3}c_3(G - X) > \frac{4}{3}|X| + \frac{1}{3} \geq \frac{5}{3},$$

namely,

$$c_3(G - X) > 2.$$

Let G_1, G_2, \ldots, G_t be the components of $G - X$ with $|V(G_i)| = 3$ for $1 \leq i \leq t$, where $t > 2$ is an integer. We select $x_i \in V(G_i)$ and $x_j \in V(G_j)$, where $i \neq j$. Obviously, $x_ix_j \notin E(G)$, $d_{G-X}(x_i) \leq 2$ and $d_{G-X}(x_j) \leq 2$.

In terms of the condition of Theorem 1.3, we see

$$\frac{3n}{7} \leq \max\{d_G(x_i), d_G(x_j)\} \leq \max\{d_{G-X}(x_i) + |X|, d_{G-X}(x_j) + |X|\} \leq |X| + 2,$$

which implies

$$|X| \geq \frac{3n}{7} - 2.$$ \hspace{1cm} (3.3)

It follows from (3.1) and (3.3) that

$$n \geq |X| + 3c_3(G - X) = |X| + \frac{9}{2}\left(c_1(G - X) + \frac{2}{3}c_3(G - X)\right)$$
\[
> |X| + \frac{9}{2} \left(\frac{4}{3} |X| + \frac{1}{3} \right) = 7|X| + \frac{3}{2}
\]
\[
\geq 7 \left(\frac{3n}{7} - 2 \right) + \frac{3}{2} > 3n - 14,
\]
that is,
\[n < 7,
\]
which contradicts \(n \geq 7\).

Case 2. \(c_1(G - X) = 1\).

By means of (3.1) and \(c_1(G - X) = 1\), we deduce
\[
\frac{2}{3} c_3(G - X) > \frac{4}{3} |X| + \frac{1}{3} - c_1(G - X) = \frac{4}{3} |X| - \frac{2}{3},
\]
that is,
\[c_3(G - X) > 2|X| - 1.
\]
In view of Claim 1 and the integrity of \(c_3(G - X)\) and \(|X|\), we infer
\[c_3(G - X) \geq 2|X| \geq 2.
\]
Let \(G_1\) be the component of \(G - X\) with \(|V(G_1)| = 1\) and let \(G_2\) be the component of \(G - X\) with \(|V(G_2)| = 3\). We choose \(x_1 \in V(G_1)\) and \(x_2 \in V(G_2)\). Clearly, \(x_1 x_2 \in E(G)\), \(d_{G - X}(x_1) = 0\) and \(d_{G - X}(x_2) \leq 2\). According to the condition of Theorem 1.3, we obtain
\[\frac{3n}{7} \leq \max\{d_G(x_1), d_G(x_2)\} \leq \max\{d_{G - X}(x_1) + |X|, d_{G - X}(x_2) + |X|\} \leq |X| + 2,
\]
which implies
\[|X| \geq \frac{3n}{7} - 2.
\]
Using (3.4), (3.5), \(n \geq 7\) and \(c_1(G - X) = 1\), we deduce
\[n \geq |X| + c_1(G - X) + 3c_3(G - X) \geq |X| + 1 + 3 \times 2|X|
\]
\[= 7|X| + 1 \geq 7 \left(\frac{3n}{7} - 2 \right) + 1 = 3n - 13
\]
\[\geq n + 1,
\]
which is a contradiction.

Case 3. \(c_1(G - X) \geq 2\).

Let \(G_i\) be the component of \(G - X\) with \(|V(G_i)| = 1\) for \(i = 1, 2\). For \(x_i \in V(G_i)\), it is obvious that \(x_1 x_2 \notin E(G)\) and \(d_{G - X}(x_1) = d_{G - X}(x_2) = 0\). In terms of the condition of Theorem 1.3, we have
\[\frac{3n}{7} \leq \max\{d_G(x_1), d_G(x_2)\} \leq \max\{d_{G - X}(x_1) + |X|, d_{G - X}(x_2) + |X|\} = |X|.
\]
It follows from (3.1) and (3.6) that
\[n \geq |X| + c_1(G - X) + 3c_3(G - X) \geq |X| + c_1(G - X) + 2 \frac{2}{3} c_3(G - X)
\]
\[> |X| + \frac{4}{3} |X| + \frac{1}{3} = \frac{7}{3} |X| + \frac{1}{3}
\]
\[\geq \frac{7}{3} \times \frac{3n}{7} + \frac{1}{3} = n + \frac{1}{3} > n,
\]
which is a contradiction. This completes the proof of Theorem 1.3.
4. CONCLUDING REMARK

This paper investigates the existence of a \(\{P_2, P_3\} \)-factor in a graph, and puts forward two degree conditions for a graph to possess a \(\{P_2, P_3\} \)-factor. But we do not know whether the bounds on degree conditions in Theorems 1.2 and 1.3 are best possible or not, respectively. Naturally, we pose the following two conjectures:

Conjecture 1. A connected graph \(G \) with \(\delta(G) \geq 5 \) admits a \(\{P_2, P_3\} \)-factor if \(G \) satisfies

\[
\delta(G) \geq \frac{3\alpha(G) - 1}{4}.
\]

Conjecture 2. Let \(G \) be a connected graph of order \(n \) with \(n \geq 7 \). If \(G \) satisfies

\[
\max\{d_G(x), d_G(y)\} \geq \frac{3n - 1}{7}
\]

for any two nonadjacent vertices \(x \) and \(y \) of \(G \), then \(G \) has a \(\{P_2, P_3\} \)-factor.

Acknowledgements. The authors of this paper would like to thank the anonymous referees for their good suggestions to improve the paper.

Data availability statement. No data was used for the research described in the article.

Declaration of competing interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

REFERENCES

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model (S2O). We are thankful to our subscribers and supporters for making it possible to publish this journal in open access in the current year, free of charge for authors and readers.

Check with your library that it subscribes to the journal, or consider making a personal donation to the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports, is available at https://edpsciences.org/en/subscribe-to-open-s2o.