ON CHARACTERIZATIONS OF SOLUTION SETS OF INTERVAL-VALUED QUASICONVEX PROGRAMMING PROBLEMS

SHASHI KANT MISHRA¹, SANJEEV KUMAR SINGH² AND MOHD HASSAN¹,*

Abstract. In this article, we study several characterizations of solution sets of LU-quasiconvex interval-valued function. Firstly, we provide Gordan’s theorem of the alternative of interval-valued linear system. As a consequence of this theorem, we find the normalized gradient of the interval-valued function is constant over the solution set when its gradient is not zero. Further, we discuss Lagrange multiplier characterizations of solution sets of LU-quasiconvex interval-valued function and provide optimality conditions of interval-valued optimization problem under the generalized Mangasarian-Frolovitz constraint qualifications. We provide illustrative examples in the support of our theory.

Mathematics Subject Classification. 26B25, 90C46, 65G40.

Received February 9, 2023. Accepted August 12, 2023.

1. Introduction

Characterizations of solution sets for different type of nonlinear optimization problems have attracted the attention of many researchers over the years. Mangasarian [18] attained several characterizations of solution sets of smooth convex functions. Burke and Ferris [3] generalized these results for nonsmooth proper convex functions with the help of Fenchel subdifferential. Further, Jeyakumar and Yang [9] extended the results for pseudolinear programming problems.

Keywords. Quasiconvex functions, interval-valued optimization problem, KKT optimality conditions.

¹ Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
² Department of Mathematics, V.S.S.D. College, Kanpur 208002, Uttar Pradesh, India.
*Corresponding author: mohd.hassan1@bhu.ac.in

© The authors. Published by EDP Sciences, ROADEF, SMAI 2023

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
order optimality conditions. Sisarat et al. [27] discussed the characterizations of approximate solutions of convex vector optimization problems.

The real-life optimization problems are associated with uncertain data that occur due to measurement errors. Interval-valued optimization is one of the significant tools to handle uncertainty. Moore [22] gave a detailed explanation of interval analysis. Neumaier [23] provided the development of interval analysis as a tool for computation and computer-favored proofs. Wu [31] obtained the Karush Kuhn Tucker (KKT) optimality conditions for interval-valued optimization problems and derived Wolfe duality and strong duality theorems for interval-valued optimization in [32]. Further, Wu [33] obtained KKT optimality condition in multiobjective interval-valued optimization and proposed Pareto optimal solution for multiobjective optimization problems with interval-valued objective function. Stefanini and Bede introduced the concept of gH-differentiability for interval-valued functions. Chalco-Cano et al. presented the fundamental theorem of Calculus for interval-valued function. Bedregal and Santiago [2] presented some continuity notions for interval functions. They provided the relationship between the three interpretations of intervals (as a set, as an information and as a number) and the topological counterparts. Lai et al. [13] proposed duality results for interval-valued semiinfinite optimization problems with equilibrium constraints using convexificators. Further, Lai et al. [14] introduced stationary conditions and characterizations of solution sets for interval-valued tightened nonlinear problems. Recently, several researches have been done in the field of interval-valued optimization, see for instance [12,15–17,26].

To the best of our knowledge, there are very few articles related to characterizations of solution sets of interval-valued optimization problems. Recently, Treanta [30] established some characterizations of solution sets of interval-valued optimization problems and discussed the relation between LU-optimal solutions of the interval-valued variational control problem and saddle points related to the interval-valued Lagrange functional.

Motivated by Mangasarian [18] and Ivanov [7], we consider interval-valued optimization problem (IVOP) with \(H \)-differentiable \(LU \)-quasiconvex functions and establish several characterizations of solution set of IVOP. Inspired by Gordan [5] and Rohn and Kreslova [25], we consider Gordan’s theorem of alternative for interval linear matrix system of inequalities and with the help of this, we show that normalized gradient of interval-valued \(LU \)-quasiconvex function is non-zero constant when the gradient of the interval-valued function is not equal to zero. Further, we establish the Lagrange multiplier characterizations of solution set with interval-valued \(LU \)-quasiconvex continuously \(H \)-differentiable objective function and inequality constraints with the help of Generalized Mangasarian-Fromovitz constraint qualification (GMFCQ), which is the generalization of a significant constraint qualification named as Mangasarian-Fromovitz constraint qualification (MFCQ) [20]. We construct some solution sets for IVOP and characterize them with the help of KKT optimality conditions for interval-valued objective function given by Wu [33].

The layout of our article is as follows: In Section 2, some basic and essential results and definitions are provided. In Section 3, we characterize the solution sets of interval-valued continuously differentiable \(LU \)-quasiconvex problem. In Section 4, we establish Lagrange multiplier characterizations of solution sets for IVOP and Section 5 is devoted to concluding remarks and future research opportunities.

2. Preliminaries

2.1. Interval analysis

We collect some basic concepts and essential definitions related to interval-valued functions for bounded intervals from Moore [22].

We denote by \(\mathcal{I}(\mathbb{R}) \) the class of all closed intervals in \(\mathbb{R} \). Let \(U = [u^L, u^U] \), where \(u^L \) and \(u^U \) denotes the lower and upper bounds of \(U \), respectively. Let \(U = [u^L, u^U] \) and \(V = [v^L, v^U] \) be in \(\mathcal{I}(\mathbb{R}) \), then, we have

(i) \(U + V = \{ u + v : u \in U, v \in V \} = [u^L + v^L, u^U + v^U] \),
(ii) \(-U = \{-u : u \in U\} = [-u^U, -u^L] \),
(iii) \(U - V = U + (-V) = [u^L - v^U, u^U - v^L] \),
(iv) \(tU = \{ tu : u \in U \} = \begin{cases} [tu^L, tu^U] & \text{if } t \geq 0 \\ [tu^U, tu^L] & \text{for } t < 0 \end{cases} \)

where \(t \) is a real number.

We refer to Moore [22], for further details of interval analysis. We have collected the definition and properties of Hausdorff metric from Wu [33].

Suppose that \(X \subseteq \mathbb{R}^n \) and \(Y \subseteq \mathbb{R}^n \), then the Hausdorff metric between \(X \) and \(Y \) is denoted and defined by

\[
d_H(X, Y) = \max \left\{ \sup_{u \in X} \inf_{v \in Y} \| u - v \|, \sup_{v \in Y} \inf_{u \in X} \| u - v \| \right\},
\]

where \(\| \cdot \| \) is the Euclidean norm.

Let \(U = [u^L, u^U] \) and \(V = [v^L, v^U] \) be two closed intervals, then it is easy to prove that

\[
d_H(U, V) = \max\{|u^L - v^L|, |u^U - v^U|\}.
\]

Let \(\{U_n = [u^L_n, u^U_n]\} \) and \(U \) be closed intervals in \(\mathbb{R} \), then the sequence of closed interval \(\{U_n\} \) converges to \(U \), if for every \(\epsilon > 0 \), there exists a natural number \(N > 0 \) such that, for \(n > N \), we have \(d_H(U_n, U) < \epsilon \). Wu [31] proved that

\[
\lim_{n \to \infty} U_n = U \quad \text{if and only if} \quad \lim_{n \to \infty} u^L_n = u^L \quad \text{and} \quad \lim_{n \to \infty} u^U_n = u^U.
\]

A function \(f : \mathbb{R}^n \to \mathcal{I}(\mathbb{R}) \) is called interval-valued function, this means \(f(u) = f(u_1, \ldots, u_n) \) is a closed interval in \(\mathbb{R} \) for each \(u \in \mathbb{R}^n \). \(f \) can be written as \(f(u) = [f^L(u), f^U(u)] \), where \(f^L \) and \(f^U \) are two real valued functions defined on \(\mathbb{R}^n \) such that \(f^L(u) \leq f^U(u), \forall u \in \mathbb{R}^n \).

Wu [31] discussed limit and continuity of interval-valued functions. Let \(f \) be an interval-valued function defined on \(\mathbb{R}^n \) and \(U = [u^L, u^U] \) be an interval in \(\mathbb{R} \), we say

\[
\lim_{u \to a} f(u) = U, \quad \text{if and only if} \quad \lim_{u \to a} f^L(u) = u^L \quad \text{and} \quad \lim_{u \to a} f^U(u) = u^U.
\]

The interval-valued function \(f \) defined on \(\mathbb{R}^n \) is said to be continuous at \(a \in \mathbb{R}^n \) if

\[
\lim_{u \to a} f(u) = f(a).
\]

Proposition 2.1. [33] Suppose \(f \) is an interval-valued function defined on \(\mathbb{R}^n \), then \(f \) is continuous at \(a \in \mathbb{R}^n \) if and only if \(f^L \) and \(f^U \) are continuous at \(a \).

Definition 2.2. [33] Suppose \(K \) is an open set in \(\mathbb{R} \). The interval-valued function \(f : K \to \mathcal{I}(\mathbb{R}) \) with \(f(u) = [f^L(u), f^U(u)] \) is called weakly differentiable at \(u^0 \) if the real valued functions \(f^L \) and \(f^U \) are differentiable at \(u^0 \) (in the ordinary sense).

For \(U, V \in \mathcal{I}(\mathbb{R}) \), if there exists a \(W \in \mathcal{I}(\mathbb{R}) \) such that \(U = V + W \), then \(W \) is called the Hukuhara difference of \(U \) and \(V \). Also, \(W \) can be written as \(W = U \ominus V \), considering the Hukuhara difference [1] \(W \) exists, which means that \(u^L - v^L \leq u^U - v^U \) and \(W = [u^L - v^L, u^U - v^U] \).

Definition 2.3. [33] Suppose \(K \) is an open set in \(\mathbb{R} \). The interval-valued function \(f : K \to \mathcal{I}(\mathbb{R}) \) is called \(H \)–differentiable at \(u^0 \) if there exists a closed interval \(U(u^0) \in \mathcal{I}(\mathbb{R}) \) such that the limits

\[
\lim_{h \to 0^+} \frac{f(u^0 + h) \ominus f(u^0)}{h} \quad \text{and} \quad \lim_{h \to 0^+} \frac{f(u^0) \ominus f(u^0 - h)}{h}
\]

both exist and equal to \(U(u^0) \), which is called the \(H \)– derivative of \(f \) at \(u^0 \).
2.2. Solution concepts

Suppose \(U = [u^L, u^V] \) and \(V = [v^L, v^V] \) are two closed intervals in \(\mathbb{R} \). We write \(U \preceq_{LU} V \) if and only if \(u^L \leq v^L \) and \(u^V \leq v^V \).

Consider multiobjective programming problem with multiple interval-valued objective functions

\[
(IVOP1) \quad \min f(u) = (f_1(u), \ldots, f_p(u))
\]

subject to \(u = (u_1, \ldots, u_n) \in K \subseteq \mathbb{R}^n \),

where each \(f_k(u) = [f^L_k(u), f^U_k(u)] \) is an interval-valued function for \(k = 1, \ldots, p \).

We write \(U \prec_{LU} V \) if and only if \(U \preceq_{LU} V \) and \(U \neq V \). We say \(U = (U_1, \ldots, U_p) \) is an interval-valued vector if each component \(U_k = [u^L_k, u^U_k] \) is closed interval for \(k = 1, \ldots, p \). Suppose \(U = (U_1, \ldots, U_p) \) and \(V = (V_1, \ldots, V_p) \) are two interval-valued vectors. We write \(U \preceq_{LU} V \) if and only if \(U_k \preceq_{LU} V_k \) for all \(k = 1, \ldots, p \), and \(U \prec_{LU} V \) if and only if \(U_k \preceq_{LU} V_k \) for at least one \(q \). Suppose \(u^* \) is a feasible solution of \((IVOP1)\), then \(f(u^*) \) is an interval-valued vector. The concepts of Pareto optimal (efficient) solution is given below.

Definition 2.4. [31] Suppose \(u^0 \) is a feasible solution to the problem \((IVOP1)\).

(i) \(u^0 \) is said to be an efficient solution to the problem \((IVOP1)\) if there exists no \(\bar{u} \) such that \(f(\bar{u}) \prec_{LU} f(u^0) \).

(ii) \(u^0 \) is said to be a strong efficient solution to the problem \((IVOP1)\) if there exists no \(\bar{u} \) such that \(f(\bar{u}) \preceq_{LU} f(u^0) \).

(iii) \(u^0 \) is said to be a weak efficient solution to the problem \((IVOP1)\) if there exists no \(\bar{u} \) such that \(f_k(\bar{u}) \prec_{LU} f_k(u^0) \) \(\forall k = 1, \ldots, p \).

Definition 2.5. [31] Suppose \(u^0 \) is feasible solution of the problem \((IVOP1)\). \(u^0 \) is said to be a local weak efficient solution of the problem \((IVOP1)\), if there exists a neighborhood \(N \) of \(u^0 \) such that for all \(\bar{u} \in K \cap N \), then the following cannot be satisfied for any \(k = 1, \ldots, p \)

\[
f_k(\bar{u}) \prec_{LU} f_k(u^0).
\]

2.3. Interval-valued convex functions and generalized convex functions

Wu [31] introduced the concept of convexity for interval-valued functions.

Definition 2.6. [31] Suppose \(f \) is an interval-valued function defined on a convex set \(X \subseteq \mathbb{R}^n \). Then \(f \) is said to be \(LU \)-convex at \(\bar{u} \) if

\[
f(\lambda \bar{u} + (1 - \lambda)u) \preceq_{LU} \lambda f(\bar{u}) + (1 - \lambda)f(u) \quad \forall \lambda \in (0, 1) \text{ and } \forall u \in X.
\]

Proposition 2.7. [31] Suppose \(f(u) = [f^L(u), f^U(u)] \) is an interval-valued function defined on \(X \subseteq \mathbb{R}^n \) then \(f \) is called \(LU \)-convex at \(\bar{u} \) if and only if \(f^L \) and \(f^U \) are convex at \(\bar{u} \).

We consider a continuous and \(H \)-differentiable interval-valued function \(f(u) = [f^L(u), f^U(u)] \) on an open convex set \(X \). We define \(LU \)-quasiconvex and \(LU \)-pseudoconvex function motivated by Wu [31] and Zhang et al. [34].

Definition 2.8. Let \(f : X \rightarrow \mathcal{I}(\mathbb{R}) \) be a continuous and \(H \)-differentiable interval-valued function on an open convex set \(X \subseteq \mathbb{R}^n \). \(f \) is said to be a \(LU \)-quasiconvex function if

\[
f^L(u) \leq f^L(v) \quad \text{and} \quad f^U(u) \leq f^U(v)
\]

\[
\implies (\nabla f^L(v) + \nabla f^U(v), u - v) \leq 0 \quad \forall \ u, v, \in X,
\]

where \(\nabla \) denotes the gradient operator.
Lemma 3.1. Suppose a solution \(v \). Then either each matrix system (1) has a solution \(u \). We consider a family of systems of linear inequalities written, in short, as system (1).

3. Characterizations of solution sets of interval-valued optimization problems

We introduce Gordan’s theorem of the alternative of interval-valued linear system motivated by [5] and [25] to obtain the characterizations of solution sets.

3.1. Gordan’s theorem of the alternative of interval-valued linear system

Consider an interval linear system of inequalities

\[
\begin{align*}
a_{11}u_1 + a_{12}u_2 + \cdots + a_{1n}u_n &> 0 \\
a_{21}u_1 + a_{22}u_2 + \cdots + a_{2n}u_n &> 0 \\
&\vdots \\
a_{r1}u_1 + a_{r2}u_2 + \cdots + a_{rn}u_n &> 0.
\end{align*}
\]

In short, \(A_x x > 0_x \), (1)

where \(A_x = \{ A : A^L \leq A \leq A^U \} \) (componentwise inequalities) is an \(r \times n \) interval matrix and \(0_x \) is an interval \(r \)-vector, \(a_{ij} (i = 1, 2, \ldots, r, j = 1, 2, \ldots, n) \) and \(u_j (j = 1, 2, \ldots, n) \) are intervals.

\(A u > 0 \forall A \in A_x, 0 \in 0_x \). (2)

Then either each matrix system (1) has a solution \(u \) or the system,

\[
A_x^T v = 0, \ v \geq 0, \ v \neq 0,
\]

has a solution \(v \) but never both.

Lemma 3.1. Suppose \(X \subseteq \mathbb{R}^n \) is an open and convex set, \(K \subseteq X \) is a convex subset and \(u, v \in K, d \in \mathbb{R}^n \). Let the function \(f : X \rightarrow \mathcal{I}(\mathbb{R}) \) be \(LU \)-quasiconvex and \(\nabla f^L(u) + \nabla f^U(u) \neq 0, \ \nabla f^L(v) + \nabla f^U(v) \neq 0 \), then

\[
\langle \nabla f^L(u) + \nabla f^U(u), d \rangle < 0 \implies \langle \nabla f^L(v) + \nabla f^U(v), d \rangle \leq 0.
\]
Proof. On contrary, suppose that there exists $d \in \mathbb{R}^n$ with
\[
\langle \nabla f^L(u) + \nabla f^U(u), d \rangle < 0 \quad \text{and} \quad \langle \nabla f^L(v) + \nabla f^U(v), -d \rangle < 0.
\]
It follows that there exists $\lambda > 0$ such that
\[
f^L(p) < f^L(u) = f^L(v) \quad \text{and} \quad f^U(p) < f^U(u) = f^U(v),
\]
\[
f^L(q) < f^L(v) = f^L(u) \quad \text{and} \quad f^U(q) < f^U(v) = f^U(u),
\]
where $p = u + \lambda d \in X$, $q = v - \lambda d \in X$. Suppose $w = \frac{p + q}{2}$, hence $w = \frac{u + v}{2}$.

Since f is LU-quasiconvex, we have from Lemma 2.12, K is convex and $f^L(w) = f^L(u) = f^L(v)$ and $f^U(w) = f^U(u) = f^U(v)$.

As f is LU-quasiconvex, so from (3) and (4),
\[
f^L(w) \leq \max\{f^L(p), f^L(q)\} < f^L(u) = f^L(w)
\]
\[
f^U(w) \leq \max\{f^U(p), f^U(q)\} < f^U(u) = f^U(w),
\]
which is contradictory. This completes the proof. \hfill \Box

Lemma 3.2. Let $u, v \in \mathcal{I}(\mathbb{R}^n); u \neq 0, v \neq 0$. Suppose
\[
\langle u, d \rangle < 0, \quad d \in \mathbb{R}^n \implies \langle v, d \rangle \leq 0,
\]
where $u = [u^L, u^U]$ and $v = [v^L, v^U]$. Then there exists $a > 0$ such that $v = au$.

Proof. The equivalent system of (7) is to claim that the system
\[
\langle v, d \rangle > 0, \quad \langle -u, d \rangle > 0
\]
has not a solution d. Then, it follows from Gordan’s theorem of the alternative of interval-valued linear system, there exist real numbers a_1 and a_2 such that
\[
va_1 = 0 \quad \text{and} \quad ua_2 = 0 \quad \text{or} \quad va_1 - ua_2 = 0, \quad a_1 \geq 0, a_2 \geq 0, (a_1, a_2) \neq (0, 0).
\]
Without loss of generality, let $a_1 > 0$ and $a = \frac{a_2}{a_1}$ then $a > 0$ and satisfies $v = au$. \hfill \Box

Lemma 3.3. Suppose $X \subseteq \mathbb{R}^n$ is an open and convex set, $K \subseteq X$ is a convex subset. Let the function $f : X \rightarrow \mathcal{I}(\mathbb{R})$ be LU-quasiconvex and $f^L(u)$ and $f^U(u)$ be continuously differentiable functions, then the interval-valued normalized gradient is constant over the nonempty set $\{u \in K : \nabla f^L(u) + \nabla f^U(u) \neq 0\}$.

Proof. Suppose u and v are two distinct points of the set K with $\nabla f^L(u) + \nabla f^U(u) \neq 0$ and $\nabla f^L(v) + \nabla f^U(v) \neq 0$, then from Lemmas 3.1 and 3.2, there exists $a > 0$ with condition
\[
\nabla f^L(v) + \nabla f^U(v) = a[\nabla f^L(u) + \nabla f^U(u)].
\]
Then we get
\[
\frac{\nabla f^L(v) + \nabla f^U(v)}{\|\nabla f^L(v) + \nabla f^U(v)\|} = a \frac{\nabla f^L(u) + \nabla f^U(u)}{\|\nabla f^L(u) + \nabla f^U(u)\|}
\]
\[
\Rightarrow \quad \frac{\nabla f^L(v) + \nabla f^U(v)}{\|\nabla f^L(v) + \nabla f^U(v)\|} = \frac{\nabla f^L(u) + \nabla f^U(u)}{\|\nabla f^L(u) + \nabla f^U(u)\|}.
\]
Then, we can get the claim immediately. \hfill \Box
Lemma 3.4. Suppose $X \subseteq \mathbb{R}^n$ is an open and convex set, $K \subseteq X$ is a convex subset. Let the function $f : X \to T(\mathbb{R})$ be LU-quasiconvex and $f^L(u)$ and $f^U(u)$ be continuously differentiable functions then either of the following conditions holds but not both

1. $\nabla f^L(u) + \nabla f^U(u) \neq 0$ for all $u \in K$ and the normalized gradient
 $\frac{\|\nabla f^L(u) + \nabla f^U(u)\|}{\nabla f^L(u) + \nabla f^U(u)}$ is constant over the set K;
2. $\nabla f^L(u) + \nabla f^U(u) = 0$ for all $u \in K$.

Proof. We consider the two possible cases:

Case (1): Let $u \in K$, $\nabla f^L(u) + \nabla f^U(u) \neq 0$. We prove for another arbitrary point $v \in K$, $\nabla f^L(v) + \nabla f^U(v) \neq 0$. On contrary suppose that $\nabla f^L(v) + \nabla f^U(v) = 0$.

Consider the sets

$$P := \{\lambda \in [0, 1] : \nabla f^L(u + \lambda(v - u)) + \nabla f^U(u + \lambda(v - u)) = 0\},$$

$$Q := \{\lambda \in [0, 1] : \nabla f^L(u + \lambda(v - u)) + \nabla f^U(u + \lambda(v - u)) \neq 0\}.$$

Since K is convex, so $u + \lambda(v - u) \in K$, let $u + \lambda(v - u) = w$.

Consider the open sets (intervals) in the interval $[0, 1]$ which is of the type (u, v) such that $0 < u < v < 1$, $(u, 1]$ such that $0 < u < 1$, $[0, v)$ such that $0 < v < 1$ and their unions.

We claim that P is closed. Consider a sequence $\{\lambda_n\}$, where $\lambda_n \in P$ and $\lambda_n \to \lambda_0$.

Since f^L and f^U are continuously differentiable, then we have

$$\nabla f^L(u + \lambda_0(v - u)) + \nabla f^U(u + \lambda_0(v - u)) = \lim_{n \to \infty} \nabla f^L(u + \lambda_n(v - u)) + \nabla f^U(u + \lambda_n(v - u)) = 0.$$

Hence, $\lambda_0 \in P$ and P is a closed set.

Now, we claim that Q is closed set. Consider a sequence $\{\lambda_n\}$ where $\lambda_n \in Q$ and $\lambda_n \to \lambda_0$.

From Lemma 3.3, there exists a vector $a \neq 0$ such that

$$\frac{\nabla f^L(w) + \nabla f^U(w)}{\|\nabla f^L(w) + \nabla f^U(w)\|} = a \ \forall w \in K.$$

As the normalized gradient is constant, therefore

$$\lim_{n \to \infty} \frac{\nabla f^L(u + \lambda_n(v - u)) + \nabla f^U(u + \lambda_n(v - u))}{\|\nabla f^L(u + \lambda_n(v - u)) + \nabla f^U(u + \lambda_n(v - u))\|} = a \neq 0.$$

Since f^L and f^U are continuously differentiable, then we have

$$\frac{\nabla f^L(u + \lambda_0(v - u)) + \nabla f^U(u + \lambda_0(v - u))}{\|\nabla f^L(u + \lambda_0(v - u)) + \nabla f^U(u + \lambda_0(v - u))\|} = \lim_{n \to \infty} \frac{\nabla f^L(u + \lambda_n(v - u)) + \nabla f^U(u + \lambda_n(v - u))}{\|\nabla f^L(u + \lambda_n(v - u)) + \nabla f^U(u + \lambda_n(v - u))\|} = a.$$

Therefore, $\|\nabla f^L(u + \lambda_0(v - u)) + \nabla f^U(u + \lambda_0(v - u))\| \neq 0$, this implies $\lambda_0 \in Q$ and Q is closed.

Since $P \cup Q = [0, 1]$, then either $P = [0, 1]$, $Q = \emptyset$ or $Q = [0, 1]$, $P = \emptyset$, but both cases are not possible. This contradicts the assumption $\nabla f^L(v) + \nabla f^U(v) = 0$. Therefore, $\nabla f^L(v) + \nabla f^U(v) \neq 0 \ \forall v \in K$. Then by Lemma 3.3, the normalized gradient is non-zero constant over K.

Case (2): Let $\nabla f^L(u) + \nabla f^U(u) = 0$. From the proof of Case (1), there is impossibility of the assumption $\nabla f^L(u) + \nabla f^U(u) \neq 0$ for arbitrary $v \in K$. Therefore $\nabla f^L(u) + \nabla f^U(u) = 0, \ \forall v \in K$. This completes the proof. □
Example 3.5. Consider an interval-valued LU-quasiconvex function $f : \mathbb{R} \to \mathcal{I}(\mathbb{R})$ defined by $f(u) = [u^3 - 1, 2(1 - u^2)]$ then $f^L(u) = u^3 - 1$ and $f^U(u) = 2(1 - u^2)$.
\[\nabla f^L(u) + \nabla f^U(u) = -2x \] and $||\nabla f^L(u) + \nabla f^U(u)|| = 2x$.

Then the normalized gradient $\frac{\nabla f^L(u) + \nabla f^U(u)}{||\nabla f^L(u) + \nabla f^U(u)||} = -1$ for any $v \in \mathbb{R}$ where $\nabla f^L(v) + \nabla f^U(v) \neq 0$.

Suppose $\bar{u} \in \mathcal{K}$. We denote the two sets by \hat{K}_1 and \hat{K}_2 and define by
\[
\hat{K}_1 := \{u \in K : \nabla f^L(\bar{u}) + \nabla f^U(\bar{u}), u - \bar{u} = 0, \frac{\nabla f^L(u) + \nabla f^U(u)}{||\nabla f^L(u) + \nabla f^U(u)||} = \nabla f^L(\bar{u}) + \nabla f^U(\bar{u}), \nabla f^L(u) + \nabla f^U(u) \neq 0\};
\]
\[
\hat{K}_2 := \{u \in K : \nabla f^L(\bar{u}) + \nabla f^U(\bar{u}), u - \bar{u} \leq 0, \frac{\nabla f^L(u) + \nabla f^U(u)}{||\nabla f^L(u) + \nabla f^U(u)||} = \nabla f^L(\bar{u}) + \nabla f^U(\bar{u}), \nabla f^L(u) + \nabla f^U(u) \neq 0\}.
\]

Theorem 3.6. Let $K \subseteq X$ be a convex subset of open and convex set $X \subseteq \mathbb{R}^n$. Let the interval-valued function $f : X \to \mathcal{I}(\mathbb{R})$ be LU-quasiconvex and f^L and f^U be continuously differentiable. Suppose $\bar{u} \in \mathcal{K}$ is a solution of (IVOP1) and $\nabla f^L(u) + \nabla f^U(u) \neq 0$, then $\bar{K} = \hat{K}_1 = \hat{K}_2$.

Proof. First we prove that $\mathcal{K} \subseteq \hat{K}_1$. Let $u \in \mathcal{K}$, since \mathcal{K} is convex, $\bar{u} \in \mathcal{K}$, and we have $\bar{u} + \lambda(u - \bar{u}) \in \mathcal{K}$ for all $\lambda \in [0, 1]$, hence
\[
f^L(\bar{u} + \lambda(u - \bar{u})) = f^L(\bar{u}) \quad \forall \lambda \in [0, 1]
\]
and
\[
f^L(\bar{u} + \lambda(u - \bar{u})) = f^L(\bar{u}) \quad \forall \lambda \in [0, 1].
\]
From (9) and (10), we get
\[
\langle \nabla f^L(\bar{u}) + \nabla f^U(\bar{u}), u - \bar{u} \rangle = 0.
\]
Then from Lemma 3.3, $\nabla f^L(u) + \nabla f^U(u) \neq 0$, and $u \in \hat{K}_1$. Hence $\mathcal{K} \subseteq \hat{K}_1$.

It is obvious to show that $\hat{K}_1 \subseteq \hat{K}_2$.

Now, we prove that $\hat{K}_2 \subseteq \mathcal{K}$. Suppose $u \in \hat{K}_2$. We show that $u \in \mathcal{K}$. On contrary suppose that $u \notin \mathcal{K}$, then $f^L(\bar{u}) < f^L(u)$ and $f^U(\bar{u}) < f^U(u)$.

Since \mathcal{K} is convex, we have $\bar{u} + \lambda(u - \bar{u}) \in \mathcal{K}$ for all $\lambda \in [0, 1]$. As $K \subseteq \mathcal{K}$, we get that
\[
f^L(\bar{u} + \lambda(u - \bar{u})) \geq f^L(\bar{u})
\]
and
\[
f^L(\bar{u} + \lambda(u - \bar{u})) \geq f^L(\bar{u}).
\]

Hence, $\langle \nabla f^L(\bar{u}) + \nabla f^U(\bar{u}), u - \bar{u} \rangle \geq 0$ and from the assumption $u \in \hat{K}_2$, it follows that
\[
\langle \nabla f^L(\bar{u}) + \nabla f^U(\bar{u}), u - \bar{u} \rangle = 0.
\]

Since f is continuous and $f^L(\bar{u}) < f^L(u)$ and $f^U(\bar{u}) < f^U(u)$, there exists a number $t > 0$ such that
\[
f^L(\bar{u} + t(\nabla f^L(\bar{u}) + \nabla f^U(\bar{u}))) < f^L(u)
\]
and
\[
f^L(\bar{u} + t(\nabla f^L(\bar{u}) + \nabla f^U(\bar{u}))) < f^L(u).
\]

Then, from Definition 2.8,
\[
\langle \nabla f^L(u) + \nabla f^U(u), \bar{u} + t(\nabla f^L(\bar{u}) + \nabla f^U(\bar{u})) \rangle \leq 0.
\]

Then, from $\langle \nabla f^L(\bar{u}) + \nabla f^U(\bar{u}), u - \bar{u} \rangle = 0$, we have $||\nabla f^L(\bar{u}) + \nabla f^U(\bar{u})||^2 \leq 0$, which contradicts the assumption $\nabla f^L(\bar{u}) + \nabla f^U(\bar{u}) \neq 0$. This completes the theorem. \qed
Example 3.7. Consider an interval-valued optimization problem (IVOP1) \(\min f(x) \), where \(f : \mathbb{R}^2 \to \mathcal{I}(\mathbb{R}) \) defined by

\[
f(u_1, u_2) = \left[-u_2 - 1, \frac{2(u_2 + 1)}{u_1}\right]
\]

then

\[
\nabla f^L(u) = \left(\frac{u_2 + 1}{u_1^4}, -\frac{1}{u_1}\right) \quad \text{and} \quad \nabla f^U(u) = \left(\frac{u_2 + 1}{u_1^4}, -\frac{1}{u_1}\right).
\]

Consider a set \(K = \{u = (u_1, u_2) : 1 \leq u_1 \leq 3, 0 \leq u_2 < u_1\} \). Then \(f \) is \(L_U \)-quasiconvex on the set \(X = \{u = (u_1, u_2) : u_1 > 0, -\infty < u_2 < \infty\} \).

Since \(f^L(u) \) and \(f^U(u) \) are quasiconvex on the set \(X \) and it satisfies \(f^L(u) \leq f^L(v) \) and \(f^U(u) \leq f^U(v) \) \(\implies \langle \nabla f^L(v) + \nabla f^U(v), u - v \rangle \leq 0 \ \forall \ u, v \in X \).

The solution set is

\[
K = \{u = (u_1, u_2) : 1 \leq u_1 \leq 3, u_2 = -1\}.
\]

Suppose \(\bar{u} = (1, -1) \) is the given solution. Now

\[
\langle \nabla f^L(\bar{u}) + \nabla f^U(\bar{u}), u - \bar{u} \rangle = u_2 + 1,
\]

\[
\frac{\nabla f^L(u) + \nabla f^U(u)}{\|\nabla f^L(u) + \nabla f^U(u)\|} = \frac{\nabla f^L(\bar{u}) + \nabla f^U(\bar{u})}{\|\nabla f^L(\bar{u}) + \nabla f^U(\bar{u})\|} = (0, 1) \quad \text{provided} \ u_2 = -1.
\]

Hence, \(\bar{K}_1 = \{u = (u_1, u_2) : 1 \leq u_1 \leq 3, u_2 = -1\} \), which is same as \(K \).

Theorem 3.8. Let \(K \subseteq X \) be a convex subset of an open and convex set \(X \subseteq \mathbb{R}^n \). Let the interval-valued function \(f : X \to \mathcal{I}(\mathbb{R}) \) be \(L_U \)-quasiconvex and \(f^L \) and \(f^U \) be continuously differentiable. Suppose \(\bar{u} \in K \) is a solution of (IVOP1) and \(\nabla f^L(u) + \nabla f^U(u) \neq 0 \), then \(\overline{K} \subseteq \bar{K} \), where \(\bar{K} = \{u \in K : \nabla f^L(u) + \nabla f^U(u) = 0\} \).

In addition to that if \(f \) is \(L_U \)-pseudoconvex on \(K \), then \(\overline{K} = \bar{K} \).

Proof. From the second alternative of Lemma 3.3, it can be easily seen that \(\overline{K} \subseteq \bar{K} \). Hence, \(\nabla f^L(u) + \nabla f^U(u) = 0 \ \forall u \in \overline{K} \).

Now, we suppose that \(f \) is \(L_U \)-pseudoconvex function on \(K \). We show that \(\overline{K} = \bar{K} \). Since every \(L_U \)-pseudoconvex function is \(L_U \)-quasiconvex, so we have to prove only \(K \subseteq \bar{K} \).

On contrary, suppose that \(\exists u \in \bar{K} \) but \(u \notin \overline{K} \). Hence, \(f^L(\bar{u}) < f^L(u) \) and \(f^U(\bar{u}) < f^U(u) \).

By the assumption of \(L_U \)-pseudoconvexity,

\[
\langle \nabla f^L(u) + \nabla f^U(u), \bar{u} - u \rangle < 0.
\]

Which contradicts the assumption \(\nabla f^L(u) + \nabla f^U(u) = 0 \). \(\square \)
Example 3.9. Consider an interval-valued LU-quasiconvex function $f : \mathbb{R} \rightarrow \mathcal{I}(\mathbb{R})$ defined by $f(u) = [u^3, 2u^3]$ then $f^L(u) = u^3$ and $f^U(u) = 2u^3$. Then $\nabla f^L(u) + \nabla f^U(u) = 9u^2$.

Consider $u \in \overline{K}$, $u = 0$ is a known solution and $\langle \nabla f^U(\bar{u}), u - \bar{u} \rangle = 0$, hence $\overline{K} \subseteq \tilde{K}$.

We construct the following sets to discuss the characterizations of solution sets.

$$K_1 := \{ u \in K : \langle \nabla f^L(u) + \nabla f^U(u), \bar{u} - u \rangle = 0, \nabla f^L(u) + \nabla f^U(u) \neq 0 \},$$

$$K_2 := \{ u \in K : \langle \nabla f^L(u) + \nabla f^U(u), \bar{u} - u \rangle \geq 0, \nabla f^L(u) + \nabla f^U(u) \neq 0 \},$$

$$K_3 := \{ u \in K : \langle \nabla f^L(u) + \nabla f^U(u), \bar{u} - u \rangle = \langle \nabla f^L(\bar{u}) + \nabla f^U(\bar{u}), u - \bar{u} \rangle, \nabla f^L(u) + \nabla f^U(u) \neq 0 \},$$

$$K_4 := \{ u \in K : \langle \nabla f^L(u) + \nabla f^U(u), \bar{u} - u \rangle \geq \langle \nabla f^L(\bar{u}) + \nabla f^U(\bar{u}), u - \bar{u} \rangle, \nabla f^L(u) + \nabla f^U(u) \neq 0 \},$$

$$K_5 := \{ u \in K : \langle \nabla f^L(u) + \nabla f^U(u), \bar{u} - u \rangle = \langle \nabla f^L(\bar{u}) + \nabla f^U(\bar{u}), u - \bar{u} \rangle = 0, \nabla f^L(u) + \nabla f^U(u) \neq 0 \}.$$

Theorem 3.10. Let $K \subseteq X$ be a convex subset of open and convex set $X \subseteq \mathbb{R}^n$. Let the interval-valued function $f : X \rightarrow \mathcal{I}(\mathbb{R})$ be LU-quasiconvex and f^L and f^U be continuously differentiable. Suppose $\bar{u} \in \overline{K}$ is a solution of (IVOP1) such that $\nabla f^L(\bar{u}) + \nabla f^U(\bar{u}) = 0$, then $\overline{K} = K_1 = K_2 = K_3 = K_4 = K_5$.

Proof. It can be easily seen that $K_5 \subseteq K_3 \subseteq K_4$ and $K_5 \subseteq K_1 \subseteq K_2$.

First we prove that $\overline{K} \subseteq K_5$. Let $u \in \overline{K}$, then $f^L(u) = f^L(\bar{u})$ and $f^U(u) = f^U(\bar{u})$. Since f is LU-quasiconvex, the solution set \overline{K} is convex and

$$f^L[\bar{u} + \lambda(u - \bar{u})] = f^L(\bar{u}) \text{ and } f^U[\bar{u} + \lambda(u - \bar{u})] = f^U(\bar{u}) \forall \lambda \in [0, 1].$$

Hence, $\langle \nabla f^L(\bar{u}) + \nabla f^U(\bar{u}), u - \bar{u} \rangle = 0$. Interchanging the role of \bar{u} and u, and by similar arguments, we can easily show that $\langle \nabla f^L(u) + \nabla f^U(u), \bar{u} - u \rangle = 0$. From Lemma 3.4, we get $\nabla f^L(u) + \nabla f^U(u) \neq 0$. Therefore, $u \in K_5$.

Next, we prove that $K_4 \subseteq K_2$. Suppose $u \in K_4$, hence

$$\langle \nabla f^L(u) + \nabla f^U(u), \bar{u} - u \rangle \geq \langle \nabla f^L(\bar{u}) + \nabla f^U(\bar{u}), u - \bar{u} \rangle. \tag{11}$$

Since K is convex, $u, \bar{u} \in K$, $\bar{u} \in \overline{K}$, then

$$f^L[\bar{u} + \lambda(u - \bar{u})] \geq f^L(\bar{u}) \text{ and } f^U[\bar{u} + \lambda(u - \bar{u})] \geq f^U(\bar{u}) \forall \lambda \in [0, 1].$$

Hence, $\langle \nabla f^L(\bar{u}) + \nabla f^U(\bar{u}), u - \bar{u} \rangle \geq 0$.

This implies from (11) that $x \in K_2$.

Now, we show that $K_2 \subseteq \overline{K}$. Suppose $u \in K_2$, we have to show that $u \in \overline{K}$. On contrary, suppose that $x \notin \overline{K}$, then $f^L(u) < f^L(\bar{u})$ and $f^U(u) < f^U(\bar{u})$. From quasiconvexity of f, it follows that $\langle \nabla f^L(u) + \nabla f^U(u), \bar{u} - u \rangle \leq 0$. Since $u \in K_2$, we have $\langle \nabla f^L(u) + \nabla f^U(u), \bar{u} - u \rangle = 0$. Then, it follows from the continuity of f and $f^L(\bar{u}) < f^L(u)$.
and \(f^U(\bar{u}) < f^U(u) \), there exists \(t > 0 \) with \(f^L[\bar{u} + t(\nabla f^L(u) + \nabla f^U(u))] < f^L(u) \) and \(f^U[\bar{u} + t(\nabla f^L(u) + \nabla f^U(u))] < f^U(u) \).

Then, from quasiconvexity of \(f \),
\[
\langle \nabla f^L(u) + \nabla f^U(u), \bar{u} + t(\nabla f^L(u) + \nabla f^U(u)) - u \rangle \leq 0.
\]
From \(\langle \nabla f^L(u) + \nabla f^U(u), \bar{u} - u \rangle = 0 \), we have \(\nabla f^L(u) + \nabla f^U(u) = 0 \), this contradicts the assumption \(u \in K_2 \).

This completes the theorem. \(\square \)

4. **Lagrange multiplier characterizations of the solution sets of interval-valued optimization problems**

\[
(IVOP2) \quad \min f(u) \quad \text{subject to } g_i(u) \leq 0, \ i = 1, 2, \cdots, m \quad x \geq 0,
\]

where \(f : X \subseteq \mathbb{R}^n \rightarrow \mathcal{I}(\mathbb{R}) \) is an interval-valued function and \(g_i : X \subseteq \mathbb{R}^n \rightarrow \mathbb{R}, \ i = 1, 2, \cdots, m \) are real valued functions. Let \(M \) be a convex subset of \(X \), here \(M \) be not necessarily open.

Let \(I(u) := \{ i \in \{ 1, 2, \cdots, m \} : g_i(u) = 0 \} \) be index set of the active constraints. Suppose \(K := \{ u \in M : g_i(u) \leq 0, \ i = 1, 2, \cdots, m \} \) is the feasible set.

Let \(C \subseteq \mathbb{R}^n \) be a cone. Then the negative polar cone of \(C \) is defined as:
\[
C^- := \{ c \in \mathbb{R}^n : \langle c, u \rangle \leq 0 \ \forall \ u \in C \},
\]
which is also called normal cone and denoted as \(N_M(u) \).

Definition 4.1. [20] MFCQ is said to be satisfy at point \(\bar{u} \in K \) if \(\nabla g_i(\bar{u}), \ i \in I(\bar{u}) \) are linearly independent and there exists a point \(d \in \mathbb{R}^n \) such that
\[
\langle \nabla g_i(\bar{u}), d \rangle = 0, \ i \in I = \{ 1, 2, \cdots, l \}, \ 0 \leq l \leq m, \ \langle \nabla g_i(\bar{u}), d \rangle < 0, \ i \in I(\bar{u}).
\]

Definition 4.2. [7] Generalized Mangasarian-Fromovitz constraint qualification (GMFCQ) is said to be satisfy at \(\bar{u} \) if and only if there is a direction \(d \in (N_M(\bar{u}))^- \) such that \(\langle \nabla g_i(\bar{u}), d \rangle < 0, \ i \in I(\bar{u}) \).

Motivated by Wu [32] and Ivanov [7], we establish the Karush Kuhn Tucker (KKT) optimality conditions for interval-valued functions with the help of GMFCQ.

4.1. **KKT optimality conditions for interval-valued optimization problem**

Suppose \(\bar{u} \) is a nondominated solution of (IVOP2) and \(f \) and \(g_i, \ i \in I(\bar{u}) \) are differentiable at \(\bar{u} \) on convex set \(M \). Let the GMFCQ holds at \(\bar{u} \), then there exist Lagrange multipliers \(\lambda^L > 0, \lambda^U > 0 \) and \(0 \leq \mu_i \in \mathbb{R}, \ i = 1, 2, \cdots, m \) such that
\[
\left\langle \lambda^L \nabla f^L(\bar{u}) + \lambda^U \nabla f^U(\bar{u}) + \sum_{i \in I(\bar{u})} \mu_i \nabla g_i(\bar{u}), u - \bar{u} \right\rangle \geq 0 \ \forall \ u \in K,
\]
\[
\mu_i g_i(\bar{u}) = 0 \ \forall \ i = 1, 2, \cdots, m.
\]

Let us denote the following index set by \(I(\bar{u}, \mu) \) and defined as:
\[
I(\bar{u}, \mu) := \{ i \in \{ 1, 2, \cdots, m \} : g_i(\bar{u}) = 0, \ \mu_i > 0 \},
\]
and a set by
\[
M_1(\mu) := \{ u \in M : g_i(u) = 0 \ \forall i \in I(\bar{u}, \mu), \ g_i(u) \leq 0 \ \forall i \in \{ 1, 2, \cdots, m \} \ \setminus I(\bar{u}, \mu) \}.\]
Lemma 4.3. Suppose the interval-valued function f is differentiable and LU-quasiconvex and g is differentiable and quasiconvex. Let $\bar{u} \in \overline{K}$ be solution and M be the convex set. Let the KKT optimality conditions and GMFCQ be satisfied at \bar{u} with multipliers λ^L, λ^U, $\mu_i, (i = 1, 2, \cdots, m)$. Then, $\overline{K} \subseteq M_1(\mu)$ and the function (Lagrangian)

$$L = f(\cdot) + \sum_{i \in I(\bar{u})} \mu_i g_i(\cdot)$$

is constant over \overline{K}, where $f(u) = \lambda^L f^L_k + \lambda^U f^U_k$.

Proof. First we show that $\overline{K} \subseteq M_1(\mu)$. Suppose u is an arbitrary point of \overline{K} then, for the claim it is enough to prove that $g_i(u) = 0 \forall i \in I(\bar{u}, \mu)$. On contrary, suppose that there exists $j \in I(\bar{u}, \mu)$ such that $g_j(u) < 0$.

As $g_j(u) = 0$, we have $g_j(u) < g_j(\bar{u})$ and $\exists \tau > 0$ such that

$$g_j(u + \tau \nabla g_j(\bar{u})) < g_j(\bar{u}).$$

Then from the quasiconvexity of g, we have

$$\langle \nabla g_j(\bar{u}), u + \tau \nabla g_j(\bar{u}) - \bar{u} \rangle \leq 0. \quad (12)$$

Since f is LU-quasiconvex so from Definition 2.8, it follows that

$$f^L(u) = f^L(\bar{u}), \ f^U(u) = f^U(\bar{u}) \quad (13)$$

$$\implies \langle \nabla f^L(\bar{u}) + \nabla f^U(\bar{u}), u - \bar{u} \rangle \leq 0. \quad (14)$$

As g_i are quasiconvex and $g_i(u) \leq 0 = g_i(\bar{u}) \forall i \in I(\bar{u})$, then by quasiconvexity of g_i, we have

$$\langle \nabla g_i(\bar{u}), u - \bar{u} \rangle \leq 0 \ i \in I(\bar{u}).$$

Also by KKT optimality conditions, we have

$$\langle \lambda^L \nabla f^L(\bar{u}) + \lambda^U \nabla f^U(\bar{u}), u - \bar{u} \rangle = 0, \quad (15)$$

$$\langle \mu_i \nabla g_i(\bar{u}), u - \bar{u} \rangle = 0 \ i \in I(\bar{u}). \quad (16)$$

From (15), we have $\langle \nabla g_j(\bar{u}), u - \bar{u} \rangle = 0$.

Then from (12), we have $\|\nabla g_j(\bar{u})\|^2 \leq 0$.

Since GMFCQ is satisfied at \bar{u}, then $\nabla g_j(\bar{u}) \neq 0$. This is a contradiction to assumption $\nabla g_j(\bar{u}) = 0$. Therefore, $u \in M_1(\mu)$.

It immediately follows from (13),

$$L(u) = L(\bar{u}).$$

This completes the proof. \hfill \square

We consider the following sets:

$$\hat{K}_1(\mu) := \{u \in M_1(\mu) : \langle \nabla f^L(\bar{u}) + \nabla f^U(\bar{u}), u - \bar{u} \rangle = 0, \quad \| \nabla f^L(\bar{u}) + \nabla f^U(\bar{u}) \| \}.$$
ON CHARACTERIZATIONS OF SOLUTION SETS

Theorem 4.4. Suppose the interval-valued function f is continuously differentiable and LU-quasiconvex and g_i, $i \in I(\bar{u})$ is differentiable and quasiconvex, g_i, $i \notin I(\bar{u})$ is continuous at \bar{u}. Let K be convex set, $\bar{u} \in \overline{K}$, $\nabla f^L(\bar{u}) + \nabla f^U(\bar{u}) \neq 0$, GMFCQ be satisfied and the Lagrange multipliers be known. Then,

$$\overline{K} = \hat{K}'_1(\mu) = \hat{K}'_2(\mu).$$

Proof. It can be easily seen that $\hat{K}'_1(\mu) = M_1(\mu) \cap \hat{K}_1$ and $\hat{K}'_2(\mu) = M_1(\mu) \cap \hat{K}_2$. Then, from Lemma 4.3 and from relation $\overline{K} = \hat{K}_1 = \hat{K}_2$, the claim is a part of Theorem 3.6. □

Remark 4.5. We assume that $\nabla f^L(\bar{u}) + \nabla f^U(\bar{u}) \neq 0$ in Theorem 4.4, if we assume $\nabla f^L(\bar{u}) + \nabla f^U(\bar{u}) = 0$, then from Theorem 3.8, $\nabla f^L(u) + \nabla f^U(u) = 0 \ \forall u \in \overline{K}$.

Now, we construct the following sets to study the Lagrange multiplier characterization:

$$K'_1(\mu) := \{ u \in K_1(\mu) : \langle \nabla f^L(u) + \nabla f^U(u), \bar{u} - u \rangle = 0, \nabla f^L(u) + \nabla f^U(u) \neq 0 \},$$

$$K'_2(\mu) := \{ u \in K_1(\mu) : \langle \nabla f^L(u) + \nabla f^U(u), \bar{u} - u \rangle \geq 0, \nabla f^L(u) + \nabla f^U(u) \neq 0 \},$$

$$K'_3(\mu) := \{ u \in K_1(\mu) : \langle \nabla f^L(u) + \nabla f^U(u), \bar{u} - u \rangle \geq 0, \nabla f^L(u) + \nabla f^U(u) \neq 0 \},$$

$$K'_4(\mu) := \{ u \in K_1(\mu) : \langle \nabla f^L(u) + \nabla f^U(u), \bar{u} - u \rangle = 0, \nabla f^L(u) + \nabla f^U(u) \neq 0 \}.$$

Theorem 4.6. Suppose the interval-valued function f is continuously differentiable and LU-convex set and g_i, $i \in I(\bar{u})$ is differentiable and quasiconvex, g_i, $i \notin I(\bar{u})$ is continuous at \bar{u}. Let K be convex set, $\bar{u} \in \overline{K}$, $\nabla f^L(\bar{u}) + \nabla f^U(\bar{u}) \neq 0$, GMFCQ be satisfied and the Lagrange multipliers be known. Then,

$$\overline{K} = K'_1(\mu) = K'_2(\mu) = K'_3(\mu) = K'_4(\mu) = K'_5(\mu).$$

Proof. It can be seen that $K'_i = K_i(\mu) \cap K_i, i = 1, 2, 3, 4, 5$. Then, from Lemma 4.3 and relation $\overline{K} = K_1 = K_2 = K_3 = K_4 = K_5$, the claim follows immediately. □

Now, we assume that K is an open set. Then, the KKT optimality conditions reduce to:

$$\lambda^L \nabla f^L(\bar{u}) + \lambda^U \nabla f^U(\bar{u}) + \sum_{i \in I(\bar{u})} \mu_i \nabla g_i(\bar{u}) = 0, \ \mu_i g_i(\bar{u}) = 0 \ \forall i = 1, 2, \cdots, m. \quad (17)$$

In this case, GMFCQ reduces to MFCQ, which is stated and defined as:

$$\exists \ d \in \mathbb{R}^n \text{ such that } \langle g_i(\bar{u}), d \rangle < 0 \ \forall i \in I(\bar{u}).$$

Consider the sets:

$$\hat{K}'_0(\mu) := \{ u \in K_1(\mu) : \langle \nabla g_i(\bar{u}), u - \bar{u} \rangle = 0, \ i \in I(\bar{u}), \mu \},$$

$$\frac{\nabla f^L(u) + \nabla f^U(u)}{\| \nabla f^L(u) + \nabla f^U(u) \|} = \frac{\nabla f^L(\bar{u}) + \nabla f^U(\bar{u})}{\| \nabla f^L(\bar{u}) + \nabla f^U(\bar{u}) \|}, \ \nabla f^L(u) + \nabla f^U(u) \neq 0;$$
\[K_2''(\mu) := \{ u \in K_1(\mu) : \langle \nabla g_i(\bar{u}), u - \bar{u} \rangle \geq 0, \; i \in I(\bar{u}, \mu), \]
\[\frac{\nabla f^L(u) + \nabla f^U(u)}{\| \nabla f^L(u) + \nabla f^U(u) \|} = \frac{\nabla f^L(\bar{u}) + \nabla f^U(\bar{u})}{\| \nabla f^L(\bar{u}) + \nabla f^U(\bar{u}) \|} , \nabla f^L(u) + \nabla f^U(u) \neq 0 \}. \]

Theorem 4.7. Suppose the interval-valued function \(f \) is continuously differentiable and \(LU \)-quasiconvex and \(g_i, i \in I(\bar{u}) \) is differentiable and quasiconvex, \(g_i, i \notin I(\bar{u}) \) is continuous at \(\bar{u} \). Let \(K \) be an open and convex set, \(\overline{u} \in K \), \(\nabla f^L(\bar{u}) + \nabla f^U(\bar{u}) \neq 0 \), \(MFCQ \) be satisfied and the Lagrange multipliers be known. Then,
\[K = \hat{K}'(\mu) = \hat{K}''(\mu). \]

Proof. It can be seen that \(\hat{K}'(\mu) \subseteq \hat{K}''(\mu) \). Next, we show that \(\hat{K}''(\mu) \subseteq K \). Suppose \(\bar{u} \in \hat{K}''(\mu) \) is an arbitrary point then from relation (17), we get \((\nabla f^L(\bar{u}) + \nabla f^U(\bar{u}), u - \bar{u}) \leq 0 \), Hence, \(u \in \hat{K}'(\mu) \). Then, from Theorem 4.3, it follows that \(\hat{K}'(\mu) = K \) and \(u \in K \).

Now, we show that \(K \subseteq \hat{K}''(\mu) \). Suppose \(u \in K \) is an arbitrary point. Since, \(f \) is \(LU \)-quasiconvex and \(f^L(u) = f^L(\bar{u}), f^U(u) = f^U(\bar{u}) \), then it follows that \((\nabla f^L(\bar{u}) + \nabla f^U(\bar{u}), u - \bar{u}) \leq 0 \). Also, \(g_i \) are quasiconvex then,
\[g_i(u) \leq 0 = g_i(\bar{u}) \implies (\nabla g_i(\bar{u}), u - \bar{u}) \geq 0 \forall \; i \in I(\bar{u}). \]

From KKT conditions (17), \((\nabla g_i(\bar{u}), u - \bar{u}) = 0 \forall \; i \in I(\bar{u}, \mu) \). It follows from Theorem 4.4, \(\hat{K}'(\mu) = K \) and \(u \in \hat{K}'(\mu) \). We conclude from here, \(u \in \hat{K}''(\mu) \). This completes the proof. \(\Box \)

5. **Conclusions and future remarks**

Motivated by Zhang et al. [34] and Wu [31], we define \(LU \)-quasiconvex and \(LU \)-pseudoconvex functions and show that the lower level sets are convex in case of \(LU \)-quasiconvex function. In this article, we obtain the characterizations of solution sets of interval-valued optimization problem with the \(H \)-differentiable \(LU \)-quasiconvex objective function. We construct Gordon’s theorem of alternative for interval linear matrix system of inequalities and prove that the normalized gradient of interval-valued function is non-zero constant over the solution set when the interval-valued gradient is not zero at a point. Further, we study Lagrange multiplier characterizations of solutions set of interval-valued optimization problem in form of \(LU \)-quasiconvex objective function and quasiconvex inequality constraint function. We also derive KKT optimality conditions with the help of generalized Mangasarian-Fromovitz constraint qualifications (GMFCQ). In the future, we can study the second order characterizations of solution sets of interval-valued function motivated by Ivanov [8]. We can obtain the sequential characterizations of approximate solutions in interval-valued convex optimization problems motivated by Sisarat et al. [27].

Acknowledgements. The authors are indebted to the anonymous reviewers for their valuable comments and remarks that helped to improve the presentation and quality of the manuscript.

Funding Information. The first author is financially supported by Research Grant for Faculty (IoE Scheme), Banaras Hindu University, Varanasi under Dev. Scheme NO. 6031. The third author CSIR-UGC JRF, New Delhi, India, through Reference no.: 1009/(CSIR-UGC NET JUNE 2018).

Conflict of interests. The authors declare that they have no competing interests.

Author contributions. All authors contributed equally to this work.

References

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model (S2O). We are thankful to our subscribers and supporters for making it possible to publish this journal in open access in the current year, free of charge for authors and readers.

Check with your library that it subscribes to the journal, or consider making a personal donation to the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports, is available at https://edpsciences.org/en/subscribe-to-open-s2o.