ON THE CONFORMABILITY OF REGULAR LINE GRAPHS

Luerbio Faria, Mauro Nigro* and Diana Sasaki

Abstract. Let $G = (V, E)$ be a graph and the deficiency of G be $\text{def}(G) = \sum_{v \in V(G)} (\Delta(G) - d_G(v))$, where $d_G(v)$ is the degree of a vertex v in G. A vertex coloring $\phi : V(G) \rightarrow \{1, 2, \ldots, \Delta(G) + 1\}$ is called conformable if the number of color classes (including empty color classes) of parity different from that of $|V(G)|$ is at most $\text{def}(G)$. A general characterization for conformable graphs is unknown. Conformability plays a key role in the total chromatic number theory. It is known that if G is Type 1, then G is conformable. In this paper, we prove that if G is k-regular and Class 1, then $L(G)$ is conformable. As an application of this statement we establish that the line graph of complete graph $L(K_n)$ is conformable, which is a positive evidence towards the Vignesh et al.'s conjecture that $L(K_n)$ is Type 1.

Mathematics Subject Classification. 05C15.

Received February 28, 2023. Accepted September 6, 2023.

1. Introduction

Let $G = (V, E)$ be a simple connected graph. A k-vertex coloring of G is an assignment of k colors to the vertices of G so that adjacent vertices have different colors. A k-edge coloring of G is an assignment of k colors to the edges of G so that adjacent edges have different colors. The chromatic index of G, denoted by $\chi'(G)$, is the smallest k for which G has a k-edge coloring. Vizing's theorem states that the chromatic index $\chi'(G)$ is at least $\Delta(G)$ and at most $\Delta(G) + 1$, where $\Delta(G)$ is the maximum degree of the graph G [13]. Graphs with $\chi'(G) = \Delta(G)$ are called Class 1, and graphs with $\chi'(G) = \Delta(G) + 1$ are called Class 2. Similarly, a k-total coloring of G is an assignment of k colors to the vertices and edges of G so that adjacent or incident elements have different colors. The total chromatic number of G, denoted by $\chi''(G)$, is the smallest k for which G has a k-total coloring. Clearly, $\chi''(G) \geq \Delta(G) + 1$ and the Total Coloring Conjecture (TCC) states that the total chromatic number of any graph is at most $\Delta(G) + 2$ [2,13]. Graphs with $\chi''(G) = \Delta(G) + 1$ are called Type 1, and graphs with $\chi''(G) = \Delta(G) + 2$ are called Type 2.

In 1971, Rosenfeld [10] proved that the TCC holds for cubic graphs. In 1989, Sánchez-Arroyo [11] proved that determining the total chromatic number of an arbitrary graph is a NP-hard problem. The problem remains NP-hard even when G is cubic and bipartite.

Keywords. Vertex coloring, total coloring, conformable coloring.

Rio de Janeiro State University, Rio de Janeiro, Brazil.

*Corresponding author: mauro.nigro@pos.ime.uerj.br; mauronigro94@gmail.com

© The authors. Published by EDP Sciences, ROADEF, SMAI 2023

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
A Type 1 graph has a nice structural property due to Chetwynd and Hilton [5]. Let the deficiency of G be $\text{def}(G) = \sum_{v \in V(G)} (\Delta(G) - d_G(v))$, where $d_G(v)$ is the degree of vertex v in G. A vertex coloring $\varphi : V(G) \to \{1, 2, \ldots, \Delta(G) + 1\}$ is called conformable if the number of color classes (including empty color classes) of parity different from that of $|V(G)|$ is at most $\text{def}(G)$. Note that if G is a regular graph, then φ is called conformable if each color class has the same parity as $|V(G)|$. A graph is said to be conformable if it has a conformable vertex coloring; otherwise, it is said to be non-conformable.

An important connection between Type 1 graphs and conformability was established in Theorem 1.1 and an example is presented in Figure 1.

Theorem 1.1 (Chetwynd and Hilton [5]). If G is Type 1, then G is conformable. □

Equivalently, if G is non-conformable, then G is not Type 1. A classical example of non-conformable graphs are complete graphs with even order K_{2n} (Fig. 1b). However, there are conformable graphs which are Type 2: For instance, the complete bipartite graphs $K_{n,n}$, for even $n > 1$, and the Mbius ladders M_{2n} (Fig. 1a), for $n > 3$, are conformable and Type 2 [5].

Constructing conformable vertex colorings or establishing their non-existence can be used to tackle total coloring problem. Indeed, every non-conformable graph is not Type 1 and a suitable conformable coloring might be extended to a $(\Delta(G) + 1)$-total coloring. Several recent studies have been conducted on the problem of conformability.

For $n \geq 2$, a star graph S_n is the complete bipartite graph $K_{1,n-1}$. A graph is a power of cycle, denoted by C_n^k, if $V(C_n^k) = \{v_0, \ldots, v_{n-1}\}$ and $E(C_n^k) = \bigcup_{i=1}^{k} E'$, where $E' = \{v_jv_{(j+i) \mod n} \mid j \in \{0, \ldots, n-1\}\}$. For $k \geq \lfloor n/2 \rfloor$, C_n^k is, up to multiple edges, isomorphic to the complete graph K_n. In 2006, Campos and de Mello [4] proved that for positive integers n and k, if $n < 3(k + 1)$ and n is odd, then a power of cycle graph C_n^k is non-conformable, they determined the total chromatic number of C_n^k and conjectured that these non-conformable power of cycle graphs are the unique Type 2 graphs of this class. In 2022, Zorzi et al. [14] proved that if C_n^k is non-conformable, then $n < 3(k + 1)$ and n is odd, determining the conformability of power of cycle graphs.

In 2018, Vignesh et al. [12] conjectured that all line graphs of complete graphs $L(K_n)$ are Type 1. In 2021, Mohan et al. [8] verified the TCC to the set of quasi-line graphs, which is a generalization of line graphs, and presented some infinite families of Type 1 graphs. In 2022, Jayaraman et al. [6] determined the total chromatic number for certain line graphs. In this paper, we establish a relationship between the chromatic index of G and the conformability of $L(G)$, proving that if G is k-regular Class 1, then $L(G)$ is conformable. We apply this statement to prove that $L(K_n)$ is conformable, supporting the Vignesh et al.’s [12] conjecture. In addition, we
ON THE CONFORMABILITY OF REGULAR LINE GRAPHS

Figure 2. The case when edge a_i of color i is adjacent to the two edges a_j^1 and a_j^2 of color j.

propose a question about the existence of $L(G)$ non-conformable of a k-regular G and investigate this question, by presenting non-conformable graphs which are not line graphs.

2. Line graphs of k-regular Class 1 graphs are conformable

In this section, we prove that if G is k-regular and Class 1, then $L(G)$ is conformable and that $L(K_n)$ is conformable. Lemma 2.1 relates the regularity of both G and $L(G)$.

Lemma 2.1. If G is k-regular, then $L(G)$ is $(2k - 2)$-regular.

The following result is well-known.

Lemma 2.2 (Niessen [9]). If $G = (V, E)$ is k-regular and Class 1, then $n = |V|$ is even.

Lemma 2.3. If $G = (V, E)$ is k-regular and Class 1 with $|V| \geq 6$, then every k-edge coloring φ has each color class \mathcal{C}_i, $i \in \{1, \ldots, k\}$, of size at least 3.

Proof. Let $G = (V, E)$ be a k-regular and Class 1 graph and φ a k-edge coloring of G. Note that each color class of φ is a perfect matching of G and these k perfect matchings comprise a partition of $E(G)$. Since $|V| \geq 6$, we have that each perfect matching must have at least 3 edges.

Lemma 2.4. Let G be a graph, with a k-edge coloring φ, where \mathcal{C}_i are color classes of φ, with $i \in \{1, \ldots, k\}$ and $|\mathcal{C}_i| \geq 3$, then for every pair $i, j \in \{1, \ldots, k\}$ with $i \neq j$, there is a pair of edges $a_i \in \mathcal{C}_i$ and $a_j \in \mathcal{C}_j$ such that $\{a_i, a_j\}$ is a matching.

Proof. Let $i, j \in \{1, \ldots, k\}$ with $i \neq j$. Take $a_i = x_iy_i \in \mathcal{C}_i$. Let $a_j^1, a_j^2, a_j^3 \in \mathcal{C}_j$. Since φ is an edge coloring, we claim that at most 2 of those edges share a same endpoint with a_i (Fig. 2). For instance, considering a_j^1 and a_j^2 adjacent to a_i, we have that $\{a_i, a_j^3\}$ is a matching.

Theorem 2.5. Let G be a k-regular graph. If G is Class 1, then $L(G)$ is conformable.

Proof. Let G be a k-regular graph. If $k = 1$, then $G = K_2$ and $L(G)$ is the trivial graph which is conformable. Assume that $k \geq 2$. Since G is Class 1, we have that G has a k-edge coloring φ with color classes \mathcal{C}_i, $1 \leq i \leq k$. Note that since every vertex has degree k and there are k color classes, then each color class is a perfect matching, $|V(G)| = 2q$ and $|\mathcal{C}_i| = q$, for $q \in \mathbb{N}$. By Lemma 2.1, $L(G)$ is $(2k - 2)$-regular. We construct a $(2k - 1)$-vertex coloring ϕ to $L(G)$ using the k-edge coloring φ of G. Note that $l = |V(L(G))| = \frac{|V(G)|k}{2} = qk$ and consider the two cases:
Corollary 2.6. Let L be a k-regular graph. If $L(G)$ is non-conformable, then G is Class 2.

Theorem 2.7 (Baranyai [1]). The complete graph K_n is Class 1 if, and only if, n is even.

Theorem 2.8. The graphs $L(K_n)$ are conformable.

Proof. First consider $V(K_n) = \{v_0, v_1, \ldots, v_{n-1}\}$. By definition of line graphs, each edge of K_n is identified with a vertex in $L(K_n)$. Remark that $L(K_n)$ is a $(2n-4)$-regular graph (Lem. 2.1). In each case we provide a conformable vertex coloring for $L(G)$ with $2n-3$ color classes, each one of them with the same parity as $|V(L(K_n))|$.

We split the proof into two cases according to the parity of n:

(1) n even – From Theorems 2.5 and 2.7, $L(K_n)$ is conformable.

(2) n odd – Given $n = 2k-1$, where k is a positive integer. Hence, the number of vertices of $L(K_n)$ is $\frac{n(n-1)}{2} = (2k-1)(k-1)$. Next, we consider the two cases, depending on the parity of k.

(a) k odd – In this case the number of vertices of $L(K_n)$ is even. We define the $(2n-3)$-vertex coloring of $L(K_n)$ where each color class is even. We set for each $p \in \{1, \ldots, n\}$, the color class of $L(K_n)$, $C_p = \{v_{(p-1)-q} \mod n v_{(p-1)+q} \mod n \mid 1 \leq q \leq \frac{n-1}{2}\}$ (Fig. 3) and for each $p \in \{n+1, \ldots, 2n-3\}$, $C_p = \emptyset$. Note that C_p is a maximum matching of K_n, and so it is a maximal independent set of $L(K_n)$. Moreover, $\bigcup_{p=1}^{n} C_p = E(K_n) = V(L(K_n))$. Consequently this vertex coloring is conformable, since for each $p \in \{1, \ldots, n\}$, $|C_p| = \frac{n-1}{2} = k-1$ is even and for each $p \in \{n+1, \ldots, 2n-3\}$, we have $n-3$ empty color classes.

(b) k even – In this case the number of vertices $|V(L(K_n))|$ is $(2k-1)(k-1)$ of $L(K_n)$ is odd. Our conformable coloring consists in $n-2$ maximal matchings of K_n of size $\frac{n-1}{2}$ and $n-1$ matchings of K_n of size 1. Observe that K_n has $\frac{n(n-1)}{2} = (n-1)(n-2) + (n-1)$ edges. We define a conformable coloring to $L(K_n)$, taking for each $p \in \{1, \ldots, n-2\}$, $C_p = \{v_{(p-1)-q} \mod n v_{(p-1)+q} \mod n \mid 1 \leq q \leq \frac{n-1}{2}\}$ (Fig. 4). Since we have $\frac{(n-2)(n-1)}{2}$ colored edges, we have $n-1$ edges which will be colored each one
Figure 3. An example of conformable coloring to $L(K_5)$, where the edges of K_5 are colored. For each copy of K_5, we have the color class \mathcal{C}_p with $p \in \{1, \ldots, n\}$ and we have $\mathcal{C}_p = \emptyset$, when $p \in \{n+1, \ldots, 2n-3\}$.

Figure 4. An example of conformable coloring to $L(K_7)$, where the edges of K_7 are colored. In the first line, for each copy of K_7 we present the color class \mathcal{C}_p with $p \in \{1, \ldots, n-2\}$; in the second and third lines we have the $n-1$ unitary color classes.

with a different color. Let $A = \{a_1, \ldots, a_{n-1}\}$ be the set of elements which are not colored with colors $p \in \{1, \ldots, n-2\}$. We define for each $p \in \{n-1, \ldots, 2n-3\}, \mathcal{C}_p = \{a_p-(n-2)\}$. For each $p \in \{1, \ldots, n-2\}$, we have that $|\mathcal{C}_p| = \frac{n-1}{2} = k - 1$ is odd; for each $p \in \{n-1, \ldots, 2n-3\}$, we have that $|\mathcal{C}_p| = 1$, and we use $n - 2 + n - 1 - 2n - 3 = \Delta(L(K_n)) + 1$ color classes. We conclude that this vertex coloring is conformable.

While there exist conformable graphs that are of Type 2, the proof of Theorem 2.8 represents a promising approach towards verifying the conjecture of Vignesh et al. [12]. As an example, the conformable coloring provided in the proof can be extended to a total coloring for the line graph of K_5 (Fig. 5).

3. Discussion about the existence of $L(G)$ non-conformable, of k-regular graph G

We present a connection between the chromatic index of a k-regular graph G and the conformability of its line graph $L(G)$ by proving that if G is a k-regular and Class 1 graph, then $L(G)$ is conformable. Therefore,
we can conclude that if the line graph \(L(G) \) is non-conformable, then \(G \) is Class 2, where \(G \) is \(k \)-regular. As an application of this result we prove that every line graph of a complete graph \(L(K_n) \) is conformable which is a piece of evidence to the Vignesh et al.’s conjecture [12] which states that every \(L(K_n) \) is Type 1. König [7] proved that bipartite graphs are Class 1. As a consequence of this result together with Theorem 2.5 we have the following corollary.

Corollary 3.1. If \(G \) is \(k \)-regular and bipartite, then \(L(G) \) is conformable.

Note that the \(k \)-regularity condition is necessary in Theorem 2.5. For instance, the star graph with an odd order \(S_{2n+1} \) is non-regular and Class 1, while \(L(S_{2n+1}) = K_{2n} \) is non-conformable. For \(k = 2 \), there is a \(k \)-regular graph \(G = C_5 \), such that the line graph \(L(G) = C_5 \) is non-conformable.

These facts motivate us to pose the following question.

Question 3.2. Is there a \(k \)-regular graph \(G \), \(k \geq 3 \), such that the line graph \(L(G) \) is non-conformable?

Beineke [3] proved that there are nine minimal graphs that are not line graphs, such that any graph that is not a line graph has some of these nine graphs as an induced subgraph.

Theorem 3.3 (Beineke [3]). Let \(H \) be a graph. There exists a graph \(G \) such that \(H = L(G) \) is the line graph of \(G \) if and only if \(H \) contains no induced subgraph from the following set presented in Figure 6.

Those graphs in Figure 6 are forbidden induced subgraphs for line graphs. In an attempt to answer Question 3.2, knowing that there are some known non-conformable power of cycle \(C_n \), we wonder if there is a \(k \)-regular graph \(G \), such that some non-conformable \(C_n^k = L(G) \). Answering, in this case, positively Question 3.2. Unfortunately, we prove that there is no such a graph \(G \) at all, since we use the Beineke’s characterization to prove that every non-conformable power of cycle graph \(C_n^k \) is not a line graph.

We remark that Zorzi et al. [14] characterized the non-conformable power of cycle graphs.

Theorem 3.4 (Campos and de Mello [4] and Zorzi et al. [14]). Let \(C_n^k \) be a power of cycle which is neither a cycle nor a complete graph. The power of cycle \(C_n^k \) is non-conformable if, and only if, \(n \) is odd and \(n < 3(k + 1) \).

Theorem 3.5. Let \(C_n^k \) be a power of cycle which is neither a cycle nor a complete graph. If \(C_n^k \) is non-conformable, then \(C_n^k \) is not a line graph.
Suppose that C_n from Theorem 3.4.

Since n is odd and $n < 3(k + 1)$. As C_n^k is not the complete graph, $n > 2k + 1$. Since n is odd, $n \geq 2k + 3$.

(1) If k is even, then $3(k + 1)$ is odd. Since $n < 3(k + 1) = 3k + 3$, $n \leq 3k + 1$ and we conclude that $2k + 3 \leq n \leq 3k + 1$. Then, n belongs to the range $2k + 3 = 2k + (2 + 1) \leq n \leq 2k + (2 \cdot \frac{k}{2}) + 1 = 3k + 1$, or $n = 2k + 2j + 1$ with $j \in \{1, \ldots, \frac{k}{2}\}$. Let $C_n^{k} = C_{2k+2j+1}^{k}$ be the power of cycle with $j \in \{1, \ldots, \frac{k}{2}\}$. We provide the forbidden induced subgraph $H[S]$ of $H = C_n^{k}$ induced by the set $S = \{v_0, v_1, v_k, v_{k+2j}, v_{2k+2j}\}$ corresponding to a Beineke graph in Figure 6b. From the definition of power of cycle:

- $N(v_0) = \{v_{k+2j+1}, \ldots, v_{2k+2j}\}$ and so:
 - vertex v_0 is adjacent to v_1, v_k, and v_{k+2j} in $H[S]$;
 - vertex v_0 is not adjacent to v_{k+2j} in H.
- $N(v_1) = \{v_{k+2j+2}, \ldots, v_{2k+2j}, v_0\}$ and so:
 - vertex v_1 is adjacent to v_0, v_k, and v_{k+2j} in $H[S]$;
 - vertex v_1 is not adjacent to v_{k+2j} in H.
- $N(v_0) = \{v_0, \ldots, v_{k-1}\}$ and so:
 - vertex v_k is adjacent to v_0, v_1, and v_{k+2j} in $H[S]$;
 - vertex v_k is not adjacent to v_{2k+2j} in H.
- $N(v_{k+2j}) = \{v_{k+2j+1}, \ldots, v_{2k+2j}\}$ and so:
 - vertex v_{k+2j} is adjacent to v_k and v_{2k+2j} in $H[S]$;
 - vertex v_{k+2j} is not adjacent to v_0 and v_1 in H.

Hence, $H[S]$ is isomorphic to a Beineke graph depicted in Figure 6b and so there is a forbidden induced subgraph of C_n^{k} with 5 vertices. From Beineke’s characterization [3], C_n^{k} is not a line graph. For the convenience of the reader we offer in Figure 7 one example with $k = 2$ and $n = 2 \cdot 2 + 2j + 1$ with $j \in \{1\}$; and two examples with $k = 4$ and $n = 2 \cdot 4 + 2j + 1$ with $j \in \{1, 2\}$.

Figure 6. The nine minimal graphs that are not line graphs.
If \(k \) is odd, then \(3(k+1) \) is even. Since \(n < 3(k+1) = 3k + 3 \), \(n \leq 3k + 2 \) and \(2k + 3 \leq n \leq 3k + 2 \). Then, \(n = 2k + 2j + 1 \) with \(j \in \{1, \ldots, \frac{k-1}{2}, \frac{k+1}{2}\} \).

(a) Suppose that \(j \in \{1, \ldots, \frac{k-1}{2}\} \). Consider the power of cycle \(C_{2k+2j+1}^k \). We provide \(H[S] \) the forbidden induced subgraph for line graphs, subgraph of \(C_n^k \) induced by the set \(S = \{v_0, v_1, v_k, v_{k+2j}, v_{2k+2j}\} \) corresponding to a Beineke graph in Figure 6b. From the definition of power of cycle:

- \(N(v_0) = \{v_{k+2j+1}, \ldots, v_{2k+2j}\} \cup \{v_1, v_2, \ldots, v_k\} \) and so:
 - vertex \(v_0 \) is adjacent to \(v_1, v_k \) and \(v_{2k+2j} \) in \(H[S] \);
 - vertex \(v_0 \) is not adjacent to \(v_{k+2j} \) in \(H \).
- \(N(v_1) = \{v_{k+2j+2}, \ldots, v_{2k+2j}, v_0\} \cup \{v_2, v_3, \ldots, v_k, v_{k+1}\} \) and so:
 - vertex \(v_1 \) is adjacent to \(v_0, v_k \) and \(v_{2k+2j} \) in \(H[S] \);
 - vertex \(v_1 \) is not adjacent to \(v_{k+2j} \) in \(H \).
- \(N(v_k) = \{v_0, \ldots, v_{k-1}\} \cup \{v_{k+1}, \ldots, v_{2k}\} \) and so:
 - vertex \(v_k \) is adjacent to \(v_0, v_1 \) and \(v_{k+2j} \) in \(H[S] \);
 - vertex \(v_k \) is not adjacent to \(v_{2k+2j} \) in \(H \).
- \(N(v_{k+2j}) = \{v_2j, \ldots, v_{2k+2j-1}\} \cup \{v_{k+2j+1}, \ldots, v_{2k+2j}\} \) and so:
 - vertex \(v_{k+2j} \) is adjacent to \(v_k \) and \(v_{2k+2j} \) in \(H[S] \);
 - vertex \(v_{k+2j} \) is not adjacent to \(v_0 \) and \(v_1 \) in \(H \).

Hence, \(H[S] \) is isomorphic to a Beineke graph depicted in Figure 6b and so there is a forbidden induced subgraph of \(C_n^k \) with 5 vertices. From the Beineke’s characterization [3], \(C_n^k \) is not a line graph. For the convenience of the reader we offer in Figure 8 an example with \(k = 3 \) and \(n = 2 \cdot 3 + 2j + 1 \) with \(j \in \{1\} \).

(b) Suppose that \(j = \frac{k+1}{2} \). Consider the power of cycle \(C_{3k+2}^k \). We provide \(H[S] \) the forbidden induced subgraph for line graphs, subgraph of \(C_n^k \) induced by the set \(S = \{v_0, v_1, v_k, v_{2k+1}, v_{3k+1}\} \) corresponding to a Beineke graph in Figure 6h. From the definition of power of cycle:

- \(N(v_0) = \{v_{2k+2}, \ldots, v_{3k+1}\} \cup \{v_1, v_2, \ldots, v_k\} \) and so:
 - vertex \(v_0 \) is adjacent to \(v_1, v_k \) and \(v_{3k+1} \) and in \(H[S] \);
 - vertex \(v_0 \) is not adjacent to \(v_{2k} \) and \(v_{2k+1} \) in \(H \).
- \(N(v_1) = \{v_{2k+3}, \ldots, v_{3k+1}, v_0\} \cup \{v_2, v_3, \ldots, v_k, v_{k+1}\} \) and so:
 - vertex \(v_1 \) is adjacent to \(v_0, v_k \) and \(v_{3k+1} \) in \(H[S] \);
 - vertex \(v_1 \) is not adjacent to \(v_{2k} \) and \(v_{2k+1} \) in \(H \).
- \(N(v_k) = \{v_k, v_{k+1}, \ldots, v_{2k-1}\} \cup \{v_{2k+1}, \ldots, v_{3k}\} \) and so:
 - vertex \(v_k \) is adjacent to \(v_k \) and \(v_{2k+1} \) in \(H[S] \);
 - vertex \(v_{2k} \) is not adjacent to \(v_0, v_1 \) and \(v_{3k+1} \) in \(H \).
- \(N(v_{2k+1}) = \{v_{k+1}, v_{k+2}, \ldots, v_{2k}\} \cup \{v_{2k+2}, \ldots, v_{3k+1}\} \) and so:
ON THE CONFORMABILITY OF REGULAR LINE GRAPHS

Figure 8. The power of cycle graph $H = C_n^k$ with k odd, $j \in \{1, \ldots, \frac{k-1}{2}, \frac{k+1}{2}\}$, $n = 2k+2j+1$ and the corresponding $H[S]$ isomorphic to a forbidden induced subgraph of Beineke (edges in red). In (8a), $H = C_9^3$, $S = \{v_0, v_1, v_6, v_k, v_{2k+2j}\}$ and a Beineke graph is depicted in Figure 6b. In (8b), $H = C_{11}^3$, $S = \{v_0, v_1, v_k, v_{2k}, v_{2k+1}, v_{3k+1}\}$ and a Beineke graph is depicted in Figure 6h.

- vertex v_{2k+1} is adjacent to v_{2k} and v_{3k+1} in $H[S]$;
- vertex v_{2k+1} is not adjacent to v_0, v_k and v_1 in H.

Hence, there is a forbidden induced subgraph of C_n^k with 6 vertices and from Beineke’s characterization [3], C_n^k is not a line graph. For the convenience of the reader we offer in Figure 8 an example with $k = 3$ and $n = 2 \cdot 3 + 2j + 1$ with $j = \frac{3+1}{2} = 2$.

Acknowledgements. This work is supported by the Brazilian agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) (Grant numbers: 313797/2020-0 and 308654/2018-8), FAPERJ (Fundaçao de Amparo á Pesquisa do Estado do Rio de Janeiro) (Grant numbers: ARC E-26/010.002674/2019, JCNE E-26/201.360/2021, CNE E-26/202.902/2018) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) (Grant number: 88887.600641/2021-00).

References

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model (S2O). We are thankful to our subscribers and supporters for making it possible to publish this journal in open access in the current year, free of charge for authors and readers.

Check with your library that it subscribes to the journal, or consider making a personal donation to the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports, is available at https://edpsciences.org/en/subscribe-to-open-s2o.