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AN ALTERNATIVE THREE-DIMENSIONAL SUBSPACE METHOD BASED ON
CONIC MODEL FOR UNCONSTRAINED OPTIMIZATION

Guoxin Wang1, Mingyang Pei1, Zengxin Wei2 and Shengwei Yao3,*

Abstract. In this paper, a three-dimensional subspace conjugate gradient method is proposed, in
which the search direction is generated by minimizing the approximation model of the objective func-
tion in a three-dimensional subspace. The approximation model is not unique and is alternative between
quadratic model and conic model by the specific criterions. The strategy of initial stepsize and non-
monotone line search are adopted, and the global convergence of the presented algorithm is established
under mild assumptions. In numerical experiments, we use a collection of 80 unconstrained optimization
test problems to show the competitive performance of the presented method.
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1. Introduction

Considering the following unconstrained problem:

min
𝑥∈R𝑛

𝑓(𝑥), (1.1)

with an initial point 𝑥0, the following iterative formula is often used to solve (1.1),

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, (1.2)

where 𝑥𝑘 is the 𝑘-th iteration point, 𝛼𝑘 ∈ R is the stepsize determined by a line search procedure, and 𝑑𝑘 is the
search direction acquired by specific ways.

Conjugate gradient methods are one of the common methods for unconstrained optimization problems, of
which the search direction is computed as

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑑𝑘, 𝑘 = 0, 1, . . . , (1.3)

where 𝑑0 = −𝑔0, 𝑔𝑘+1 = ∇𝑓(𝑥𝑘+1) and 𝛽𝑘 ∈ R is a scalar called the conjugate gradient parameter. Correspond-
ing to different choices for the parameter 𝛽𝑘, various nonlinear conjugate gradient methods have been proposed.
Some classical CG methods include HS (Hestenes and Stiefel [22]), FR (Fletcher and Reeves [20]), PRP (Polak
et al. [30]), CD (Fletcher [19]), LS (Liu and Storey [25]) and DY (Dai and Yuan [11]).
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As for the stepsize 𝛼𝑘 used in (1.2), it depicts the length of current point 𝑥𝑘 increasing along with the
generated search direction 𝑑𝑘, and is usually determined by a procedure known as line search. The largest
reduction of the function value is achieved when the exact line search is exploited, where

𝛼𝑘 = arg min
𝛼≥0

𝑓(𝑥𝑘 + 𝛼𝑑𝑘),

and such a stepsize is called the exact stepsize. However, the high cost and difficulty for computing the exact
stepsize make it rarely used in optimization algorithms. Instead, an inexact line search is often used. One of the
most used inexact line search is the so-called standard Wolfe line search [37,38]:

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝛿𝛼𝑘𝑔
𝑇
𝑘 𝑑𝑘, (1.4)

∇𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇 𝑑𝑘 ≥ 𝜎𝑔𝑇
𝑘 𝑑𝑘, (1.5)

where 0 < 𝛿 < 𝜎 < 1. Obviously, it is a monotone procedure that seeks for a suitable 𝛼𝑘 making the function
value decrease to some extent. Zhang and Hager [45] proposed a nonmonotone version (ZH line search) that
modifies condition (1.4) to

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝐶𝑘 + 𝛿𝛼𝑘𝑔
𝑇
𝑘 𝑑𝑘, (1.6)

where 𝐶0 = 𝑓(𝑥0), 𝑄0 = 1, 𝐶𝑘+1 and 𝑄𝑘+1 are updated by

𝐶𝑘+1 =
𝜂𝑘𝑄𝑘𝐶𝑘 + 𝑓(𝑥𝑘+1)

𝑄𝑘+1
, 𝑄𝑘+1 = 𝜂𝑘𝑄𝑘 + 1, (1.7)

where 𝜂𝑘 ∈ [𝜂min, 𝜂max] and 0 ≤ 𝜂min ≤ 𝜂max ≤ 1. The choice of 𝜂𝑘 controls the degree of nonmonotonicity.
Such a line search can not only overcome some drawbacks in monotone line search, but is particularly efficient
for unconstrained problems in numerical experiments [45].

Subspace technique is one of the effective means for solving large-scale optimization problems, which is getting
more and more attention. Yuan reviewed various subspace techniques that have been used in constructing
numerical methods for solving nonlinear optimization problems in [42,43]. Moreover, the combination between
subspace technique and conjugate gradient method has been extensively studied. The earliest research can see
[44], Yuan and Stoer computed the search direction 𝑑𝑘+1 by minimizing the approximation quadratic model in
the two dimensional subspace spanned by 𝑔𝑘+1 and 𝑠𝑘, namely Ω𝑘+1 = 𝑆𝑝𝑎𝑛{𝑔𝑘+1, 𝑠𝑘} where 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘,
and proposed the subspace minimization conjugate gradient method (SMCG), in which 𝑑𝑘+1 is formed by

𝑑𝑘+1 = 𝑡𝑔𝑘+1 + 𝜇𝑠𝑘, (1.8)

where 𝑡 and 𝜇 are undetermined parameters. Based on the above idea, Andrei [3] extended the subspace to
Ω𝑘+1 = 𝑆𝑝𝑎𝑛{𝑔𝑘+1, 𝑠𝑘, 𝑦𝑘} and exploited the acceleration scheme, finally presented a three-term conjugate
gradient method (TTS), in which

𝑑𝑘+1 = −𝑔𝑘+1 + 𝜇𝑠𝑘 + 𝜈𝑦𝑘,

and 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘, 𝜇, 𝜈 are also scalar parameters. Inspired by Andrei, Yang et al. [39] changed the subspace
into Ω𝑘+1 = 𝑆𝑝𝑎𝑛{𝑔𝑘+1, 𝑠𝑘, 𝑠𝑘−1}, and put forward the subspace three-term conjugate gradient method (STT).
For the same subspace, Li et al. [23] added more parameters to the computation of search direction so that

𝑑𝑘+1 = 𝑡𝑔𝑘+1 + 𝜇𝑠𝑘 + 𝜈𝑠𝑘−1,

and adopted the strategy of initial stepsize as well as the nonmonotone line search, eventually proposed the
subspace minimization conjugate gradient method with nonmonotone line search (SMCG NLS).

On the other hand, Dai and Kou [13] also focused on the analysis of Yuan and Stoer [44], but they paid more
attention to the estimate of the parameter 𝜌𝑘+1 = 𝑔𝑇

𝑘+1𝐵𝑘+1𝑔𝑘+1 during the calculation of 𝑑𝑘+1. They combined
the Barzilai-Borwein [7] idea and provided some efficient Barzilai-Borwein conjugate gradient methods (BBCG).
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It is remarkable that the idea of BBCG to estimate 𝜌𝑘+1 is employed in this paper. Motivated by SMCG and
BBCG, Liu and Liu [27] proposed a new Barzilai-Borwein conjugate gradient method (SMCG BB) with a new
strategy for the choice of initial stepsize and a nonmonotone generalized Wolfe line search.

It is noteworthy that all of the above mentioned subspace minimization conjugate gradient methods obtained
the search direction by minimizing the approximate quadratic model of objective function in the presented
subspace. However, Sun [34] and Sun and Yuan [35] have pointed that when the current iterative point is not
close to the minimizer, the quadratic model may lead to a poor prediction of the minimizer if the objective
function possesses strong non-quadratic behaviour. Besides this, a quadratic model does not take into account
more information instead of the gradient value in the current iteration, which means that it does not have
enough degrees freedom for incorporating all of the information in the iterative procedure.

Thus, the research for approximate nonquadratic model is of the essence. Up to now, many nonquadratic
models have been applied to optimization problems, such as conic model, tensor model and regularization
model. The conic model can be incorporated in more function information than quadratic model, and its appli-
cation in unconstrained optimization was first studied by Davidon [16]. A typical conic model for unconstrained
optimization is

𝜑𝑘+1(𝑠) =
𝑔𝑇

𝑘+1𝑠

1 + 𝑏𝑇𝑘+1𝑠
+

1
2

𝑠𝑇𝐵𝑘+1𝑠

(1 + 𝑏𝑇𝑘+1𝑠)2
,

which is an approximation to 𝑓(𝑥𝑘 +𝑠)−𝑓(𝑥𝑘), and 𝐵𝑘+1 is a symmetric positive definite matrix approximating
to the Hessian of 𝑓(𝑥) at 𝑥𝑘+1 satisfying the secant equation 𝐵𝑘+1𝑠𝑘 = 𝑦𝑘. The vector 𝑏𝑘+1 is normally called
the horizontal vector satisfying 1 + 𝑏𝑇𝑘+1𝑠 > 0. Such a conic model has been investigated by many scholars.
Sorensen [33] discussed a class of conic methods called ”optimization by collinear scaling” for unconstrained
optimization and shown that a particular member of this algorithm class has a Q-superlinear convergence.
Ariyawansa [5] modified the procedure of [33] and established the duality between the collinear scaling DFP
and BFGS methods. Sheng [32] further discussed the interpolation properties of conic model method. Di and
Sun [17] proposed a trust region method for conic models to solve unconstrained optimization problems. The
trust region methods based on conic model have brought about a great number of research.

Li et al. [24] paid attention to the combination of subspace method and conic model. They considered the
following conic approximation model:

𝜑𝑘+1(𝑑) =
𝑔𝑇

𝑘+1𝑑

1 + 𝑏𝑇𝑘+1𝑑
+

1
2

𝑑𝑇𝐵𝑘+1𝑑

(1 + 𝑏𝑇𝑘+1𝑑)2
(1.9)

where

𝑏𝑘+1 = − 1− 𝛾𝑘+1

𝛾𝑘+1𝑔𝑇
𝑘+1𝑠𝑘

𝑔𝑘+1,

𝛾𝑘+1 =
−𝑔𝑇

𝑘 𝑠𝑘√︀
∆𝑘+1 + 𝑓𝑘 − 𝑓𝑘−1

,

∆𝑘+1 = (𝑓𝑘 − 𝑓𝑘+1)2 − (𝑔𝑇
𝑘+1𝑠𝑘)(𝑔𝑇

𝑘 𝑠𝑘).

Note that 𝑓𝑘 denotes 𝑓(𝑥𝑘). By minimizing the above conic model in the two-dimensional subspace Ω𝑘+1 =
𝑆𝑝𝑎𝑛{𝑔𝑘+1, 𝑠𝑘}, they developed a subspace minimization conjugate method based on the conic model
(SMCG Conic). Sun et al. [36] extended the subspace to Ω𝑘+1 = 𝑆𝑝𝑎𝑛{𝑔𝑘+1, 𝑠𝑘, 𝑠𝑘−1} and presented a three-
dimensional subspace minimization conjugate gradient method based on conic model (CONIC CG3).

Inspired by [3] and above mentioned works, we come up with the question whether we can extend the
two-dimensional subspace in [24] to three-dimensional Ω𝑘+1 = 𝑆𝑝𝑎𝑛{𝑔𝑘+1, 𝑠𝑘, 𝑦𝑘}. And does the generated
algorithm has the property of global convergence and competitive numerical performance? Therefore, this paper
investigates a three-dimensional subspace method based on the conic model (1.9). Furthermore, some schemes
helpful for convergence are taken into account.
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This paper is organized as follows: in Section 2, the search directions on the subspace Ω𝑘+1 based on two
different models are derived, and the criteria for how to choose the approximate models and search direction
are presented. In Section 3, the schemes of initial stepsize and nonmonotone line search are presented, and
the generated algorithm will be detailed. In Section 4, we give the proofs for some important lemmas of the
search direction and the convergence performance of the generated algorithm under suitable assumptions and
conditions. In Section 5, we compare the numerical results of our algorithm with those of another two methods.

2. The search direction based on different models

The main content of this section is to construct the formula of search direction under different situations
and the corresponding criteria. The concrete approach is to minimize the approximation model in the subspace
Ω𝑘+1 = 𝑆𝑝𝑎𝑛{𝑔𝑘+1, 𝑠𝑘, 𝑦𝑘}, hence how to choose the appropriate approximation model is crucially important.

Here we refer to the analysis of Yuan [40], in which a quantity 𝑢𝑘 is defined by

𝑢𝑘 = |
2(𝑓𝑘 − 𝑓𝑘+1 + 𝑔𝑇

𝑘+1𝑠𝑘)
𝑠𝑇

𝑘 𝑦𝑘
− 1|,

which shows the extent of how the objective function 𝑓(𝑥) is close to a quadratic on the line segment between
𝑥𝑘 and 𝑥𝑘+1. Dai et al. [15] indicate that if the following condition

𝑢𝑘 ≤ 𝑐1 𝑜𝑟 max{𝑢𝑘, 𝑢𝑘−1} ≤ 𝑐2 (2.1)

holds, where 0 < 𝑐1 < 𝑐2 are two small constants, then they believe that 𝑓(𝑥) is very close to a quadratic on the
line segment between 𝑥𝑘 and 𝑥𝑘+1. The utilization of such a quantity can be referred to [26, 27]. In this paper,
if the above condition (2.1) is satisfied, then the choice of the quadratic approximation model is preferable;
otherwise, the conic model is more suitable.

Since we figure out the criterion for choosing the approximation model, the following is to establish the
formula of search direction based on the specific model and subspace. Furthermore, the situations for different
dimensions of Ω𝑘+1 ranging from 1 to 3 are taken into account.

2.1. Conic model

In this subsection, we consider the subproblem

min
𝑑∈Ω𝑘+1

𝜑𝑘+1(𝑑), (2.2)

where 𝜑𝑘+1(𝑑) is the same as (1.9).
Three different dimensions under the subspace Ω𝑘+1 = 𝑆𝑝𝑎𝑛{𝑔𝑘+1, 𝑠𝑘, 𝑦𝑘} will be discussed.

Situation 1: 𝑑𝑖𝑚(Ω𝑘+1) = 3.
Under this situation, the search direction is computed by

𝑑𝑘+1 = 𝑡𝑔𝑘+1 + 𝜇𝑠𝑘 + 𝜈𝑦𝑘. (2.3)

By substituting (2.3) into (2.2) and using the secant equation, the problem (2.2) turns into

min
(𝑑)

𝜑𝑘+1(𝑡, 𝜇, 𝜈) =⎛⎝‖𝑔𝑘+1‖2
𝑔𝑇

𝑘+1𝑠𝑘

𝑔𝑇
𝑘+1𝑦𝑘

⎞⎠𝑇 ⎛⎝ 𝑡𝜇
𝜈

⎞⎠
1 +

⎛⎝𝑏𝑇𝑘+1𝑔𝑘+1

𝑏𝑇𝑘+1𝑠𝑘

𝑏𝑇𝑘+1𝑦𝑘

⎞⎠𝑇 ⎛⎝ 𝑡𝜇
𝜈

⎞⎠
+

1
2

⎛⎝ 𝑡𝜇
𝜈

⎞⎠𝑇 ⎛⎝ 𝜌𝑘+1 𝑔𝑇
𝑘+1𝑦𝑘 𝜔𝑘

𝑔𝑇
𝑘+1𝑦𝑘 𝑠𝑇

𝑘 𝑦𝑘 𝑦𝑇
𝑘 𝑦𝑘

𝜔𝑘 𝑦𝑇
𝑘 𝑦𝑘 𝜏𝑘

⎞⎠⎛⎝ 𝑡𝜇
𝜈

⎞⎠
⎡⎢⎣1 +

⎛⎝𝑏𝑇𝑘+1𝑔𝑘+1

𝑏𝑇𝑘+1𝑠𝑘

𝑏𝑇𝑘+1𝑦𝑘

⎞⎠𝑇 ⎛⎝ 𝑡𝜇
𝜈

⎞⎠
⎤⎥⎦

2 , (2.4)
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where 𝜌𝑘+1 = 𝑔𝑇
𝑘+1𝐵𝑘+1𝑔𝑘+1, 𝜔𝑘 = 𝑔𝑇

𝑘+1𝐵𝑘+1𝑦𝑘, 𝜏𝑘 = 𝑦𝑇
𝑘 𝐵𝑘+1𝑦𝑘, and ‖.‖ denotes the Euclidean norm. We set

𝑎 =

⎛⎝‖𝑔𝑘+1‖2
𝑔𝑇

𝑘+1𝑠𝑘

𝑔𝑇
𝑘+1𝑦𝑘

⎞⎠ , 𝑐 =

⎛⎝𝑏𝑇𝑘+1𝑔𝑘+1

𝑏𝑇𝑘+1𝑠𝑘

𝑏𝑇𝑘+1𝑦𝑘

⎞⎠ , 𝑢 =

⎛⎝ 𝑡𝜇
𝜈

⎞⎠ ,

𝐴𝑘+1 =

⎛⎝ 𝜌𝑘+1 𝑔𝑇
𝑘+1𝑦𝑘 𝜔𝑘

𝑔𝑇
𝑘+1𝑦𝑘 𝑠𝑇

𝑘 𝑦𝑘 𝑦𝑇
𝑘 𝑦𝑘

𝜔𝑘 𝑦𝑇
𝑘 𝑦𝑘 𝜏𝑘

⎞⎠ ,

thus (2.4) turns into

𝜑𝑘+1(𝑢) =
𝑎𝑇𝑢

1 + 𝑐𝑇𝑢
+

1
2
𝑢𝑇𝐴𝑘+1𝑢

(1 + 𝑐𝑇𝑢)2
· (2.5)

To minimize (2.5), we derive its first derivative and seek the solution of

∇𝜑𝑘+1(𝑢) =
1

1 + 𝑐𝑇𝑢

(︂
𝐼 − 𝑐𝑢𝑇

1 + 𝑐𝑇𝑢

)︂(︂
𝑎+

𝐴𝑘+1𝑢

1 + 𝑐𝑇𝑢

)︂
= 0.

Obviously that 𝐼 − 𝑐𝑢𝑇

1+𝑐𝑇 𝑢
is invertible, so the problem is reduced to 𝑎+ 𝐴𝑘+1𝑢

1+𝑐𝑇 𝑢
= 0, then we can easily acquire

the minimizer of (2.5)

𝑢𝑘+1 =
−𝐴−1

𝑘+1𝑎

1 + 𝑐𝑇𝐴−1
𝑘+1𝑎

, (2.6)

when 𝐴𝑘+1 is positive definite and 1 + 𝑐𝑇𝐴−1
𝑘+1𝑎 ̸= 0. Moreover, by using the relationship 𝐴−1

𝑘+1 = 𝐴*𝑘+1
|𝐴𝑘+1| , where

𝐴*𝑘+1 =

⎛⎝𝑋 𝜃1 𝜃2
𝜃1 𝜃 𝜃3
𝜃2 𝜃3 𝑌

⎞⎠ , (2.7)

is the adjoint matrix of 𝐴𝑘+1, and |𝐴𝑘+1| = 𝜌𝑘+1𝑋 + 𝜃1𝑔
𝑇
𝑘+1𝑦𝑘 + 𝜃2𝜔𝑘, in which

𝑋 = (𝑠𝑇
𝑘 𝑦𝑘)𝜏𝑘 − (𝑦𝑇

𝑘 𝑦𝑘)2,

𝜃1 = (𝑦𝑇
𝑘 𝑦𝑘)𝜔𝑘 − (𝑔𝑇

𝑘+1𝑦𝑘)𝜏𝑘,

𝜃2 = (𝑔𝑇
𝑘+1𝑦𝑘)(𝑦𝑇

𝑘 𝑦𝑘)− (𝑠𝑇
𝑘 𝑦𝑘)𝜔𝑘,

𝜃 = 𝜌𝑘+1𝜏𝑘 − 𝜔2
𝑘,

𝜃3 = (𝑔𝑇
𝑘+1𝑦𝑘)𝜔𝑘 − 𝜌𝑘+1(𝑦𝑇

𝑘 𝑦𝑘),

𝑌 = 𝜌𝑘+1(𝑠𝑇
𝑘 𝑦𝑘)− (𝑔𝑇

𝑘+1𝑦𝑘)2,

we finally obtain the minimizer of (2.4)

𝑢𝑘+1 =

⎛⎝ 𝑡𝑘+1

𝜇𝑘+1

𝜈𝑘+1

⎞⎠ = − 1
𝐷𝑘+1

⎛⎝𝑋 𝜃1 𝜃2
𝜃1 𝜃 𝜃3
𝜃2 𝜃3 𝑌

⎞⎠⎛⎝‖𝑔𝑘+1‖2
𝑔𝑇

𝑘+1𝑠𝑘

𝑔𝑇
𝑘+1𝑦𝑘

⎞⎠ =
1

𝐷𝑘+1

⎛⎝−𝑞1−𝑞2
−𝑞3

⎞⎠ , (2.8)

where

𝐷𝑘+1 = |𝐴𝑘+1|+ 𝑞1𝑏
𝑇
𝑘+1𝑔𝑘+1 + 𝑞2𝑏

𝑇
𝑘+1𝑠𝑘 + 𝑞3𝑏

𝑇
𝑘+1𝑦𝑘,

𝑞1 = 𝑋‖𝑔𝑘+1‖2 + 𝜃1𝑔
𝑇
𝑘+1𝑠𝑘 + 𝜃2𝑔

𝑇
𝑘+1𝑦𝑘,

𝑞2 = 𝜃1‖𝑔𝑘+1‖2 + 𝜃𝑔𝑇
𝑘+1𝑠𝑘 + 𝜃3𝑔

𝑇
𝑘+1𝑦𝑘,

𝑞3 = 𝜃2‖𝑔𝑘+1‖2 + 𝜃3𝑔
𝑇
𝑘+1𝑠𝑘 + 𝑌 𝑔𝑇

𝑘+1𝑦𝑘.
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So the solution of (2.2) in three dimensional subspace Ω𝑘+1 = 𝑆𝑝𝑎𝑛{𝑔𝑘+1, 𝑠𝑘, 𝑦𝑘} is

𝑑𝑘+1 =
(︀
𝑔𝑘+1 𝑠𝑘 𝑦𝑘

)︀
𝑢𝑘+1.

However, there are three quantities in 𝐴𝑘+1 that need to be estimated appropriately in order to avoid matrix-
vector multiplication and improve efficiency, i.e. 𝜌𝑘+1, 𝜔𝑘 and 𝜏𝑘.

As a matter of fact, the estimate for 𝜌𝑘+1 is an essential procedure in the subspace method. Yuan and Stoer
[44] proposed two ways to calculate such quantities containing 𝐵𝑘+1, one of which is to obtain 𝐵𝑘+1 by using
the scaled memoryless BFGS formula. The approach of Dai and Kou [13] is to combine the Barzilai-Borwein [7]
idea by approximating the Hessian by (1/𝛼𝐵𝐵1

𝑘+1 )𝐼 or (1/𝛼𝐵𝐵2
𝑘+1 )𝐼, where

𝛼𝐵𝐵1
𝑘+1 =

‖𝑠𝑘‖2

𝑠𝑇
𝑘 𝑦𝑘

, 𝛼𝐵𝐵2
𝑘+1 =

𝑠𝑇
𝑘 𝑦𝑘

‖𝑦𝑘‖2
·

Here we adopt the idea of Li et al. [23], because it can guarantee some good properties.
Firstly, according to the analysis about (2.6), the positive definitiveness of 𝐴𝑘+1 is an essential condition

requiring |𝐴𝑘+1| > 0, it follows

𝜌𝑘+1 >
−𝜃1𝑔𝑇

𝑘+1𝑦𝑘 − 𝜃2𝜔𝑘

𝑋
· (2.9)

By setting 𝑋 = 𝑚𝑘𝑠
𝑇
𝑘 𝑦𝑘𝜏𝑘 with 𝑚𝑘 , 1− (𝑦𝑇

𝑘 𝑦𝑘)2

𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘

, we have

𝜌𝑘+1 >

[︃
(𝑔𝑇

𝑘+1𝑦𝑘)2

𝑠𝑇
𝑘 𝑦𝑘

+
𝜔2

𝑘

𝜏𝑘
− 2

𝑔𝑇
𝑘+1𝑦𝑘𝜔𝑘𝑦

𝑇
𝑘 𝑦𝑘

𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘

]︃
/𝑚𝑘 , 𝑛𝑘, (2.10)

if and only if 𝑚𝑘 is positive, which can be guaranteed by (2.15). Note that we define the right-hand side of
(2.10) as 𝑛𝑘. In addition, the positive definitiveness of 𝐴𝑘+1 also requires that its first and second order leading
principal minors are positive, and it means

𝜌𝑘+1 >
(𝑔𝑇

𝑘+1𝑦𝑘)2

𝑠𝑇
𝑘 𝑦𝑘

· (2.11)

Secondly, 𝐷𝑘+1 > 0 is also a necessary condition to keep the sufficient descent property, which follows

𝜌𝑘+1 >
𝑆𝑘

𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘

/𝑀𝑘, (2.12)

if 𝑀𝑘 > 0, where

𝑆𝑘 = −𝜃1𝑔𝑇
𝑘+1𝑦𝑘 − 𝜃2𝜔𝑘 − 𝑏𝑇𝑘+1𝑔𝑘+1(𝑋‖𝑔𝑘+1‖2 + 𝜃1𝑔

𝑇
𝑘+1𝑠𝑘 + 𝜃2𝑔

𝑇
𝑘+1𝑦𝑘)

− 𝑏𝑇𝑘+1𝑠𝑘(𝜃1‖𝑔𝑘+1‖2 − 𝜔2
𝑘𝑔

𝑇
𝑘+1𝑠𝑘 + 𝜔𝑘(𝑔𝑇

𝑘+1𝑦𝑘)2)

− 𝑏𝑇𝑘+1𝑦𝑘(𝜃2‖𝑔𝑘+1‖2 − (𝑔𝑇
𝑘+1𝑦𝑘)3 + 𝜔𝑘𝑔

𝑇
𝑘+1𝑦𝑘𝑔

𝑇
𝑘+1𝑠𝑘),

and

𝑀𝑘 = 1− (𝑦𝑇
𝑘 𝑦𝑘)2

𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘

+
1− 𝛾𝑘+1

𝛾𝑘+1

[︃
2
𝑔𝑇

𝑘+1𝑦𝑘𝑦
𝑇
𝑘 𝑦𝑘

𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘

−
𝑔𝑇

𝑘+1𝑠𝑘

𝑠𝑇
𝑘 𝑦𝑘

−
(𝑔𝑇

𝑘+1𝑦𝑘)2

𝑔𝑇
𝑘+1𝑠𝑘𝜏𝑘

]︃
·

Likewise, we define the right-hand side of (2.12) as 𝑁𝑘, i.e. 𝑁𝑘 ,
𝑆𝑘

𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘

/𝑀𝑘.
After the above discusssion, we can estimate 𝜌𝑘+1 as follows,

𝜌𝑘+1 = 𝜁𝑘 max{𝐾,𝑁𝑘, 𝑛𝑘}, (2.13)
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where 𝐾 = 𝐾1‖𝑔𝑘+1‖2,

𝐾1 = max

{︃
‖𝑦𝑘‖2

𝑠𝑇
𝑘 𝑦𝑘

, |1− 𝛾𝑘+1

𝛾𝑘+1
| ‖𝑔𝑘+1‖2

|𝑔𝑇
𝑘+1𝑠𝑘|

}︃
,

and

𝜁𝑘 =

{︃
max{0.9𝜁𝑘−1, 1.2}, if 𝛼𝑘 > 1.0,
min{1.1𝜁𝑘−1, 1.75}, otherwise,

with 𝜁0 = 1.5, it is obvious that 𝜁𝑘 ∈ [1.2, 1.75].
Observe the composition of (2.13), you can find that such a formula of 𝜌𝑘+1 is more than an estimate, but

can guarantee (2.10), (2.11) and (2.12). Besides, it makes 𝑑𝑘+1 a descent direction, which will be proved in
Section 4.

Then we estimate 𝜔𝑘 = 𝑔𝑇
𝑘+1𝐵𝑘+1𝑦𝑘 and 𝜏𝑘 = 𝑦𝑇

𝑘 𝐵𝑘+1𝑦𝑘. For 𝜔𝑘, we utilize the memoryless BFGS formula
to get 𝐵𝑘+1 so that

𝜔𝑘 = 𝑔𝑇
𝑘+1

(︂
𝐼 +

𝑦𝑘𝑦
𝑇
𝑘

𝑠𝑇
𝑘 𝑦𝑘

− 𝑠𝑘𝑠
𝑇
𝑘

𝑠𝑇
𝑘 𝑠𝑘

)︂
𝑦𝑘

= 𝑔𝑇
𝑘+1𝑦𝑘 +

𝑔𝑇
𝑘+1𝑦𝑘𝑦

𝑇
𝑘 𝑦𝑘

𝑠𝑇
𝑘 𝑦𝑘

−
𝑔𝑇

𝑘+1𝑠𝑘𝑠
𝑇
𝑘 𝑦𝑘

𝑠𝑇
𝑘 𝑠𝑘

· (2.14)

Then for 𝜏𝑘, we combine the idea of [13] and [23], and estimate 𝜏𝑘 by

𝜏𝑘 = 𝜁𝑘
‖𝑦𝑘‖2

𝑠𝑇
𝑘 𝑦𝑘

𝑦𝑇
𝑘 𝑦𝑘. (2.15)

Before computing 𝑑𝑘+1 by (2.3) and (2.8), we should verify the following conditions:

∆𝑘+1 ≥ 0, (2.16)
𝑀𝑘 ≥ 𝜌0, (2.17)

𝜉1 ≤
𝑠𝑇

𝑘 𝑦𝑘

‖𝑠𝑘‖2
≤ ‖𝑦𝑘‖2

𝑠𝑇
𝑘 𝑦𝑘

≤ 𝜉2, (2.18)⃒⃒⃒⃒
1− 𝛾𝑘+1

𝛾𝑘+1

⃒⃒⃒⃒
‖𝑔𝑘+1‖2

|𝑔𝑇
𝑘+1𝑠𝑘|

≤ 𝜉3, (2.19)

|𝐴𝑘+1|
𝑠𝑇

𝑘 𝑦𝑘𝜏𝑘𝜌𝑘+1
≥ 𝜉5, (2.20)

where 𝜌0 ∈ (0, 1) and 𝜉1, 𝜉2, 𝜉3, 𝜉5 are positive constants. (2.16) and (2.17) are fundamental premise of the conic
model (1.5) and relation (2.12), respectively. On the basis of the Barzilai-Borwein [7] idea, (2.18) might indicate
the suitable condition numbers of the approximation Hessian matrix. (2.19) is vital to guarantee the descent
property of the search direction. As for (2.20), obviously it makes 𝐴𝑘+1 more positive definite, and is also helpful
for establishing the sufficient descent property of the search direction.

Therefore, if (2.16)–(2.20) hold, we compute the search direction by (2.3) and (2.8).

Situation 2: 𝑑𝑖𝑚(Ω𝑘+1) = 2 or 1.
Li et al. [24] have made a deep study of the subspace conjugate gradient method based on conic model in

this case, here we refer to their works. When 𝑑𝑖𝑚(Ω𝑘+1) = 2, the search direction is formed by

𝑑𝑘+1 = 𝑡𝑔𝑘+1 + 𝜇𝑠𝑘,
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which is the same as (1.8). The formula of 𝑡 and 𝜇 is(︂
𝑡𝑘+1

𝜇𝑘+1

)︂
=

1
𝐷̄𝑘+1

(︂
−𝑐1
−𝑐2

)︂
, (2.21)

which is the same as (13) in [24]. Whether the search direction is computed by (1.8) and (2.21) depend on
whether the following conditions hold or not,

∆𝑘+1 ≥ 0, (2.22)
𝑚̄𝑘 ≥ 𝜌0, (2.23)

𝜉1 ≤
𝑠𝑇

𝑘 𝑦𝑘

‖𝑠𝑘‖2
≤ ‖𝑦𝑘‖2

𝑠𝑇
𝑘 𝑦𝑘

≤ 𝜉2, (2.24)⃒⃒⃒⃒
1− 𝛾𝑘+1

𝛾𝑘+1

⃒⃒⃒⃒
‖𝑔𝑘+1‖2

|𝑔𝑇
𝑘+1𝑠𝑘|

≤ 𝜉3, if
1− 𝛾𝑘+1

𝛾𝑘+1𝑔𝑇
𝑘+1𝑠𝑘

< 0, (2.25)

‖𝑔𝑘+1‖2‖𝑦𝑘‖‖𝑠𝑘‖
(𝑔𝑇

𝑘+1𝑠𝑘)2
≤ 𝜉4, if

1− 𝛾𝑘+1

𝛾𝑘+1𝑔𝑇
𝑘+1𝑠𝑘

≥ 0, (2.26)

where 𝜌0 ∈ (0, 1), 𝜉4 is a positive constant, 𝜉1, 𝜉2, 𝜉3 are identical to those in (2.18) and (2.19). If (2.16)–(2.20)
do not all hold but (2.22)–(2.26) hold, we compute the search direction by (1.8) and (2.21).

However, if any of the conditions (2.22)–(2.26) fails but (2.27) and (2.28) hold,

𝜗1 ≤
𝑠𝑇

𝑘 𝑦𝑘

‖𝑠𝑘‖2
, (2.27)

|𝑔𝑇
𝑘+1𝑦𝑘𝑔

𝑇
𝑘+1𝑑𝑘|

𝑑𝑇
𝑘 𝑦𝑘‖𝑔𝑘+1‖2

≤ 𝜗5, (2.28)

where 𝜗5 ∈ [0, 1) and 𝜗1 is a positive constant, we consider the HS direction,

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝐻𝑆
𝑘 𝑑𝑘. (2.29)

Therefore, there are two choices of search direction when 𝑑𝑖𝑚(Ω𝑘+1) = 2: one is to compute 𝑑𝑘+1 by (1.8)
and (2.21) if (2.22)–(2.26) hold; the other is to compute 𝑑𝑘+1 by (2.29) if (2.27) and (2.28) hold. Otherwise, we
use the negative gradient direction −𝑔𝑘+1 as our search direction, which means 𝑑𝑖𝑚(Ω𝑘+1) = 1.

2.2. Quadratic model

When (2.1) is satisfied, we consider the subproblem based on quadratic approximation model as follows:

min
𝑑∈Ω𝑘+1

𝜓𝑘+1(𝑑) = 𝑔𝑇
𝑘+1𝑑+

1
2
𝑑𝑇𝐵𝑘+1𝑑. (2.30)

There also exist three situations.

Situation 1: 𝑑𝑖𝑚(Ω𝑘+1) = 3.
Similar to the analysis in the first situation of Subsection 2.1, we substitute (2.3) into (2.30), then we have

min
(𝑡,𝜇,𝜈)

𝜓𝑘+1(𝑡, 𝜇, 𝜈) =⎛⎝‖𝑔𝑘+1‖2
𝑔𝑇

𝑘+1𝑠𝑘

𝑔𝑇
𝑘+1𝑦𝑘

⎞⎠𝑇 ⎛⎝ 𝑡𝜇
𝜈

⎞⎠+
1
2

⎛⎝ 𝑡𝜇
𝜈

⎞⎠𝑇 ⎛⎝ 𝜌𝑘+1 𝑔𝑇
𝑘+1𝑦𝑘 𝜔𝑘

𝑔𝑇
𝑘+1𝑦𝑘 𝑠𝑇

𝑘 𝑦𝑘 𝑦𝑇
𝑘 𝑦𝑘

𝜔𝑘 𝑦𝑇
𝑘 𝑦𝑘 𝜏𝑘

⎞⎠⎛⎝ 𝑡𝜇
𝜈

⎞⎠ . (2.31)
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Obviously, if 𝐴𝑘+1 is positive definite, we can easily obtain the solution of (2.31) as follows,⎛⎝ 𝑡𝑘+1

𝜇𝑘+1

𝜈𝑘+1

⎞⎠ = −𝐴−1
𝑘+1

⎛⎝‖𝑔𝑘+1‖2
𝑔𝑇

𝑘+1𝑠𝑘

𝑔𝑇
𝑘+1𝑦𝑘

⎞⎠
= − 1

|𝐴𝑘+1|

⎛⎝𝑋 𝜃1 𝜃2
𝜃1 𝜃 𝜃3
𝜃2 𝜃3 𝑌

⎞⎠⎛⎝‖𝑔𝑘+1‖2
𝑔𝑇

𝑘+1𝑠𝑘

𝑔𝑇
𝑘+1𝑦𝑘

⎞⎠
=

1
|𝐴𝑘+1|

⎛⎝−𝑞1−𝑞2
−𝑞3

⎞⎠ , (2.32)

in which 𝑞1, 𝑞2, 𝑞3 are the same as those in (2.8).
In Subsection 2.1, we adopt a special way to estimate 𝜌𝑘+1 because it can guarantee some important properties

while the conic approximation model is employed, but this method requires much computation as well as com-
parison. BBCG combining the Barzilai-Borwein idea is one of the efficient SMCG methods based on quadratic
model, especially BBCG3. Therefore, we take the approach similar to BBCG3 in the case that quadratic model
is selected. Actually, this approach has be mentioned before, that is the way we estimate 𝜏𝑘 in (2.15).

In (2.15), we use (‖𝑦𝑘‖2/𝑠𝑇
𝑘 𝑦𝑘)𝐼 to approximate the Hessian matrix and combine it with an adaptive parameter

𝜁𝑘. We do the same thing to 𝜌𝑘+1, hence we have the following formula,

𝜌𝑘+1 = 𝜁𝑘
‖𝑦𝑘‖2

𝑠𝑇
𝑘 𝑦𝑘

‖𝑔𝑘+1‖2. (2.33)

Likewise, it is reasonable to compute 𝜔𝑘 by the same way due to its similar formula to 𝜌𝑘+1, so we have

𝜔𝑘 = 𝜁𝑘
‖𝑦𝑘‖2

𝑠𝑇
𝑘 𝑦𝑘

𝑔𝑇
𝑘+1𝑦𝑘.

Obviously, such a choice of 𝜌𝑘+1 satisfies both 𝜌𝑘+1 > 0 and

𝜌𝑘+1 >
(𝑔𝑇

𝑘+1𝑦𝑘)2

𝑠𝑇
𝑘 𝑦𝑘

,

which means the first and second order leading principal minors of 𝐴𝑘+1 are both positive, so 𝐴𝑘+1 is positive
definite as long as its determinant is positive. We notice that |𝐴𝑘+1| = 𝜌𝑘+1𝑋 + 𝜃1𝑔

𝑇
𝑘+1𝑦𝑘 + 𝜃2𝜔𝑘, then through

calculation and simplification, we have

|𝐴𝑘+1| = 𝜌𝑘+1𝑠
𝑇
𝑘 𝑦𝑘𝜏𝑘 − 𝜌𝑘+1‖𝑦𝑘‖4 + 2𝑔𝑇

𝑘+1𝑦𝑘‖𝑦𝑘‖2𝜔𝑘 − (𝑔𝑇
𝑘+1𝑦𝑘)2𝜏𝑘 − 𝑠𝑇

𝑘 𝑦𝑘𝜔
2
𝑘

= 𝜌𝑘+1(𝜁𝑘 − 1)‖𝑦𝑘‖4 + (𝜁𝑘 − 𝜁2
𝑘)

(𝑔𝑇
𝑘+1𝑦𝑘)2‖𝑦𝑘‖4

𝑠𝑇
𝑘 𝑦𝑘

= 𝜁𝑘(𝜁𝑘 − 1)
‖𝑦𝑘‖4

𝑠𝑇
𝑘 𝑦𝑘

[‖𝑔𝑘+1‖2‖𝑦𝑘‖2 − (𝑔𝑇
𝑘+1𝑦𝑘)2]

= 𝜁𝑘(𝜁𝑘 − 1)
‖𝑦𝑘‖4

𝑠𝑇
𝑘 𝑦𝑘

[︃
1−

(𝑔𝑇
𝑘+1𝑦𝑘)2

‖𝑔𝑘+1‖2‖𝑦𝑘‖2

]︃
‖𝑔𝑘+1‖2‖𝑦𝑘‖2. (2.34)

From the above quality, we can know that 𝐴𝑘+1 is positive definite if and only if 𝑔𝑘+1 and 𝑦𝑘 are linearly
independent, which can be described as

(𝑔𝑇
𝑘+1𝑦𝑘)2

‖𝑔𝑘+1‖2‖𝑦𝑘‖2
< 1.
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Therefore, when the following conditions hold,

𝜗1 ≤
𝑠𝑇

𝑘 𝑦𝑘

‖𝑠𝑘‖2
≤ ‖𝑦𝑘‖2

𝑠𝑇
𝑘 𝑦𝑘

≤ 𝜗2, (2.35)

1−
(𝑔𝑇

𝑘+1𝑦𝑘)2

‖𝑔𝑘+1‖2‖𝑦𝑘‖2
≥ 𝜗3, (2.36)

‖𝑠𝑘‖2

‖𝑔𝑘+1‖2
≥ 𝜗4, (2.37)

we compute 𝑑𝑘+1 by (2.3) and (2.32), where 𝜗3 ∈ (0, 1) and 𝜗2, 𝜗4 are positive constants. (2.35) plays the
same role as (2.24). The relation (2.36) is essential to the positive definiteness of 𝐴𝑘+1 and the sufficient descent
property of 𝑑𝑘+1. (2.37) means that 𝑠𝑘 has an adaptive lower bound such that the objective function can descend
along 𝑠𝑘.

Situation 2: 𝑑𝑖𝑚(Ω𝑘+1) = 2 𝑜𝑟 1.
In this situation, due to the better numerical performance based on the subspace 𝑠𝑝𝑎𝑛{𝑔𝑘+1, 𝑠𝑘}, we only

consider the search direction formed by (1.8), then we add it into (2.30) and can obtain the prediction subproblem

min
(𝑡,𝜇)

𝜓𝑘+1(𝑡, 𝜇) =(︂
‖𝑔𝑘+1‖2
𝑔𝑇

𝑘+1𝑠𝑘

)︂𝑇 (︂
𝑡
𝜇

)︂
+

1
2

(︂
𝑡
𝜇

)︂𝑇 (︂
𝜌𝑘+1 𝑔𝑇

𝑘+1𝑦𝑘

𝑔𝑇
𝑘+1𝑦𝑘 𝑠𝑇

𝑘 𝑦𝑘

)︂(︂
𝑡
𝜇

)︂
. (2.38)

Here we still compute 𝜌𝑘+1 by (2.33), which leads to

|𝐴𝑘+1| = 𝜌𝑘+1𝑠
𝑇
𝑘 𝑦𝑘 − (𝑔𝑇

𝑘+1𝑦𝑘)2 > 0,

where

𝐴𝑘+1 =
(︂
𝜌𝑘+1 𝑔𝑇

𝑘+1𝑦𝑘

𝑔𝑇
𝑘+1𝑦𝑘 𝑠𝑇

𝑘 𝑦𝑘

)︂
,

so the problem (2.38) has unique solution; that is(︂
𝑡𝑘
𝜇𝑘

)︂
=

1
|𝐴𝑘+1|

(︂
𝑔𝑇

𝑘+1𝑦𝑘𝑔
𝑇
𝑘+1𝑠𝑘 − ‖𝑔𝑘+1‖2𝑠𝑇

𝑘 𝑦𝑘

‖𝑔𝑘+1‖2𝑔𝑇
𝑘+1𝑦𝑘 − 𝜌𝑘+1𝑔

𝑇
𝑘+1𝑠𝑘

)︂
. (2.39)

Moreover, due to the similarity between (2.21) and (2.39), the HS direction is still considered once the conditions
(2.27) and (2.28) hold.

Hence, the search direction 𝑑𝑘+1 is calculated by (1.8) and (2.39) if there only holds the condition (2.35) or
by (2.29) if (2.27) and (2.28) hold, Otherwise, we exploit the negative gradient direction as our search direction.

To sum up, the generated direction possesses several forms as follows:
when the approximation conic model is selected, i.e. (2.1) fails,

– 𝑑𝑘+1 is calculated by (2.3) and (2.8), if (2.16)–(2.20) hold,

– 𝑑𝑘+1 is calculated by (1.8) and (2.21), if (2.22)–(2.26) hold,

– 𝑑𝑘+1 is calculated by (2.29), if (2.27) and (2.28) hold;

when the approximation quadratic model is selected, i.e. (2.1) holds,

– 𝑑𝑘+1 is calculated by (2.3) and (2.32), if (2.35)–(2.37) hold,
– 𝑑𝑘+1 is calculated by (1.8) and (2.39), if only (2.35) holds,
– 𝑑𝑘+1 is calculated by (2.29), if (2.27) and (2.28) hold;

otherwise, 𝑑𝑘+1 = −𝑔𝑘+1.
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3. The stepsize and algorithm

In the last section, we have derived the calculations of search direction, but it is not enough for a iterative
formula to solve optimization problem. This section will present the obtainment of another essential ingredient
for a iterative formula, i.e. stepsize, which will be divided into two parts: the choice of initial stepsize and the
line search procedure. And then the whole algorithm will be detailed.

3.1. strategy for the initial stepsize

It is generally acknowledged that the initial stepsize is of great significance for a optimization method,
especially for conjugate gradient method. For Newton and quasi-Newton methods, the choice of the initial trial
stepsize may always be unit step 𝛼0 = 1. However, it is different for methods that do not produce well scaled
search directions, such as the steepest descent or the conjugate gradient methods. Thus, it is significant to make
a reasonable initial guess of the stepsize by considering the current information about the objective function
and algorithm for such methods [4,29]. Many strategies of the initial stepsize have been proposed which can be
referred to [12,21,27,29].

In the strategy of [12], Dai and Kou presented a condition,

|𝜙𝑘+1(𝛼0
𝑘+1)− 𝜙𝑘+1(0)|

𝜀1 + |𝜙𝑘+1(0)|
≤ 𝜀2, (3.1)

where 𝜀1, 𝜀2 are small positive constants, 𝛼0
𝑘+1 denotes the initial trial stepsize, and 𝜙𝑘+1(𝛼) = 𝑓(𝑥𝑘+1 +𝛼𝑑𝑘+1).

If (3.1) holds, it implies that the points 𝑥𝑘+1 + 𝛼0
𝑘+1𝑑𝑘+1 and 𝑥𝑘+1 are not far away from each other, so

it is reasonable to use the minimizer of 𝑞(𝜙𝑘+1(0), 𝜙
′

𝑘+1(0), 𝜙𝑘+1(𝛼0
𝑘+1)) as the new initial stepsize, where

𝑞(𝜙𝑘+1(0), 𝜙
′

𝑘+1(0), 𝜙𝑘+1(𝛼0
𝑘+1)) is the quadratic interpolation function for 𝜙𝑘+1(0), 𝜙

′

𝑘+1(0) and 𝜙𝑘+1(𝛼0
𝑘+1),

and 𝜙
′

𝑘+1(0) denotes the first derivative of 𝜙𝑘+1(0).
In this paper, the selection of the initial stepsize has two parts depending on whether the negative gradient

direction is adopted or not, and is presented via modification of that in [26].
When the search direction is negative gradient direction, according to the analysis of [27], it is desirable to

take the initial trial stepsize by

¯̄𝛼𝑘+1 =

{︃
max{min{𝑠𝑇

𝑘 𝑦𝑘/‖𝑦𝑘‖2, 𝜆max}, 𝜆min}, if 𝑔𝑇
𝑘+1𝑠𝑘 > 0,

max{min{‖𝑠𝑘‖2/𝑠𝑇
𝑘 𝑦𝑘, 𝜆max}, 𝜆min}, if 𝑔𝑇

𝑘+1𝑠𝑘 ≤ 0,
(3.2)

where 𝜆min and 𝜆max are two positive constants controlling the initial stepsize within the interval [𝜆min, 𝜆max]
which is preferable in numerical experiments.

Andrei [2] thinks that the higher accurate the step length is, the faster convergence a conjugate gradient
algorithm possesses, so it makes sense to verify if the initial trial stepsize ¯̄𝛼𝑘+1 satisfies (3.1) or not. If so and
𝑑𝑘 ̸= −𝑔𝑘, ‖𝑔𝑘+1‖2 ≤ 1, we update the initial stepsize by

𝛼̃𝑘+1 = max{min{ ˜̃𝛼𝑘+1, 𝜆max}, 𝜆min},

where
˜̃𝛼𝑘+1 = arg min 𝑞(𝜙𝑘+1(0), 𝜙

′

𝑘+1(0), 𝜙𝑘+1( ¯̄𝛼𝑘+1)).

Therefore, the initial stepsize for the negative gradient direction is

𝛼0
𝑘+1 =

{︃
𝛼̃𝑘+1, if (3.1) holds, 𝑑𝑘 ̸= −𝑔𝑘, ‖𝑔𝑘+1‖2 < 1 and ˜̃𝛼𝑘+1 > 0,
¯̄𝛼𝑘+1, otherwise.

(3.3)
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When it comes to the search direction that is not negative gradient direction, the similarity between the
calculation of our direction and that in quasi-Newton methods implies that the unit stepsize 𝛼0

𝑘+1 = 1 might
be a reasonable initial trial stepsize. Again we figure out the minimizer of the quadratic interpolation function

𝛼̄𝑘+1 = arg min 𝑞(𝜙𝑘+1(0), 𝜙
′

𝑘+1(0), 𝜙𝑘+1(1)).

If 𝛼0
𝑘+1 = 1 satisfies (3.1) and 𝛼̄𝑘+1 > 0, we update the initial stepsize by

𝛼̂𝑘+1 = max{min{𝛼̄𝑘+1, 𝜆max}, 𝜆min}.

Therefore, the initial stepsize for the search direction except negative gradient direction is

𝛼0
𝑘+1 =

{︃
𝛼̂𝑘+1, if (3.1) holds and 𝛼̄𝑘+1 > 0,
1, otherwise.

(3.4)

3.2. the nonmonotone line search

For the variable 𝜂𝑘 in ZH line search, Zhang and Hager [45] proved that if 𝜂max = 1, then the generated
sequence {𝑥𝑘} only has the property that

lim inf
𝑘→∞

‖𝑔𝑘‖ = 0.

Liu and Liu [27] presented a formula of 𝜂𝑘

𝜂𝑘 =

{︃
𝑐, mod (𝑘, 𝑛) = 𝑛− 1,
1, mod (𝑘, 𝑛) ̸= 𝑛− 1,

where 0 < 𝑐 < 1 and mod(𝑘, 𝑛) denotes the residue for 𝑘 modulo 𝑛, and resulted in a better convergence.
Referring to the above study, Li et al. [24] and Sun et al. [36] made some modification so that the improved

line search is more appropriate for their algorithms.
In order to gain the decent convergence result and performance, this paper adopts the improved ZH line

search used in [36]. To be specific, we set

𝐶𝑘+1 =

{︃
𝑓𝑘+1 + min{1, 0.9(𝐶𝑘 − 𝑓𝑘+1)}, 𝑘 < 3,
[𝜂𝑘𝑄𝑘𝐶𝑘 + 𝑓(𝑥𝑘+1)]/𝑄𝑘+1, 𝑘 ≥ 3,

(3.5)

𝑄𝑘+1 =

{︃
4, 𝑘 = 2,
𝜂𝑘𝑄𝑘 + 1, 𝑘 ≥ 3,

(3.6)

where

𝜂𝑘 =

{︃
𝜂, mod (𝑘, 𝑛) = 0,
1, mod (𝑘, 𝑛) ̸= 0,

(3.7)

where 𝜂 = 0.9999.

3.3. Algorithm

In this subsection, we will detail our three-dimensional subspace method based on conic model for uncon-
strained optimization.

Before presenting out algorithm, we introduce a significant strategy in conjugate gradient method, restart. A
restart strategy means that the search direction is recalculated by the restart direction when restart criterion
is satisfied. A typical one is to reset the direction to the steepest descent direction every n iterations, since the
direction after n steps is no longer conjugate for general non-quadratic function. Crowder and Wolfe [10] proved
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that the standard conjugate gradient method without restart reaches at most linear convergence. Yuan [41] also
showed that the convergence rate of conjugate gradient method without restart is exactly linear for uniformly
convex quadratics. However, the convergence rate of conjugate gradient method which is restarted with the
negative gradient direction every n steps may be improved from linear to n-step quadratic [9, 28]. In addition,
Beale [8] proposed such restart technique that the restart direction is a combination of the negative gradient and
the previous search directions which includes the second-order derivative information achieved by the search
along the previous directions. Powell [31] introduced a new restart criterion implemented with Beale’s method
and obtained satisfactory numerical results. Considering an idea of Powell, Dai, Liao and Li [14] presented a
new restart technique and designed two conjugate gradient methods based on this technique.

Algorithm 1 TSCG Conic
Require: initial point 𝑥0, initial stepsize 𝛼0

0, positive constants 𝜖, 𝜖1, 𝜖2, 0 < 𝛿 < 𝜎 < 1, 𝜉1, 𝜉2, 𝜉3, 𝜉4, 𝜉5, 𝜗1, 𝜗2, 𝜗3 ∈
(0, 1), 𝜗4, 𝜗5 ∈ [0, 1), 𝜌0, 𝜌0 ∈ (0, 1), 𝜆1, 𝜆2, 𝜆min, 𝜆max

Ensure: optimal 𝑥*

1: set MaxRestart:=4n, IterRestart:=0, IterQuad:=0, MinQuad:=3, Numnongrad:=0, 𝐶0 = 𝑓0, 𝑑0 = −𝑔0 and 𝑘 := 0.
2: if ‖𝑔0‖∞ ≤ 𝜖, stop.
3: calculate the stepsize 𝛼𝑘 by (1.5) and (1.6) with 𝛼0

𝑘.
4: update 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘. If ‖𝑔𝑘+1‖∞ ≤ 𝜖, stop; otherwise, let IterRestart:=IterRestart+1. If |𝑟𝑘 − 1| ≤ 10−9,

IterQuad:=IterQuad+1; else, IterQuad:=0.
5: calculate the search direction 𝑑𝑘+1. If Numnongrad=MaxRestart, or (IterQuad=MinQuad and IterRestart
̸=IterQuad), go to 5.6; else if the condition (2.1) holds, or the conditions

(𝑠𝑇
𝑘 𝑦𝑘)2 ≤ 10−6‖𝑠𝑘‖2‖𝑦𝑘‖2 and ‖𝑠𝑘‖2 ≥ 1.5

hold, go to 5.1; else, go to 5.3.
5.1: if conditions (2.35)–(2.37) hold, compute 𝑑𝑘+1 by (2.3) and (2.32), set Numnongrad:=Numnongrad+1; else, go

to 5.2.
5.2: if condition (2.35) holds, compute 𝑑𝑘+1 by (1.8) and (2.39), set Numnongrad:=Numnongrad+1; else, go to 5.5.
5.3: if conditions (2.16)–(2.20) hold, compute 𝑑𝑘+1 by (2.3) and (2.8), set Numnongrad:=Numnongrad+1; else, go to

5.4.
5.4: if conditions (2.22)–(2.26) hold, compute 𝑑𝑘+1 by (1.8) and (2.21), set Numnongrad:=Numnongrad+1; else, go

to 5.5.
5.5: if conditions (2.27) and (2.28) hold, compute 𝑑𝑘+1 by (2.29), set Numnongrad:=Numnongrad+1; else, go to 5.6.
5.6: compute 𝑑𝑘+1 = −𝑔𝑘+1, set Numnongrad:=0 and IterRestart:=0.

6: if 𝑑𝑘+1 = −𝑔𝑘+1, calculate 𝛼0
𝑘+1 by (3.3); otherwise, calculate 𝛼0

𝑘+1 by (3.4).
7: update 𝑄𝑘+1 and 𝐶𝑘+1 by (3.5) and (3.6) with (3.7).
8: set 𝑘 := 𝑘 + 1, go to line 3.

In this paper, we incorporate a special restart technique proposed by Dai and Kou [12]. They defined a
quantity

𝑟𝑘 =
2(𝑓𝑘+1 − 𝑓𝑘)

𝛼𝑘(𝑔𝑇
𝑘 𝑑𝑘 + 𝑔𝑇

𝑘+1𝑑𝑘)
,

where 𝑓𝑘+1 = 𝜙𝑘(𝛼𝑘) and 𝑓𝑘 = 𝜙𝑘(0). If 𝑟𝑘 is close to 1, they think that the line search function 𝜙𝑘 is close
to some quadratic function. According to their analysis, the exact approach of this quantity is that if there are
continuously many iterations such that 𝑟𝑘 is close to 1, we restart the algorithm with the negative gradient
direction. In addition, if the number of the iterations since the last restart reaches the MaxRestart threshold,
we also restart out algorithm.

The details of the three-dimensional subspace conjugate gradient method based on conic model are given as
Algorithm 1.
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In the line 5 of Algorithm 1, the conditions [24]

(𝑠𝑇
𝑘 𝑦𝑘)2 ≤ 10−6‖𝑠𝑘‖2‖𝑦𝑘‖2 and ‖𝑠𝑘‖2 ≥ 1.5

indicate that a problem seems to be ill-conditioned and the current iterative point is far away from the minimizer
of the problem, which might lead to the inaccuracy of information. Thus, a quadratic model is more reliable to
approximate the objective function under this circumstance.

4. Theoretical results

In this section, we will prove some important properties of the generated algorithm, including the sufficient
descent property and global convergence property.

4.1. Properties of the search direction

This subsection will make deep discussion on the search directions generated by our algorithm under every
situation. At first, we propose two assumptions as follows.

Assumption 4.1. The objective function 𝑓(𝑥) is continuously differentiable and bounded from below on R𝑛.

Assumption 4.2. The gradient function 𝑔(𝑥) is Lipschitz continuous on the level set 𝐷 = {𝑥 ∈ R𝑛 : 𝑓(𝑥) ≤
𝑓(𝑥0)}, which means that there exists a positive constant 𝐿 > 0 satisfying

‖𝑔(𝑥)− 𝑔(𝑦)‖ ≤ 𝐿‖𝑥− 𝑦‖, ∀𝑥, 𝑦 ∈ 𝐷,

which implies that ‖𝑦𝑘‖ ≤ 𝐿‖𝑠𝑘‖.

Next, we can prove some properties of the search directions.

Lemma 4.3. For the search direction 𝑑𝑘+1 calculated by TSCG Conic, there exists a constant 𝜅1 > 0 such that

𝑔𝑇
𝑘+1𝑑𝑘+1 ≤ −𝜅1‖𝑔𝑘+1‖2. (4.1)

Proof. We will discuss in several parts based on different situations and different approximation models.

Case I. if the negative direction is adopted, i.e. 𝑑𝑘+1 = −𝑔𝑘+1, then

𝑔𝑇
𝑘+1𝑑𝑘+1 = −‖𝑔𝑘+1‖2 ≤ −

1
2
‖𝑔𝑘+1‖2.

Case II. if 𝑑𝑘+1 is determined by (2.29), i.e. the HS direction, combining (2.28), then we have

𝑔𝑇
𝑘+1𝑑𝑘+1 = −‖𝑔𝑘+1‖2 + 𝛽𝐻𝑆

𝑘 𝑔𝑇
𝑘+1𝑑𝑘

≤ −‖𝑔𝑘+1‖2 +
|𝑔𝑇

𝑘+1𝑦𝑘𝑔
𝑇
𝑘+1𝑑𝑘|

𝑑𝑇
𝑘 𝑦𝑘

≤ −‖𝑔𝑘+1‖2 + 𝜗5‖𝑔𝑘+1‖2

= −(1− 𝜗5)‖𝑔𝑘+1‖2.

Case III(conic). if 𝑑𝑘+1 is calculated by (1.8) and (2.21), Li et al. [24] have proved that

𝑔𝑇
𝑘+1𝑑𝑘+1 ≤ −𝜅̄‖𝑔𝑘+1‖2,

where

𝜅̄ = min
{︂

𝜌0

(8− 6𝜌0 max{𝜉2, 𝜉4})
,

1
6𝑐

}︂
,

and 𝑐 is a positive constant.
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Case IV(conic). when 𝑑𝑘+1 is obtained by (2.3) and (2.8), we have

𝑔𝑇
𝑘+1𝑑𝑘+1 =

⎛⎝‖𝑔𝑘+1‖2
𝑔𝑇

𝑘+1𝑠𝑘

𝑔𝑇
𝑘+1𝑦𝑘

⎞⎠𝑇 ⎛⎝ 𝑡𝑘+1

𝜇𝑘+1

𝜈𝑘+1

⎞⎠
= − 1

𝐷𝑘+1

⎛⎝‖𝑔𝑘+1‖2
𝑔𝑇

𝑘+1𝑠𝑘

𝑔𝑇
𝑘+1𝑦𝑘

⎞⎠𝑇 ⎛⎝𝑋 𝜃1 𝜃2
𝜃1 𝜃 𝜃3
𝜃2 𝜃3 𝑌

⎞⎠⎛⎝‖𝑔𝑘+1‖2
𝑔𝑇

𝑘+1𝑠𝑘

𝑔𝑇
𝑘+1𝑦𝑘

⎞⎠
= −‖𝑔𝑘+1‖4

𝐷𝑘+1
ℎ(𝑥, 𝑦),

where 𝑥 , 𝑔𝑇
𝑘+1𝑦𝑘

‖𝑔𝑘+1‖2 , 𝑦 , 𝑔𝑇
𝑘+1𝑠𝑘

‖𝑔𝑘+1‖2 . And ℎ(𝑥, 𝑦) is a binary quadratic function of 𝑥 and 𝑦 which
can be expressed as

ℎ(𝑥, 𝑦) = 𝑌 𝑥2 + 2𝜃3𝑥𝑦 + 𝜃𝑦2 + 2𝜃2𝑥+ 2𝜃1𝑦 +𝑋.

It is easy to acquire the Hessian of ℎ(𝑥, 𝑌 )

𝐻ℎ =
(︂

2𝑌 2𝜃3
2𝜃3 2𝜃

)︂
,

we have 𝑌 > 0 because 𝐴𝑘+1 is positive definite, and the determinant of 𝐻ℎ

4𝑌 𝜃 − 4𝜃23 = 4𝜌𝑘+1|𝐴𝑘+1|,

is also positive, so ℎ(𝑥, 𝑦) has a minimizer, that is

ℎ(𝑥, 𝑦)min =
|𝐴𝑘+1|
𝜌𝑘+1

·

Therefore, we can get

𝑔𝑇
𝑘+1𝑑𝑘+1 ≤ −

‖𝑔𝑘+1‖4

𝐷𝑘+1
ℎ(𝑥, 𝑦)min ≤ −

|𝐴𝑘+1|
𝐷𝑘+1𝜌𝑘+1

‖𝑔𝑘+1‖4. (4.2)

Because 𝜌𝑘+1, 𝐷𝑘+1 and |𝐴𝑘+1| are all positive, we just need to seek for the lower bound of
|𝐴𝑘+1|

𝐷𝑘+1𝜌𝑘+1
‖𝑔𝑘+1‖2. Since 𝐷𝑘+1 contains 𝜌𝑘+1, we first prove that 𝜌𝑘+1 has an upper bound;

that is the upper bounds of 𝑁𝑘, 𝑛𝑘 and 𝐾.
For 𝑁𝑘, we use Cauchy inequality and can get

|𝑁𝑘| = | 𝑆𝑘

𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘

|/𝑀𝑘

≤

[︃
|1− 𝛾𝑘+1

𝛾𝑘+1
|

(︃
‖𝑔𝑘+1‖4

|𝑔𝑇
𝑘+1𝑠𝑘|

+ 4
‖𝑔𝑘+1‖4‖𝑦𝑘‖4

|𝑔𝑇
𝑘+1𝑠𝑘|𝑠𝑇

𝑘 𝑦𝑘𝜏𝑘
+ 4

‖𝑔𝑘+1‖2‖𝑦𝑘‖2|𝜔𝑘|
𝑠𝑇

𝑘 𝑦𝑘𝜏𝑘

+2
‖𝑔𝑘+1‖3‖𝑦𝑘‖

𝑠𝑇
𝑘 𝑦𝑘

+ 2
‖𝑔𝑘+1‖3‖𝑦𝑘‖|𝜔𝑘|
|𝑔𝑇

𝑘+1𝑠𝑘|𝜏𝑘
+
‖𝑔𝑘+1‖‖𝑠𝑘‖𝜔2

𝑘

𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘

)︃

+
‖𝑔𝑘+1‖2‖𝑦𝑘‖2

𝑠𝑇
𝑘 𝑦𝑘

+
𝜔2

𝑘

𝜏𝑘
+ 2

‖𝑔𝑘+1‖‖𝑦𝑘‖3|𝜔𝑘|
𝑠𝑇

𝑘 𝑦𝑘𝜏𝑘

]︂
/𝑀𝑘,
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combining (2.14), (2.15) and using cauchy inequality again, we have

|𝑁𝑘| ≤
1
𝑀𝑘

‖𝑔𝑘+1‖2
[︃
|1− 𝛾𝑘+1

𝛾𝑘+1
|

(︃
‖𝑔𝑘+1‖2

|𝑔𝑇
𝑘+1𝑠𝑘|

+ 4
‖𝑔𝑘+1‖2

|𝑔𝑇
𝑘+1𝑠𝑘|

+ 4
2 + 𝜉2
𝜁𝑘

‖𝑔𝑘+1‖
‖𝑦𝑘‖

+2
‖𝑔𝑘+1‖‖𝑦𝑘‖

𝑠𝑇
𝑘 𝑦𝑘

+ 2
2 + 𝜉2
𝜁𝑘

𝑠𝑇
𝑘 𝑦𝑘

‖𝑦𝑘‖2
‖𝑔𝑘+1‖2

|𝑔𝑇
𝑘+1𝑠𝑘|

+
(2 + 𝜉2)2

𝜁𝑘

‖𝑔𝑘+1‖‖𝑠𝑘‖
‖𝑦𝑘‖2

)︃

+
‖𝑦𝑘‖2

𝑠𝑇
𝑘 𝑦𝑘

+
(2 + 𝜉2)2

𝜁𝑘

𝑠𝑇
𝑘 𝑦𝑘

‖𝑦𝑘‖2
+ 2

2 + 𝜉2
𝜁𝑘

]︂
·

Under condition (2.18), we have ‖𝑦𝑘‖‖𝑠𝑘‖
𝑠𝑇

𝑘 𝑦𝑘
≤
√︁

𝜉2
𝜉1

, ‖𝑠𝑘‖
‖𝑦𝑘‖ ≤

1
𝜉1

and

‖𝑔𝑘+1‖‖𝑦𝑘‖
𝑠𝑇

𝑘 𝑦𝑘
=
‖𝑔𝑘+1‖‖𝑦𝑘‖|𝑔𝑇

𝑘+1𝑠𝑘|
𝑠𝑇

𝑘 𝑦𝑘|𝑔𝑇
𝑘+1𝑠𝑘|

≤ ‖𝑦𝑘‖‖𝑠𝑘‖
𝑠𝑇

𝑘 𝑦𝑘

‖𝑔𝑘+1‖2

|𝑔𝑇
𝑘+1𝑠𝑘|

,

in the same way,
‖𝑔𝑘+1‖
‖𝑦𝑘‖

≤ ‖𝑠𝑘‖
‖𝑦𝑘‖

‖𝑔𝑘+1‖2

|𝑔𝑇
𝑘+1𝑠𝑘|

·

Note that 𝜁𝑘 ≥ 1, the above inequality of |𝑁𝑘| can be simplified to

|𝑁𝑘| ≤
1
𝑀𝑘

‖𝑔𝑘+1‖2
[︂
|1− 𝛾𝑘+1

𝛾𝑘+1
|
(︂

5 + 4(2 + 𝜉2)
‖𝑠𝑘‖
‖𝑦𝑘‖

+ 2
‖𝑦𝑘‖‖𝑠𝑘‖
𝑠𝑇

𝑘 𝑦𝑘

+2(2 + 𝜉2)
𝑠𝑇

𝑘 𝑦𝑘

‖𝑦𝑘‖2
+ (2 + 𝜉2)2

‖𝑠𝑘‖2

‖𝑦𝑘‖2

)︂
‖𝑔𝑘+1‖2

|𝑔𝑇
𝑘+1𝑠𝑘|

+
(︂

1 + (2 + 𝜉2)
𝑠𝑇

𝑘 𝑦𝑘

‖𝑦𝑘‖2

)︂2 ‖𝑦𝑘‖2

𝑠𝑇
𝑘 𝑦𝑘

]︃
.

Utilizing conditions (2.17)–(2.19) and the expression of 𝐾, we can obtain the upper bound
of 𝑁𝑘,

|𝑁𝑘| ≤
‖𝑔𝑘+1‖2

𝑀𝑘

[︃(︂
2 + 𝜉2
𝜉1

+ 1
)︂2 ‖𝑦𝑘‖2

𝑠𝑇
𝑘 𝑦𝑘

+

(︃
(2 + 𝜉2)2

𝜉21
+ 6

(2 + 𝜉2)
𝜉1

+ 2

√︃
𝜉2
𝜉1

+ 5

)︃
|1− 𝛾𝑘+1

𝛾𝑘+1
| ‖𝑔𝑘+1‖2

|𝑔𝑇
𝑘+1𝑠𝑘|

]︃

≤ 1
𝜌0

(︃
2

(2 + 𝜉2)2

𝜉21
+ 8

(2 + 𝜉2)
𝜉1

+ 2

√︃
𝜉2
𝜉1

+ 6

)︃
𝐾1‖𝑔𝑘+1‖2

=

(︃
2

(2 + 𝜉2)2

𝜉21
+ 8

(2 + 𝜉2)
𝜉1

+ 2

√︃
𝜉2
𝜉1

+ 6

)︃
𝐾

𝜌0
·

Next, the upper bound of 𝑛𝑘 is acquired by the same way,

|𝑛𝑘| ≤
1
𝑚𝑘

‖𝑔𝑘+1‖2
(︂
‖𝑦𝑘‖2

𝑠𝑇
𝑘 𝑦𝑘

+
(2 + 𝜉2)2

𝜁𝑘

𝑠𝑇
𝑘 𝑦𝑘

‖𝑦𝑘‖2
+ 2

(2 + 𝜉2)
𝜁𝑘

)︂
≤ 1
𝑚𝑘

‖𝑔𝑘+1‖2
(︂

1 + (2 + 𝜉2)
𝑠𝑇

𝑘 𝑦𝑘

‖𝑦𝑘‖2

)︂2 ‖𝑦𝑘‖2

𝑠𝑇
𝑘 𝑦𝑘

≤ 1
1− 1

𝜁𝑘

(𝜉1 + 𝜉2 + 2)2

𝜉21
𝐾1‖𝑔𝑘+1‖2

≤ 6
(𝜉1 + 𝜉2 + 2)2

𝜉21
𝐾.
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For 𝐾1, it is easy to know that

𝐾1 ≤ max{𝜉2, 𝜉3}.

Through the above discussion, now we can give the upper bound of 𝜌𝑘+1,

𝜌𝑘+1 = 𝜁𝑘 max{𝐾,𝑁𝑘, 𝑛𝑘}
≤ 2𝐾1‖𝑔𝑘+1‖2×

max{(2(2 + 𝜉2)2

𝜉21
+ 8

(2 + 𝜉2)
𝜉1

+ 2

√︃
𝜉2
𝜉1

+ 6)/𝜌0, 6
(𝜉1 + 𝜉2 + 2)2

𝜉21
}

≤ 2 max{𝜉2, 𝜉3}‖𝑔𝑘+1‖2×

max{(2(2 + 𝜉2)2

𝜉21
+ 8

(2 + 𝜉2)
𝜉1

+ 2

√︃
𝜉2
𝜉1

+ 6)/𝜌0, 6
(𝜉1 + 𝜉2 + 2)2

𝜉21
},

for convenience, we define

𝐿0 , 2 max{(2(2 + 𝜉2)2

𝜉21
+ 8

(2 + 𝜉2)
𝜉1

+ 2

√︃
𝜉2
𝜉1

+ 6)/𝜌0, 6
(𝜉1 + 𝜉2 + 2)2

𝜉21
}max{𝜉2, 𝜉3},

namely, 𝜌𝑘+1 ≤ 𝐿0‖𝑔𝑘+1‖2.
Since we have found the upper bound of 𝜌𝑘+1, then it turns to that of 𝐷𝑘+1. According to
(2.12), 𝐷𝑘 can be expressed as

𝐷𝑘+1 = 𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘𝜌𝑘+1𝑀𝑘 − 𝑆𝑘 = 𝑠𝑇

𝑘 𝑦𝑘𝜏𝑘(𝑀𝑘𝜌𝑘+1 −𝑀𝑘𝑁𝑘). (4.3)

Using the formula of 𝑀𝑘 and the upper bounds of 𝜌𝑘+1, we have

|𝐷𝑘+1| ≤ ‖𝑔𝑘+1‖2𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘

[︂
𝐿0 + 𝐿0

‖𝑦𝑘‖4

𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘

+ 𝐿0|
1− 𝛾𝑘+1

𝛾𝑘+1
|
(︂

2
‖𝑔𝑘+1‖‖𝑦𝑘‖3

𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘

+
‖𝑔𝑘+1‖‖𝑠𝑘‖

𝑠𝑇
𝑘 𝑦𝑘

+
‖𝑔𝑘+1‖2‖𝑦𝑘‖2

|𝑔𝑘+1𝑠𝑘|𝜏𝑘

)︂
+
𝑀𝑘|𝑁𝑘|
‖𝑔𝑘+1‖2

]︂
.

Because

‖𝑔𝑘+1‖‖𝑦𝑘‖3

𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘

=
‖𝑔𝑘+1‖‖𝑦𝑘‖3|𝑔𝑘+1𝑠𝑘|
𝑠𝑇

𝑘 𝑦𝑘𝜏𝑘|𝑔𝑘+1𝑠𝑘|
≤ ‖𝑠𝑘‖
‖𝑦𝑘‖

‖𝑔𝑘+1‖2

|𝑔𝑘+1𝑠𝑘|
,

‖𝑔𝑘+1‖‖𝑠𝑘‖
𝑠𝑇

𝑘 𝑦𝑘
=
‖𝑔𝑘+1‖‖𝑠𝑘‖|𝑔𝑘+1𝑠𝑘|

𝑠𝑇
𝑘 𝑦𝑘|𝑔𝑘+1𝑠𝑘|

≤ ‖𝑠𝑘‖2

𝑠𝑇
𝑘 𝑦𝑘

‖𝑔𝑘+1‖2

|𝑔𝑘+1𝑠𝑘|
,

and with the upper bound of 𝑁𝑘, the above inequality of 𝐷𝑘+1 can be simplified to

𝐷𝑘+1 ≤ ‖𝑔𝑘+1‖2𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘

[︂
2𝐿0 + 𝐿0

(︂
2
‖𝑠𝑘‖
‖𝑦𝑘‖

+
‖𝑠𝑘‖2

𝑠𝑇
𝑘 𝑦𝑘

+
𝑠𝑇

𝑘 𝑦𝑘

‖𝑦𝑘‖2

)︂
|1− 𝛾𝑘+1

𝛾𝑘+1
| ‖𝑔𝑘+1‖2

|𝑔𝑘+1𝑠𝑘|

+(4
𝜉2
𝜉1

+ 6

√︃
𝜉2
𝜉1

+ 16)𝐾1

]︃
.



792 G. WANG ET AL.

Finally, using (2.18) and (2.19), we can get

𝐷𝑘+1 ≤ ‖𝑔𝑘+1‖2𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘

[︃
2𝐿0 + (4

𝐿0

𝜉1
+ 4

𝜉2
𝜉1

+ 6

√︃
𝜉2
𝜉1

+ 16)𝐾1

]︃

≤ ‖𝑔𝑘+1‖2𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘

[︃
2𝐿0 + (4

𝐿0

𝜉1
+ 4

𝜉2
𝜉1

+ 6

√︃
𝜉2
𝜉1

+ 16) max{𝜉2, 𝜉3}

]︃
≤ 𝐿1‖𝑔𝑘+1‖2𝑠𝑇

𝑘 𝑦𝑘𝜏𝑘, (4.4)

where

𝐿1 ,

[︃
2𝐿0 + (4

𝐿0

𝜉1
+ 4

𝜉2
𝜉1

+ 6

√︃
𝜉2
𝜉1

+ 16) max{𝜉2, 𝜉3}

]︃
.

With (2.20), (4.2) and (4.4), the sufficient descent property of 𝑑𝑘+1 under this case can be
established by

𝑔𝑇
𝑘+1𝑑𝑘+1 ≤ −

𝜉5
𝐿1
‖𝑔𝑘+1‖2.

Case V(quadratic). when 𝑑𝑘+1 is calculated by (2.3) and (2.32), or by (1.8) and (2.39), we can prove that

𝑔𝑇
𝑘+1𝑑𝑘+1 ≤ −

‖𝑔𝑘+1‖4

𝜌𝑘+1
· (4.5)

Firstly, if 𝑑𝑘+1 is generated by (1.8) and (2.39), the proof can be referred to [13].
Secondly, if 𝑑𝑘+1 is generated by (2.3) and (2.32), we can take the same approach as last
case to obtain

𝑔𝑇
𝑘+1𝑑𝑘+1 = −‖𝑔𝑘+1‖4

|𝐴𝑘+1|
ℎ(𝑥, 𝑦).

Since we have figured out that

ℎ(𝑥, 𝑦)min =
|𝐴𝑘+1|
𝜌𝑘+1

,

it is obvious that

𝑔𝑇
𝑘+1𝑑𝑘+1 ≤ −

‖𝑔𝑘+1‖4

𝜌𝑘+1
·

With the property (4.5), we are able to give the upper bound of 𝑔𝑘+1𝑑𝑘+1 by finding the
upper bound of 𝜌𝑘+1. Based on the expression of 𝜁𝑘 and (2.33), it is easy to get

𝜌𝑘+1 = 𝜁𝑘
‖𝑦𝑘‖2

𝑠𝑇
𝑘 𝑦𝑘

‖𝑔𝑘+1‖2 ≤ 2𝜗2‖𝑔𝑘+1‖2. (4.6)

Combining it with (4.5), we finally have

𝑔𝑇
𝑘+1𝑑𝑘+1 ≤ −

1
2𝜗2

‖𝑔𝑘+1‖2.

After the above discussion, we can prove that there exists a constant 𝜅1 such that

𝑔𝑇
𝑘+1𝑑𝑘+1 ≤ −𝜅1‖𝑔𝑘+1‖2,
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where

𝜅1 = min{𝜅̄, 1
2
, 1− 𝜗5,

𝜉5
𝐿1
,

1
2𝜗2

}.

The proof is complete.

�

Lemma 4.4. Assume that 𝑓 satisfies Assumption 4.2. If the search direction 𝑑𝑘+1 is calculated by TSCG Conic,
then there exists a constant 𝜅2 > 0 such that

‖𝑑𝑘+1‖ ≤ 𝜅2‖𝑔𝑘+1‖. (4.7)

Proof. Similar to Lemma 4.3, the proof is divided into several cases.

Case I. if 𝑑𝑘+1 is calculated by negative gradient, then there certainly holds

‖𝑑𝑘+1‖ ≤ ‖𝑔𝑘+1‖.

Case II. if the search direction is HS direction, according to Assumption 4.2 and the condition (2.27), we have

‖𝑑𝑘+1‖ = ‖ − 𝑔𝑘+1 + 𝛽𝐻𝑆
𝑘 𝑑𝑘‖

≤ ‖𝑔𝑘+1‖+
‖𝑔𝑘+1‖‖𝑦𝑘‖‖𝑑𝑘‖

𝑑𝑇
𝑘 𝑦𝑘

≤
(︂

1 +
𝐿

𝜗1

)︂
‖𝑔𝑘+1‖.

Case III(conic). if 𝑑𝑘+1 is calculated by (1.8) and (2.21), Li et al. [24] have proved that

‖𝑑𝑘+1‖ ≤
(︂

10𝜉2 + 5𝜉1 + 5𝑚
𝜌0𝜉21

)︂
‖𝑔𝑘+1‖,

where 𝑚 = 2𝑛0𝜉/𝜌0 with

𝑛0 = max
{︂

4− 3𝜌0, 1 +
2𝜉2
𝜉1

}︂
, 𝜉 = max{𝜉2, 𝜉3, 𝜉4}.

Case IV(conic). if 𝑑𝑘+1 is formed by (2.3) and (2.8), we have

‖𝑑𝑘+1‖ = ‖𝑡𝑘+1𝑔𝑘+1 + 𝜇𝑘+1𝑠𝑘 + 𝜈𝑘+1𝑦𝑘‖

≤ 1
𝐷𝑘+1

(|𝑞1|‖𝑔𝑘+1‖+ |𝑞2|‖𝑠𝑘‖+ |𝑞3|‖𝑦𝑘‖), (4.8)

so in order to prove Lemma 4.4 under this case, we first need to obtain the lower bound of
𝐷𝑘+1. Combining (2.13), (2.17), (4.3), and the value range of 𝜁𝑘, we can derive

𝐷𝑘+1 = 𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘𝑀𝑘(𝜁𝑘 max{𝐾,𝑁𝑘, 𝑛𝑘} −𝑁𝑘)

≥ 𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘𝜌0

(︂
6
5

max{𝐾,𝑁𝑘, 𝑛𝑘} −𝑁𝑘

)︂
≥ 𝑠𝑇

𝑘 𝑦𝑘𝜏𝑘𝜌0
𝐾

5
·
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Then using the above inequality, we can transform (4.8) into

‖𝑑𝑘+1‖ ≤
5

𝜌0𝐾𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘

(|𝑞1|‖𝑔𝑘+1‖+ |𝑞2|‖𝑠𝑘‖+ |𝑞3|‖𝑦𝑘‖)

≤ 5
𝜌0𝐾

‖𝑔𝑘+1‖
[︂
‖𝑔𝑘+1‖2 + 4

‖𝑔𝑘+1‖2‖𝑦𝑘‖4

𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘

+ 2
‖𝑔𝑘+1‖2‖𝑠𝑘‖‖𝑦𝑘‖

𝑠𝑇
𝑘 𝑦𝑘

+4
‖𝑔𝑘+1‖‖𝑠𝑘‖‖𝑦𝑘‖2|𝜔𝑘|

𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘

+ 2
‖𝑔𝑘+1‖‖𝑦𝑘‖|𝜔𝑘|

𝜏𝑘
+
𝜌𝑘+1‖𝑠𝑘‖2

𝑠𝑇
𝑘 𝑦𝑘

+
‖𝑠𝑘‖2𝜔2

𝑘

𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘

+ 2
𝜌𝑘+1‖𝑠𝑘‖‖𝑦𝑘‖3

𝑠𝑇
𝑘 𝑦𝑘𝜏𝑘

+
𝜌𝑘+1‖𝑦𝑘‖2

𝜏𝑘

]︂

≤ 5‖𝑔𝑘+1‖
𝜌0

‖𝑔𝑘+1‖2

𝐾

(︃
(2 + 𝜉2)2

𝜉21
+ 6

(2 + 𝜉2)
𝜉1

+ 4
𝑀0

𝜉1
+ 2

√︃
𝜉2
𝜉1

+ 5

)︃

≤ ‖𝑔𝑘+1‖
𝜌0𝐾1

25𝜉21 + 5𝜉22 + 30𝜉1𝜉2 + 10𝜉1
√
𝜉1𝜉2 + (60 + 20𝑀0)𝜉1 + 20𝜉2 + 20
𝜉21

·

Since (2.18) implies that 𝐾1 ≥ 𝜉1, we finally obtain the upper bound of 𝑑𝑘+1, that is

‖𝑑𝑘+1‖ ≤
25𝜉21 + 5𝜉22 + 30𝜉1𝜉2 + 10𝜉1

√
𝜉1𝜉2 + (60 + 20𝑀0)𝜉1 + 20𝜉2 + 20
𝜌0𝜉31

‖𝑔𝑘+1‖.

For convenience, we define

𝐿2 ,

(︂
25𝜉21 + 5𝜉22 + 30𝜉1𝜉2 + 10𝜉1

√
𝜉1𝜉2 + (60 + 20𝑀0)𝜉1 + 20𝜉2 + 20
𝜌0𝜉31

)︂
,

namely, 𝑑𝑘+1 ≤ 𝐿2‖𝑔𝑘+1‖.
Case V(quadratic). if 𝑑𝑘+1 is formed by (1.8) and (2.39), it is similar to Lemma 4 in [23]. According to their

proof, we can get

‖𝑑𝑘+1‖ ≤
20
𝜗1
‖𝑔𝑘+1‖.

Case VI(quadratic). if 𝑑𝑘+1 is calculated by (2.3) and (2.32), we have

‖𝑑𝑘+1‖ =
1

|𝐴𝑘+1|
(|𝑞1|‖𝑔𝑘+1‖+ |𝑞2|‖𝑠𝑘‖+ |𝑞3|‖𝑦𝑘‖).

Therefore, it is necessary to seek for the lower bound of |𝐴𝑘+1|. By combining (2.34)
with (2.35) and (2.36), we can easily acquire

|𝐴𝑘+1| ≥
6
25
𝜗1𝜗3‖𝑔𝑘+1‖2‖𝑦𝑘‖4.

According to the above inequality and Cauchy inequality, it follows that,

‖𝑑𝑘+1‖ ≤
25

6𝜗1𝜗3‖𝑔𝑘+1‖2‖𝑦𝑘‖4

[︂
𝜌𝑘+1‖𝑔𝑘+1‖‖𝑦𝑘‖4

(︂
2
‖𝑠𝑘‖2

𝑠𝑇
𝑘 𝑦𝑘

+ 3
‖𝑠𝑘‖
‖𝑦𝑘‖

)︂
+‖𝑔𝑘+1‖3‖𝑦𝑘‖4

(︂
10 + 12

‖𝑠𝑘‖‖𝑦𝑘‖
𝑠𝑇

𝑘 𝑦𝑘
+ 4

‖𝑠𝑘‖2‖𝑦𝑘‖2

(𝑠𝑇
𝑘 𝑦𝑘)2

)︂]︂
.

Based on (4.6) and (2.35), it implies that
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‖𝑑𝑘+1‖ ≤
25‖𝑔𝑘+1‖

6𝜗1𝜗3

(︃
10 + 12

√︂
𝜗2

𝜗1
+ 4

𝜗2

𝜗1
+ 4

𝜗2

𝜗1
+ 6

𝜗2

𝜗1

)︃

≤ 125𝜗1 + 150
√
𝜗1𝜗2 + 175𝜗2

3𝜗2
1𝜗3

‖𝑔𝑘+1‖,

likewise, we set

𝐿3 ,
125𝜗1 + 150

√
𝜗1𝜗2 + 175𝜗2

3𝜗2
1𝜗3

·

According to the above analysis, the proof of Lemma 4.4 is completed by setting

𝜅2 = max
{︂(︂

10𝜉2 + 5𝜉1 + 5𝑚
𝜌0𝜉21

)︂
, 1, 1 +

𝐿

𝜗1
, 𝐿2,

20
𝜗1
, 𝐿3

}︂
.

�

4.2. Convergence analysis

In this subsection, we will give the global convergence of the presented algorithm for general functions.

Lemma 4.5. Suppose 𝛼𝑘 is generated by line search (1.5) and (1.6), and 𝑓(𝑥) satisfies Assumption 4.2, then

𝛼𝑘 ≥
(1− 𝜎)|𝑔𝑇

𝑘 𝑑𝑘|
𝐿‖𝑑𝑘‖2

· (4.9)

Proof. According to the line search (1.5), we can easily obtain

(𝜎 − 1)𝑔𝑇
𝑘 𝑑𝑘 ≤ (𝑔𝑇

𝑘+1 − 𝑔𝑘)𝑇 𝑑𝑘 = 𝑦𝑇
𝑘 𝑑𝑘 ≤ ‖𝑦𝑘‖‖𝑑𝑘‖ ≤ 𝐿‖𝑠𝑘‖‖𝑑𝑘‖ = 𝛼𝑘𝐿‖𝑑𝑘‖2,

because 𝜎 − 1 < 0 and 𝑔𝑇
𝑘 𝑑𝑘 < 0, it is obvious that

𝛼𝑘 ≥
(1− 𝜎)|𝑔𝑇

𝑘 𝑑𝑘|
𝐿‖𝑑𝑘‖2

·

�

Theorem 4.6. Suppose the objective function 𝑓(𝑥) satisfies Assumption 4.1 and Assumption 4.2, and sequence
{𝑥𝑘} is generated by TSCG Conic, then we have

lim
𝑘→∞

‖𝑔𝑘‖ = 0. (4.10)

Proof. According to (4.9), (4.1) and (4.7), it follows

𝛿𝛼𝑘𝑔
𝑇
𝑘 𝑑𝑘 ≤ −

(1− 𝜎)𝛿
𝐿

(𝑔𝑇
𝑘 𝑑𝑘)2

‖𝑑𝑘‖2
≤ − (1− 𝜎)𝛿𝜅2

1

𝐿𝜅2
‖𝑔𝑘‖2 = −𝑇‖𝑔𝑘‖2,

where 𝑇 , (1−𝜎)𝛿𝜅2
1

𝐿𝜅2
, then combining (1.6), we have

𝑓𝑘+1 ≤ 𝐶𝑘 + 𝛿𝛼𝑘𝑔
𝑇
𝑘 𝑑𝑘 ≤ 𝐶𝑘 − 𝑇‖𝑔𝑘‖2. (4.11)
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Notice (3.6) and (3.7), although 𝑄0, 𝑄1, 𝑄2 and 𝜂0, 𝜂1, 𝜂2 are omitted in comparison to the standard ZH line
search, we could assume that 𝑄0 = 1, 𝑄1 = 2, 𝑄2 = 3 and 𝜂0 = 𝜂1 = 𝜂2 = 1. For large scale problem, its
dimension 𝑛 is tremendous so that mod (𝑘, 𝑛) ̸= 0 always holds for small 𝑘, hence the assumption of 𝜂0, 𝜂1
and 𝜂2 is reasonable according to the update formula of 𝜂𝑘. Moreover, all these quantities are in accord with the
update formula of 𝑄𝑘+1 in (1.7), hence such an assumption is desirable in order to simplify the computation of
𝑄𝑘+1. Therefore, from (3.6) it is easy to acquire that

𝑄𝑘+1 = 1 +
𝑘∑︁

𝑗=0

𝑗∏︁
𝑖=0

𝜂𝑘−𝑖, 𝑘 = 0, 1, 2 . . .

Combining (3.7), we can derive the general formula of 𝑄𝑘+1,

𝑄𝑘+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 + 𝜂𝑘/𝑛 + 𝑛

𝑘/𝑛∑︁
𝑖=1

𝜂𝑖, mod(𝑘, 𝑛) = 0,

1 + mod(𝑘, 𝑛) + 𝜂⌊𝑘/𝑛⌋ + 𝑛

⌊𝑘/𝑛⌋∑︁
𝑖=1

𝜂𝑖, mod(𝑘, 𝑛) ̸= 0,

where ⌊·⌋ denotes the floor function. Thus, it is easy to get the upper bound of 𝑄𝑘+1,

𝑄𝑘+1 ≤ 1 + mod(𝑘, 𝑛) + 1 + 𝜂⌊𝑘/𝑛⌋+1 + 𝑛

⌊𝑘/𝑛⌋+1∑︁
𝑖=1

𝜂𝑖

≤ 1 + 𝑛+ (𝑛+ 1)
⌊𝑘/𝑛⌋+1∑︁

𝑖=1

𝜂𝑖

≤ 1 + 𝑛+ (𝑛+ 1)
𝑘+1∑︁
𝑖=1

𝜂𝑖

≤ (1 + 𝑛)
𝑘+1∑︁
𝑖=0

𝜂𝑖

≤ 1 + 𝑛

1− 𝜂

= 𝐻, (4.12)

where 𝐻 = 1+𝑛
1−𝜂 .

When 𝑘 ≥ 3, Combining (1.7), (4.11) and (4.12), we get

𝐶𝑘+1 = 𝐶𝑘 +
𝑓𝑘+1 − 𝐶𝑘

𝑄𝑘+1
≤ 𝐶𝑘 −

𝑇

𝐻
‖𝑔𝑘‖2,

which means
𝑇

𝐻
‖𝑔𝑘‖2 ≤ 𝐶𝑘 − 𝐶𝑘+1. (4.13)

When 𝑘 < 3, (1.6) and (3.5) implies that

𝐶𝑘+1 ≤ 𝑓𝑘+1 + 0.9(𝐶𝑘 − 𝑓𝑘+1) = 𝐶𝑘 + 0.1(𝑓𝑘+1 − 𝐶𝑘) < 𝐶𝑘.

Hence 𝐶𝑘 is monotonically decreasing. According to the Lemma 1.1 in [45], we have 𝑓𝑘+1 ≤ 𝐶𝑘+1 for each 𝑘 ≥ 3,
and (3.5) indicates that 𝑓𝑘+1 ≤ 𝐶𝑘+1 for each 𝑘 < 3. Thus, with the assumption that 𝑓 is bounded below, 𝐶𝑘

is certainly bounded from below.
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Summing up the above analysis and (4.13), we can finally obtain that

∞∑︁
𝑘=0

𝑇

𝐻
‖𝑔𝑘‖2 <∞,

which implies
lim

𝑘→∞
‖𝑔𝑘‖2 = 0.

The proof is completed. �

Under the assumptions that objective function is continuously differentiable, bounded from below and gra-
dient function is Lipschitz continuous, we have established the sufficient descent property of our directions.
Moreover, our algorithm possesses the global convergence that

lim
𝑘→∞

‖𝑔𝑘‖2 = 0.

Since we will compare our algorithm with SMCG Conic [24], CONIC CG3 [36] and SMCG BB [26]in numer-
ical experiments, we briefly introduce the convergence properties of these algorithms. Under the same assump-
tions, the directions of SMCG Conic, CONIC CG3 and SMCG BB also satisfy the sufficient descent property,
and SMCG Conic shares the same global convergence with TSCG Conic that lim

𝑘→∞
‖𝑔𝑘‖2 = 0 while CONIC CG3

and SMCG BB only have the property that

lim inf
𝑘→∞

‖𝑔𝑘‖ = 0.

But SMCG BB can achieve the property that lim
𝑘→∞

‖𝑔𝑘‖2 = 0 if the objective function is convex.

5. Numerical results

In this section, the results of the numerical experiments are showed below. The unconstrained test functions
were taken from [1] with the given initial points. To prove the efficiency of the proposed TSCG Conic algorithm,
we compare its numerical performance with SMCG Conic, CONIC CG3 and SMCG BB. And the performance
profile proposed by Dolan and Moré [18] is used to evaluate the performance of these methods. The dimension
of the test functions is 10,000. All the programs were written in C code.

For each problem 𝑝 in the test set 𝒫 and each solver 𝑠 in the solver set 𝒮, [18] defines the performance ratio

𝑟(𝑝, 𝑠) =
𝑡𝑝,𝑠

min{𝑡𝑝,𝑠 : 𝑠 ∈ 𝒮}
,

where
𝑡𝑝,𝑠 = CPU time required to solve problem 𝑝 by solver 𝑠.

It is evident that 𝑟(𝑝, 𝑠) ≥ 1, and the equality holds if and only if solver 𝑠 solves problem 𝑝 with the least
computing time. Based on 𝑟(𝑝, 𝑠), Dolan and Moré defines

𝑃𝑝:𝑟(𝑝,𝑠)≤𝜏 =
1
𝑛𝑝

size{𝑝 ∈ 𝒫 : 𝑟(𝑝, 𝑠) ≤ 𝜏},

which gives an overall assessment of the performance of the solver 𝑠. The function 𝑃𝑝:𝑟(𝑝,𝑠)≤𝜏 depicts the
probability for solver 𝑠 of which the performance ratio 𝑟(𝑝, 𝑠) is within a factor 𝜏 , and is the cumulative
distribution function for the performance ratio. In addition to CPU time, this function can be used with other
measures, including the number of iterations, function evaluations and gradient evaluations.
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Figure 1. Performance profile based on the number of iterations.

SMCG Conic is a two-dimensional subspace minimization conjugate gradient algorithm based on conic model,
and is a pioneer one that combines subspace technique with conic model to seek for the search direction.
The numerical experiments in [24] show that the performance of SMCG Conic is very efficient. Since the
biggest difference between TSCG Conic and SMCG Conic is the dimension of the used subspace, the comparison
between TSCG Conic and SMCG Conic can not only reflect the high efficiency of our algorithm, but also reveal
the influence to the numerical result due to the change of dimension for the adopted subspace in the subspace
minimization conjugate gradient algorithm.

Combining the subspace Ω𝑘+1 = 𝑆𝑝𝑎𝑛{𝑔𝑘+1, 𝑠𝑘, 𝑠𝑘−1}, [36] develops a three-dimensional subspace mini-
mization conjugate gradient algorithm based on conic model CONIC CG3, and has shown its high efficiency.
Our algorithm TSCG Conic is also based on three-dimensional subspace and the difference is construction of
subspace, hence we compare it with CONIC CG3.

As for SMCG BB, it is an efficient subspace minimization conjugate gradient method, and successfully apply
the idea of BB method and BBCG method which are employed in our algorithm as well. Besides, our scheme
of the choice for initial stepsize is a modification of that in SMCG BB. Thus, it is also meaningful to compare
the numerical performance of TSCG Conic and SMCG BB.

For the initial stepsize of the first iteration, we adopt the adaptive strategy used in [23]. The other parameters
of TSCG Conic are selected as follows.

𝜖 = 10−6, 𝜖1 = 10−3, 𝜖2 = 10−4, 𝛿 = 0.001, 𝜎 = 0.9999,
𝜆min = 10−30, 𝜆max = 1030, 𝜆1 = 7× 10−8, 𝜆2 = 0.05, 𝜌0 = 0.3, 𝜌0 = 0.9,
𝜉1 = 0.2× 102, 𝜉2 = 8× 104, 𝜉3 = 4× 108, 𝜉4 = 7× 107, 𝜉5 = 0.1,
𝜗1 = 5× 10−7, 𝜗2 = 3× 103, 𝜗3 = 0.9, 𝜗4 = 7× 10−3, 𝜗5 = 10−5.

SMCG Conic, CONIC CG3 and SMCG BB use the original parameters in their papers respectively. In addition
to stopping when the stopping criterion ‖𝑔𝑘‖∞ ≤ 𝜀 holds, the algorithm also stops when the number of iterations
exceeds 200,000.

Figure 1 depicts the performance based on the number of iterations for the three methods. It shows that
TSCG Conic performs better than three other algorithms, although it is a little inferior to them when 𝜏 < 1.4.
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Figure 2. Performance profile based on the number of function evaluations.

Figure 3. Performance profile based on the number of gradient evaluations.

In Figure 2, we observe that TSCG Conic and SMCG BB outperforms SMCG Conic and CONIC CG3 on
the number of function evaluations. Besides, TSCG Conic and SMCG BB can solve about 50% of test problems
with the least number of function evaluations, while SMCG Conic and CONIC CG3 solve about 35%.

Similar to Figures 1 and 3 illustrates that TSCG Conic lags behind in comparison with three other algorithms
when 𝜏 < 1.4, but is competitive to SMCG BB and superior to SMCG Conic and CONIC CG3 when 𝜏 > 1.4.

As regards the CPU time, we can see from Figure 4 that TSCG Conic and SMCG BB has an appreciable
improvement on SMCG Conic and CONIC CG3 when 𝜏 > 1.2, which shows the high efficiency of TSCG Conic.

For the 80 test problems, the numerical results show that while TSCG Conic may perform a little worse than
other algorithms for the case that 𝜏 is very small, it overall has significant improvements over SMCG Conic
and CONIC CG3, and is competitive to SMCG BB. Besides, TSCG Conic can solve more problems than
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Figure 4. Performance profile based on the CPU time.

Figure 5. The natural logarithm of objective function value vs. CPU time.
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SMCG Conic, which might show the advantage of the three-dimensional subspace minimization method com-
pared with the two-dimensional one. In a word, the TSCG Conic is an efficient algorithm for solving uncon-
strained optimization problem.

To present the performance of these algorithms in numerical experiments more intuitively, we select three
test functions and depict the figures about the objective function value vs. CPU time in Figure 5. For better
visualization, we will use the natural logarithm of the objective function value as the y-axis.

6. Conclusion

(i) This paper has proposed a new three-dimensional subspace minimization conjugate gradient method based
on conic model, the sufficient descent property of the search direction and the global convergence of this
method are obtained under some suitable assumptions.

(ii) The selection of approximation model is alternative depending on whether certain criterions are satisfied.
Besides, the estimates of some quantities containing 𝐵𝑘+1 are various. The strategies of initial stepsize and
nonmonotone line search are exploited which are beneficial to the convergence and efficiency.

(iii) From the numerical results and theoretical analysis, TSCG Conic is competitive and promising.
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