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AN ALTERNATIVE THREE-DIMENSIONAL SUBSPACE METHOD BASED ON
CONIC MODEL FOR UNCONSTRAINED OPTIMIZATION

GUOXIN WANG!, MINGYANG PEI', ZENGXIN WEI? AND SHENGWEI YAOQO>*

Abstract. In this paper, a three-dimensional subspace conjugate gradient method is proposed, in
which the search direction is generated by minimizing the approximation model of the objective func-
tion in a three-dimensional subspace. The approximation model is not unique and is alternative between
quadratic model and conic model by the specific criterions. The strategy of initial stepsize and non-
monotone line search are adopted, and the global convergence of the presented algorithm is established
under mild assumptions. In numerical experiments, we use a collection of 80 unconstrained optimization
test problems to show the competitive performance of the presented method.
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1. INTRODUCTION
Considering the following unconstrained problem:

min f(z), (1.1)

with an initial point z, the following iterative formula is often used to solve (1.1),
Tkl = Tk + apdg, (1.2)

where xy, is the k-th iteration point, a € R is the stepsize determined by a line search procedure, and dy, is the
search direction acquired by specific ways.

Conjugate gradient methods are one of the common methods for unconstrained optimization problems, of
which the search direction is computed as

dk+1 = —0k+1 + ﬁk:dka k= 07 17 LRI (13)

where dg = —go, gr+1 = Vf(2x+1) and S € R is a scalar called the conjugate gradient parameter. Correspond-
ing to different choices for the parameter y, various nonlinear conjugate gradient methods have been proposed.
Some classical CG methods include HS (Hestenes and Stiefel [22]), FR (Fletcher and Reeves [20]), PRP (Polak
et al. [30]), CD (Fletcher [19]), LS (Liu and Storey [25]) and DY (Dai and Yuan [11]).
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As for the stepsize ay used in (1.2), it depicts the length of current point zj increasing along with the
generated search direction dj, and is usually determined by a procedure known as line search. The largest
reduction of the function value is achieved when the exact line search is exploited, where

ay = argmin f(zy + ady),
a>0

and such a stepsize is called the exact stepsize. However, the high cost and difficulty for computing the exact
stepsize make it rarely used in optimization algorithms. Instead, an inexact line search is often used. One of the
most used inexact line search is the so-called standard Wolfe line search [37,38]:

flar + arde) < f(xk) + Sowg] d, (1.4)
Vf(xk + Ozkdk)Tdk > Uggdk, (1.5)

where 0 < § < o < 1. Obviously, it is a monotone procedure that seeks for a suitable «aj making the function
value decrease to some extent. Zhang and Hager [45] proposed a nonmonotone version (ZH line search) that
modifies condition (1.4) to

flzp + apdg) < Ci + 5akngdk, (1.6)

where Cy = f(xg), Qo = 1, Cx11 and Q41 are updated by

_ QkCr + f (k1)
Qr+1 ’

where 7 € [Dmin, Tmax] and 0 < Nmin < Nmax < 1. The choice of n; controls the degree of nonmonotonicity.
Such a line search can not only overcome some drawbacks in monotone line search, but is particularly efficient
for unconstrained problems in numerical experiments [45].

Subspace technique is one of the effective means for solving large-scale optimization problems, which is getting
more and more attention. Yuan reviewed various subspace techniques that have been used in constructing
numerical methods for solving nonlinear optimization problems in [42,43]. Moreover, the combination between
subspace technique and conjugate gradient method has been extensively studied. The earliest research can see
[44], Yuan and Stoer computed the search direction di1 by minimizing the approximation quadratic model in
the two dimensional subspace spanned by gi+1 and sg, namely Qr11 = Span{gr+1, sk} where s = 41 — Tk,
and proposed the subspace minimization conjugate gradient method (SMCGQG), in which dj; is formed by

Crt1

Qr+1 = mQr + 1, (1.7)

di+1 = tgps1 + psk, (1.8)

where ¢ and p are undetermined parameters. Based on the above idea, Andrei [3] extended the subspace to
Q1 = Span{gr+1, sk, yr} and exploited the acceleration scheme, finally presented a three-term conjugate
gradient method (TTS), in which

dr+1 = —Gr+t1 + YSk + Vi,

and yr = gk+1 — gk, K, v are also scalar parameters. Inspired by Andrei, Yang et al. [39] changed the subspace
into Qg1 = Span{gk+1, Sk, Sk—1}, and put forward the subspace three-term conjugate gradient method (STT).
For the same subspace, Li et al. [23] added more parameters to the computation of search direction so that

di+1 = tgr4+1 + psk + vSk—1,

and adopted the strategy of initial stepsize as well as the nonmonotone line search, eventually proposed the
subspace minimization conjugate gradient method with nonmonotone line search (SMCG_NLS).

On the other hand, Dai and Kou [13] also focused on the analysis of Yuan and Stoer [44], but they paid more
attention to the estimate of the parameter py 1 = ggﬂBngkH during the calculation of di41. They combined
the Barzilai-Borwein [7] idea and provided some efficient Barzilai-Borwein conjugate gradient methods (BBCG).
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It is remarkable that the idea of BBCG to estimate py41 is employed in this paper. Motivated by SMCG and
BBCG, Liu and Liu [27] proposed a new Barzilai-Borwein conjugate gradient method (SMCG_BB) with a new
strategy for the choice of initial stepsize and a nonmonotone generalized Wolfe line search.

It is noteworthy that all of the above mentioned subspace minimization conjugate gradient methods obtained
the search direction by minimizing the approximate quadratic model of objective function in the presented
subspace. However, Sun [34] and Sun and Yuan [35] have pointed that when the current iterative point is not
close to the minimizer, the quadratic model may lead to a poor prediction of the minimizer if the objective
function possesses strong non-quadratic behaviour. Besides this, a quadratic model does not take into account
more information instead of the gradient value in the current iteration, which means that it does not have
enough degrees freedom for incorporating all of the information in the iterative procedure.

Thus, the research for approximate nonquadratic model is of the essence. Up to now, many nonquadratic
models have been applied to optimization problems, such as conic model, tensor model and regularization
model. The conic model can be incorporated in more function information than quadratic model, and its appli-
cation in unconstrained optimization was first studied by Davidon [16]. A typical conic model for unconstrained
optimization is
gg+18 s Bry15

Bra(s) = ;
b 1+07,s  2(1+bf, )%

which is an approximation to f(xg+s)— f(zx), and Bgy1 is a symmetric positive definite matrix approximating
to the Hessian of f(z) at x4 satisfying the secant equation Byi1$; = yr. The vector bi41 is normally called
the horizontal vector satisfying 1 + bfﬂs > 0. Such a conic model has been investigated by many scholars.
Sorensen [33] discussed a class of conic methods called ”optimization by collinear scaling” for unconstrained
optimization and shown that a particular member of this algorithm class has a Q-superlinear convergence.
Ariyawansa [5] modified the procedure of [33] and established the duality between the collinear scaling DFP
and BFGS methods. Sheng [32] further discussed the interpolation properties of conic model method. Di and
Sun [17] proposed a trust region method for conic models to solve unconstrained optimization problems. The
trust region methods based on conic model have brought about a great number of research.

Li et al. [24] paid attention to the combination of subspace method and conic model. They considered the
following conic approximation model:

T T
Jrs19 1 d” Byyd
d) = + = 1.9
o) = T, a (19)
where
1
bp+1 = —$gk+1,
V4197 15k
—Q{Sk

V1 = :
i VAr1 + fr = fr—1
A1 = (fe — fror1)® — (gs15%) (97 sk).-

Note that fi denotes f(zj). By minimizing the above conic model in the two-dimensional subspace Q11 =
Span{gi+1, sk}, they developed a subspace minimization conjugate method based on the conic model
(SMCG_-Conic). Sun et al. [36] extended the subspace to Q11 = Span{gr+1, Sk, Sk—1} and presented a three-
dimensional subspace minimization conjugate gradient method based on conic model (CONIC_CG3).

Inspired by [3] and above mentioned works, we come up with the question whether we can extend the
two-dimensional subspace in [24] to three-dimensional Q11 = Span{gr+1, Sk, yx}. And does the generated
algorithm has the property of global convergence and competitive numerical performance? Therefore, this paper
investigates a three-dimensional subspace method based on the conic model (1.9). Furthermore, some schemes
helpful for convergence are taken into account.
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This paper is organized as follows: in Section 2, the search directions on the subspace Q1 based on two
different models are derived, and the criteria for how to choose the approximate models and search direction
are presented. In Section 3, the schemes of initial stepsize and nonmonotone line search are presented, and
the generated algorithm will be detailed. In Section 4, we give the proofs for some important lemmas of the
search direction and the convergence performance of the generated algorithm under suitable assumptions and
conditions. In Section 5, we compare the numerical results of our algorithm with those of another two methods.

2. THE SEARCH DIRECTION BASED ON DIFFERENT MODELS

The main content of this section is to construct the formula of search direction under different situations
and the corresponding criteria. The concrete approach is to minimize the approximation model in the subspace
Qpy1 = Span{gk+1, Sk, Y}, hence how to choose the appropriate approximation model is crucially important.

Here we refer to the analysis of Yuan [40], in which a quantity wuy, is defined by

2(fk = frr1 + g 15k)
Sfyk

which shows the extent of how the objective function f(x) is close to a quadratic on the line segment between
2 and xgy1. Dai et al. [15] indicate that if the following condition

uk—‘

71|7

ug < 1 or max{ug,up—1} < co (2.1)

holds, where 0 < ¢; < ¢ are two small constants, then they believe that f(z) is very close to a quadratic on the
line segment between x and x41. The utilization of such a quantity can be referred to [26,27]. In this paper,
if the above condition (2.1) is satisfied, then the choice of the quadratic approximation model is preferable;
otherwise, the conic model is more suitable.

Since we figure out the criterion for choosing the approximation model, the following is to establish the
formula of search direction based on the specific model and subspace. Furthermore, the situations for different
dimensions of 211 ranging from 1 to 3 are taken into account.

2.1. Conic model

In this subsection, we consider the subproblem

(Lain Prt1(d), (2.2)

where ¢r41(d) is the same as (1.9).
Three different dimensions under the subspace Q11 = Span{gr+1, sk, yr} will be discussed.
Situation 1: dim(Qx41) = 3.
Under this situation, the search direction is computed by
dit+1 = tgr+1 + usk + vyk. (2.3)
By substituting (2.3) into (2.2) and using the secant equation, the problem (2.2) turns into

. . _
min A1 (t, i, v)

g1l Tt £\ " Pet1 GhiaUk Wk t

ggﬂﬁc I 1 gtk stue viue | [ m

Iky1Yk v 1\¥ Wk y}{yk Tk v

bT T 5 T T (2.4)
k1 9k+1 t by Gk t

L | Dpase iz 1+ | bl sk 7
Ok 41k v iUk v
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where pgy1 = ggﬂBngkH, Wi = ggHBkHyk, TR = y%BkHyk, and |.|| denotes the Euclidean norm. We set

2 T
lgr+ll bt19k+1 t

a = g%ﬁ_lsk ,C = b[]},;.l,_lsk , U = M ’
k+1Yk byt 1Yk v

Pr+1 91{ 1Yk Wk
A= [ gliue siue vl |
Wi ykTyk Tk
thus (2.4) turns into

afu 1 uTApyqu

_ 1 . 2.5
1+cTu+2(1+cTu)2 (25)

To minimize (2.5), we derive its first derivative and seek the solution of

1 cuT Agpqu
= — I —_— —_— —
Vérti(u) 1+ cTu < 1+ cTu) (a 1 + Ty 0

Ak+1u
1+cTu

Gr1(u)

Obviously that I — l_f_“% is invertible, so the problem is reduced to a +
the minimizer of (2.5)

= 0, then we can easily acquire

—1
—AkHa

7 2.6
1+ cTA;ila (2:6)

Uk4+1 =

. e . — . . . _ A}
when Ay is positive definite and 1+ cTAkila # 0. Moreover, by using the relationship A,Hl_1 = ﬁ, where

X 01 02
= 000065], (2.7)
%

is the adjoint matrix of Axi1, and |Agy1| = per1 X + 919,:;_11/;@ + 0wy, in which

X = (spyr)m — (Wi ye)?,

01 = (Wi yi)we — (94 19k) Tk

02 = (g4 19%) (Ui yE) — (Skyr)wr,
0 = pr+17K — W?m

05 = (gh 196wk — prs1 (YR Yk),
Y = Pk+1(sgyk) - (ng+13/k)27

we finally obtain the minimizer of (2.4)

Tyt 1 X 01 0, | g1 1 —q1
Uer1 = | Pl | = b1 0 03 Giask | = o R (2.8)
Vi1 kL \b2 03 Y 9E Uk R\ —g3

where

Div1 = |Apgr| + @1bi 1 Gr1 + G2bf 15k + G3bf 1Yk
@1 = X||grs1]® + 019115k + 0298 1Yk
g2 = 01]lgk+11* + 0915k + 03914 1 vk,
g3 = O2||gk+1|* + 0391 15K + Y g} 1k
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So the solution of (2.2) in three dimensional subspace Q11 = Span{gr+1, Sk, Yx } is

dis1 = (Gr+1 Sk Yk) Ukt

However, there are three quantities in A1 that need to be estimated appropriately in order to avoid matrix-
vector multiplication and improve efficiency, i.e. pg+1,wy and 7.

As a matter of fact, the estimate for pyy1 is an essential procedure in the subspace method. Yuan and Stoer
[44] proposed two ways to calculate such quantities containing Bj41, one of which is to obtain Bj41 by using
the scaled memoryless BFGS formula. The approach of Dai and Kou [13] is to combine the Barzilai-Borwein [7]
idea by approximating the Hessian by (1/a22)1 or (1/abB?)I, where

k+1 k+1
e, Iskl®> BB, Shuk
k+1 — k+1 —

styk’ AR

Here we adopt the idea of Li et al. [23], because it can guarantee some good properties.
Firstly, according to the analysis about (2.6), the positive definitiveness of Aj41 is an essential condition
requiring |Ag+1] > 0, it follows

—019¢ 1y — szk_

Pr+1 > X (2.9)
T 2
By setting X = mystygpri, with my, =1 — (;%yiy:r)k, we have
T 2 2 T T
wi, w
Ph1 > (ngrlek) LYk 29k+1ka kYk Yk Jmgs 2 g, (2.10)
Sk Yk Tk Sk YkTk

if and only if my is positive, which can be guaranteed by (2.15). Note that we define the right-hand side of
(2.10) as ng. In addition, the positive definitiveness of Ay also requires that its first and second order leading
principal minors are positive, and it means

(9k1198)°

2.11
o (2.11)

Pk+1 >

Secondly, Dy41 > 0 is also a necessary condition to keep the sufficient descent property, which follows

S
Pk+1 > T u /Mk7 (212)
Sk YkTk

if My, > 0, where
Sk = —01g¢ 119k — Oowi — bf 11 9kt (X |grra ]l + 019815k + 0297 11 yk)
—bp sk (01l gria 1P — wighy sk + wr(giur)?)
- b£+1yk(02||9k+1||2 - (ng+1yk)3 + Wkng+1yk9kT+15k)a

and

T T T T
Sk YkTk Ve+1 Sk YTk Sk Yk 9i4+15kTk

M, =1- (ykTyk)2 4 1 — Y41 29£+1ykygyk _ 917;+13k (ggﬂyk)z

Likewise, we define the right-hand side of (2.12) as Ny, i.e. Ny = Sk /M.

3£yk‘f'k

After the above discusssion, we can estimate ppy1 as follows,

Pr+1 = Cp max{K, N, ng}, (2.13)
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where K = Ki||gr11]?,

2 1— 2
K, — max HkaII NSl 23Y ”ngH” 7
SkYk  Vk+1 |9 i 1Skl

and

o= max{0.9¢x_1,1.2}, if ap > 1.0,
b min{1.1¢;_1,1.75}, otherwise,

with (o = 1.5, it is obvious that ( € [1.2,1.75].

Observe the composition of (2.13), you can find that such a formula of pj1; is more than an estimate, but
can guarantee (2.10), (2.11) and (2.12). Besides, it makes di41 a descent direction, which will be proved in
Section 4.

Then we estimate wy = g,{HBkHyk and 7, = ygBkHyk. For wy, we utilize the memoryless BFGS formula
to get Bg41 so that

YryE sw%)

T
Wk = Gr+1 (I+ sTyk sT sy,
k k

T T T T
Ik+1Y6Yr Yk Gy15kSk Yk

T
— o e+ - 2.14
k+1 Sgyk Sgsk ( )
Then for 75, we combine the idea of [13] and [23], and estimate 75 by
2
k
Sk Yk
Before computing dg41 by (2.3) and (2.8), we should verify the following conditions:
A1 20, (2.16
My, > po, 2.17)
siyn _ Nyl
& < T < <&, (2.18)
Iskll® = sfyr
1— 2
Vi+1 | |Ggp1 Skl
[ At
7, > &, (2.20)
51 Yk Tk Pk+1

where pg € (0,1) and &, &2, &3, &5 are positive constants. (2.16) and (2.17) are fundamental premise of the conic
model (1.5) and relation (2.12), respectively. On the basis of the Barzilai-Borwein [7] idea, (2.18) might indicate
the suitable condition numbers of the approximation Hessian matrix. (2.19) is vital to guarantee the descent
property of the search direction. As for (2.20), obviously it makes Aj11 more positive definite, and is also helpful
for establishing the sufficient descent property of the search direction.

Therefore, if (2.16)—(2.20) hold, we compute the search direction by (2.3) and (2.8).

Situation 2: dim(Q4+1) =2 or 1.
Li et al. [24] have made a deep study of the subspace conjugate gradient method based on conic model in
this case, here we refer to their works. When dim(€y11) = 2, the search direction is formed by

A1 = tGrq1 + USk,
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which is the same as (1.8). The formula of ¢ and p is

by - 1 (- (2.21)
41 Dy \—C2)" ’

which is the same as (13) in [24]. Whether the search direction is computed by (1.8) and (2.21) depend on
whether the following conditions hold or not,

Api1 >0, (2.22)
My 2 Po, (2.23)

Sk Uk < llyw]?

& < < <& 2.24
sl = sTye =& (2.24)
1-— 2 1-—
‘ Vk+1 ||gjlf+1|| < &, if 7T1c+1 <0, (2.25)
Vi1 | Gpy1Skl Vi+19k 415k
2
1 _
oo Plelllsll g g L=mnr 2.36)
(gk+18k') Ve+19k 415k

where pg € (0,1), & is a positive constant, &1, &2, &3 are identical to those in (2.18) and (2.19). If (2.16)—(2.20)
do not all hold but (2.22)—(2.26) hold, we compute the search direction by (1.8) and (2.21).
However, if any of the conditions (2.22)—(2.26) fails but (2.27) and (2.28) hold,

T
NS &0
|91%1ykgl:cp+1dk| < s, (2.28)
dy. yrllgr+1l?
where 95 € [0,1) and ¥, is a positive constant, we consider the HS direction,
i1 = —gry1 + B S d. (2:29)

Therefore, there are two choices of search direction when dim(Qg41) = 2: one is to compute di41 by (1.8)
and (2.21) if (2.22)—(2.26) hold; the other is to compute dy11 by (2.29) if (2.27) and (2.28) hold. Otherwise, we
use the negative gradient direction —gg41 as our search direction, which means dim(Qx41) = 1.

2.2. Quadratic model

When (2.1) is satisfied, we consider the subproblem based on quadratic approximation model as follows:

. 1
min Yp41(d) = gjy1d + 5d" Byad. (2.30)
A€y 11 2

There also exist three situations.

Situation 1: dim(Qk41) = 3.
Similar to the analysis in the first situation of Subsection 2.1, we substitute (2.3) into (2.30), then we have

min) Ut (t, 1, v) =

(t,pv
T T
||9Tk+1||2 ¢ 1t Pr+1 G 1Yk Wi ¢
Gp 15k P+ m Gha1Uk Sp¥k Up¥e | | 1] - (2.31)
9i+1Yk v v Wk yljgyk Tk v
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Obviously, if A4 is positive definite, we can easily obtain the solution of (2.31) as follows,

te+1 HngJrlHQ
Hi+1 | = A;;_l Ik 415k
Vi+1 ng+1yk

1 X 01 05 l| gt
= 7ﬁ 01 9 03 gg+18k
ket 0205 Y gl{-&-lyk

1 —q1
_ A | —q |, (2.32)
k+1 —q3

in which ¢1, g2, g3 are the same as those in (2.8).

In Subsection 2.1, we adopt a special way to estimate pg41 because it can guarantee some important properties
while the conic approximation model is employed, but this method requires much computation as well as com-
parison. BBCG combining the Barzilai-Borwein idea is one of the efficient SMCG methods based on quadratic
model, especially BBCG3. Therefore, we take the approach similar to BBCG3 in the case that quadratic model
is selected. Actually, this approach has be mentioned before, that is the way we estimate 73 in (2.15).

In (2.15), we use (||yx||?/sE yx)I to approximate the Hessian matrix and combine it with an adaptive parameter
Cr. We do the same thing to py41, hence we have the following formula,

P41 = Gk |Ly el

lgn1l. (2.33)
kY

Likewise, it is reasonable to compute wy by the same way due to its similar formula to pgy1, so we have

IkaH

Wk = Ck™ T

k+1yk-

Obviously, such a choice of pgy1 satisfies both pgy1 > 0 and

(Qgﬂyk)z

Pk+1 >
Sfyk

which means the first and second order leading principal minors of A1 are both positive, so Ax41 is positive
definite as long as its determinant is positive. We notice that |Agy1| = pr+1X + Glggﬂyk + 0wy, then through
calculation and simplification, we have

|Aks1l = prsrsi uemi — prrallyell® + 2001 uklluelwr — (98 19) > — sk yrwi

(gT yk)2|\yk||4
= pret1 (G — D)lgal|* + (G — B ——
SL Yk

— GG - 1)"?@' Ui 122 = (9F s 1)?]

=G — 1)

lysll* |, (Geamw)?
Sk Y lgn-+1 112k 12

] lgn+ [yl (2.34)

From the above quality, we can know that Aj,; is positive definite if and only if gr4+1 and yi are linearly
independent, which can be described as
(1)

— e < 1
g+l llysl?
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Therefore, when the following conditions hold,

oy < Seve el (2.35)
Iskll® = siyn ’
/S (2.36)
lgrrall2llyell2 = 7 '
sl 2.37
Tgenl? = (237

we compute di11 by (2.3) and (2.32), where 93 € (0,1) and vJ2, ¥4 are positive constants. (2.35) plays the
same role as (2.24). The relation (2.36) is essential to the positive definiteness of Ayy1 and the sufficient descent
property of di41. (2.37) means that s has an adaptive lower bound such that the objective function can descend
along sg.

Situation 2: dim(Q41) =2 or 1.
In this situation, due to the better numerical performance based on the subspace span{giy1, sk}, we only
consider the search direction formed by (1.8), then we add it into (2.30) and can obtain the prediction subproblem

min 1 (£, 1) =
(t,1)
o\ T 1 T T
(IIngHII ) <t> L1 (t) < prs1 gk#yk> (t> (2.38)
9i+15k 1% 2\ M Jk+1Yk Sk Yk 2
Here we still compute pgt1 by (2.33), which leads to
[ Akr1] = pryrsiye = (Giaye)? > 0,

T
A = [ Pet1 Yk 1yk) ,
i (91{4—191@ Szyk

where

so the problem (2.38) has unique solution; that is
(tk> — 71 (gz;i’lykgg 15k - |gk+1|§_‘sgyk> . (239)
Hk | Ag41] g+l 9k+1Yk — Pk+195 415k

Moreover, due to the similarity between (2.21) and (2.39), the HS direction is still considered once the conditions
(2.27) and (2.28) hold.

Hence, the search direction di41 is calculated by (1.8) and (2.39) if there only holds the condition (2.35) or
by (2.29) if (2.27) and (2.28) hold, Otherwise, we exploit the negative gradient direction as our search direction.

To sum up, the generated direction possesses several forms as follows:
when the approximation conic model is selected, i.e. (2.1) fails,

— dp41 is calculated by (2.3) and (2.8), if (2.16)—(2.20) hold,
— dp41 is calculated by (1.8) and (2.21), if (2.22)—(2.26) hold,

— dj41 is calculated by (2.29), if (2.27) and (2.28) hold;
when the approximation quadratic model is selected, i.e. (2.1) holds,

— dg41 is calculated by (2.3) and (2.32), if (2.35)—(2.37) hold,
— dp41 is calculated by (1.8) and (2.39), if only (2.35) holds,
— dg41 is calculated by (2.29), if (2.27) and (2.28) hold;

otherwise, dix+1 = —gr+1-
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3. THE STEPSIZE AND ALGORITHM

In the last section, we have derived the calculations of search direction, but it is not enough for a iterative
formula to solve optimization problem. This section will present the obtainment of another essential ingredient
for a iterative formula, i.e. stepsize, which will be divided into two parts: the choice of initial stepsize and the
line search procedure. And then the whole algorithm will be detailed.

3.1. strategy for the initial stepsize

It is generally acknowledged that the initial stepsize is of great significance for a optimization method,
especially for conjugate gradient method. For Newton and quasi-Newton methods, the choice of the initial trial
stepsize may always be unit step a® = 1. However, it is different for methods that do not produce well scaled
search directions, such as the steepest descent or the conjugate gradient methods. Thus, it is significant to make
a reasonable initial guess of the stepsize by considering the current information about the objective function
and algorithm for such methods [4,29]. Many strategies of the initial stepsize have been proposed which can be
referred to [12,21,27,29].

In the strategy of [12], Dai and Kou presented a condition,

a? — 0
€1+ [or41(0)]

where €1, e5 are small positive constants, O‘g—&-l denotes the initial trial stepsize, and pr4+1(a) = f(zp+1+adks1)-
If (3.1) holds, it implies that the points zpi1q + 062+1dk+1 and xk41 are not far away from each other, so
it is reasonable to use the minimizer of q(gokH(O),cp;Hl(O),apkH(agH)) as the new initial stepsize, where

q(r+1(0), gp}Hl(O), ©r+1(af, 1)) is the quadratic interpolation function for ¢y41(0), go}cH(O) and @pi1(al, ),
and cp;H_l(O) denotes the first derivative of ¢41(0).
In this paper, the selection of the initial stepsize has two parts depending on whether the negative gradient
direction is adopted or not, and is presented via modification of that in [26].
When the search direction is negative gradient direction, according to the analysis of [27], it is desirable to
take the initial trial stepsize by
in{s} 2 Amax }» Ami if gf >0
i1 = maX{m?n{Sk Yi/1Ykll?s Amax }s Amin } 1 Jk+15k ) (3.2)
masc{min [3¢)12/5T g Ama s Amin s iF 91115 < 0,

where Apin and Apax are two positive constants controlling the initial stepsize within the interval [Amin, Amax]
which is preferable in numerical experiments.

Andrei [2] thinks that the higher accurate the step length is, the faster convergence a conjugate gradient
algorithm possesses, so it makes sense to verify if the initial trial stepsize ay1q satisfies (3.1) or not. If so and
di # —gr, |lgre1l|? < 1, we update the initial stepsize by

korl = maX{min{&kJrlz )\max}y Amin}a

where

g1 = argmin g(0x11(0), 9411 (0), Prs1(@rs1))-
Therefore, the initial stepsize for the negative gradient direction is

(3.3)

o0 Jaktr, if (3.1) holds, dy, # —gk, llgrs1ll®> <1 and dgq1 >0,
k+1 Qp+1, otherwise.
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When it comes to the search direction that is not negative gradient direction, the similarity between the
calculation of our direction and that in quasi-Newton methods implies that the unit stepsize a 4+1 = 1 might
be a reasonable initial trial stepsize. Again we figure out the minimizer of the quadratic interpolation function

ap41 = argmin ¢(¢r+1(0), 541 (0), @rr1(1)).

If agﬂ = 1 satisfies (3.1) and @41 > 0, we update the initial stepsize by
OAékJrl = max{min{o?kJrh )\max}v )\min}~

Therefore, the initial stepsize for the search direction except negative gradient direction is

(3.4)

W0 dg+1, 1if (3.1) holds and ag41 > 0,
k1 1, otherwise.

3.2. the nonmonotone line search

For the variable 7y in ZH line search, Zhang and Hager [45] proved that if 9y, = 1, then the generated
sequence {x} only has the property that
likm inf || gx|| = 0.
—00

Liu and Liu [27] presented a formula of 7y,

_Je, mod (k,n) =n—1,
e = 1, mod (k,n)#n—1,
where 0 < ¢ < 1 and mod(k,n) denotes the residue for k¥ modulo n, and resulted in a better convergence.
Referring to the above study, Li et al. [24] and Sun et al. [36] made some modification so that the improved
line search is more appropriate for their algorithms.
In order to gain the decent convergence result and performance, this paper adopts the improved ZH line
search used in [36]. To be specific, we set

* M QrCr + f(2r41)]/Qrs1, k>3, ’
4, k=2
Quey1 = {nka +1, k>3, (3.6)
where
_Jn, mod (k,n) =0,
Tk = {1, mod (k,n) # 0, (3.7)

where 1 = 0.9999.
3.3. Algorithm

In this subsection, we will detail our three-dimensional subspace method based on conic model for uncon-
strained optimization.

Before presenting out algorithm, we introduce a significant strategy in conjugate gradient method, restart. A
restart strategy means that the search direction is recalculated by the restart direction when restart criterion
is satisfied. A typical one is to reset the direction to the steepest descent direction every n iterations, since the
direction after n steps is no longer conjugate for general non-quadratic function. Crowder and Wolfe [10] proved
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that the standard conjugate gradient method without restart reaches at most linear convergence. Yuan [41] also
showed that the convergence rate of conjugate gradient method without restart is exactly linear for uniformly
convex quadratics. However, the convergence rate of conjugate gradient method which is restarted with the
negative gradient direction every n steps may be improved from linear to n-step quadratic [9,28]. In addition,
Beale [8] proposed such restart technique that the restart direction is a combination of the negative gradient and
the previous search directions which includes the second-order derivative information achieved by the search
along the previous directions. Powell [31] introduced a new restart criterion implemented with Beale’s method
and obtained satisfactory numerical results. Considering an idea of Powell, Dai, Liao and Li [14] presented a
new restart technique and designed two conjugate gradient methods based on this technique.

Algorithm 1 TSCG_Conic

Require: initial point zo, initial stepsize o, positive constants e, €1, €2, 0 < 8 < 0 < 1, &1, &a, &3, &4, &5, V1, Va2, U3 €
(07 1), Y4, U5 € [0, 1)7 pPo, Po € (0,1), A1, A2, Amin, Amax
Ensure: optimal z*
: set MaxRestart:=4n, IterRestart:=0, IterQuad:=0, MinQuad:=3, Numnongrad:=0, Cy = fo, do = —go and k := 0.
2 if ||golleo < €, stop.
. calculate the stepsize oy, by (1.5) and (1.6) with af.
: update zpr1 = ok + ardr. If ||gri1]leo < €, stop; otherwise, let IterRestart:=IterRestart+1. If |ry — 1] < 1072,
IterQuad:=IterQuad+1; else, IterQuad:=0.
5: calculate the search direction dgyi. If Numnongrad=MaxRestart, or (IterQuad=MinQuad and IterRestart
#IterQuad), go to 5.6; else if the condition (2.1) holds, or the conditions

B oW N

(skyr)” < 107°lsil*[lyell* and lsi|® > 1.5

hold, go to 5.1; else, go to 5.3.
5.1: if conditions (2.35)—(2.37) hold, compute di+1 by (2.3) and (2.32), set Numnongrad:=Numnongrad+1; else, go
to 5.2.
5.2: if condition (2.35) holds, compute di11 by (1.8) and (2.39), set Numnongrad:=Numnongrad+1; else, go to 5.5.
5.3: if conditions (2.16)—(2.20) hold, compute di+1 by (2.3) and (2.8), set Numnongrad:=Numnongrad+1; else, go to
5.4.
5.4: if conditions (2.22)—(2.26) hold, compute di4+1 by (1.8) and (2.21), set Numnongrad:=Numnongrad+1; else, go
to 5.5.
5.5: if conditions (2.27) and (2.28) hold, compute di+1 by (2.29), set Numnongrad:=Numnongrad+1; else, go to 5.6.
5.6: compute diy1 = —gr+1, set Numnongrad:=0 and IterRestart:=0.
6: if dit1 = —gr+1, calculate afy, by (3.3); otherwise, calculate af,; by (3.4).
7: update Qr41 and Cr41 by (3.5) and (3.6) with (3.7).
8: set k:=k + 1, go to line 3.

In this paper, we incorporate a special restart technique proposed by Dai and Kou [12]. They defined a
quantity

2(frsr1 — fr)
(gl de + gl dr)’

T =

where frr1 = or(ag) and fr = pr(0). If rg is close to 1, they think that the line search function ¢y is close
to some quadratic function. According to their analysis, the exact approach of this quantity is that if there are
continuously many iterations such that rj is close to 1, we restart the algorithm with the negative gradient
direction. In addition, if the number of the iterations since the last restart reaches the MaxRestart threshold,
we also restart out algorithm.

The details of the three-dimensional subspace conjugate gradient method based on conic model are given as
Algorithm 1.
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In the line 5 of Algorithm 1, the conditions [24]
(skyr)® < 107 sel*lyul® and [|se[* > 1.5

indicate that a problem seems to be ill-conditioned and the current iterative point is far away from the minimizer
of the problem, which might lead to the inaccuracy of information. Thus, a quadratic model is more reliable to
approximate the objective function under this circumstance.

4. THEORETICAL RESULTS

In this section, we will prove some important properties of the generated algorithm, including the sufficient
descent property and global convergence property.

4.1. Properties of the search direction

This subsection will make deep discussion on the search directions generated by our algorithm under every
situation. At first, we propose two assumptions as follows.

Assumption 4.1. The objective function f(x) is continuously differentiable and bounded from below on R™.

Assumption 4.2. The gradient function g(z) is Lipschitz continuous on the level set D = {x € R™ : f(x) <
f(zo)}, which means that there exists a positive constant L > 0 satisfying

lg(z) — gl < Lllx —yll, Yo,y € D,
which implies that ||yg|l < Ll sk||-
Next, we can prove some properties of the search directions.

Lemma 4.3. For the search direction dy1 calculated by TSCG_Conic, there exists a constant k1 > 0 such that

T
Gip1dr1 < =kl gria[®. (4.1)
Proof. We will discuss in several parts based on different situations and different approximation models.
Case I. if the negative direction is adopted, i.e. dx41 = —gr+1, then
1
T 2 2
k11 = =llgraall” < =S llgrall”

Case II. if dj41 is determined by (2.29), i.e. the HS direction, combining (2.28), then we have

ng+1dk+1 = —||grt1l* + 5lfsng+1dk
\g,{+1ykg,{+1dk|
< —llgpa |l + =
d{yk
< =gkt l® + 95l grsr |

= —(1 = 95)llgr+1]-
Case ITI(conic). if di4q is calculated by (1.8) and (2.21), Li et al. [24] have proved that

G1dis1 < —Fllgrg ||

where

lizmin{ — Po ,1},
(8 — 6pp max{&,&s})’ 6

and ¢ is a positive constant.
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Case IV (conic). when dj41 is obtained by (2.3) and (2.8), we have

T
| gt |2 t+1

ngr+1dk+1 = ggﬂsk Hi+1
Jr1+1Yk Vi+1
T
1 ||ng+1”2 X 6, 6, ||9713+1||2
= ﬁ 91%+15k 61 0 03 9;%+15k
T\ Gr vk 0203Y )\ gi 19k
Ngral*
- h xay )
Doy (2, 9)
where ¢ & Skl o & Jerst Ang bz o) is a bi dratic function of z and y which
= Hgk+1”2’ = ”9k+1H2 . ,Y) 1S a binary quadratic runction or r and y winic

can be expressed as
h(z,y) = Ya? + 2032y + 0y* + 2022 + 20,y + X.
It is easy to acquire the Hessian of h(z,Y)
_(2Y 264
Hy = (203 29) ’
we have Y > 0 because Ay is positive definite, and the determinant of Hy,

4Y 0 — 402 = 4ppi1|Apsal,

is also positive, so h(z,y) has a minimizer, that is

A
h('ray)min == M
Pk+1
Therefore, we can get
4 A
k k
Gi1drgr < —HQDAh(%y)min < —D|7+1‘||9k+1||4- (4.2)
k+1 k+1Pk+1

Because pi11, Di4+1 and |Ag41| are all positive, we just need to seek for the lower bound of
|[Aryil
Dg11pk+1
that is the upper bounds of Ng, ni and K.

For Ni, we use Cauchy inequality and can get

llgrs1]|?. Since Djyq contains pyy1, we first prove that py,; has an upper bound;

INel = |27 — /M.

S

4 4 4 2 2
[ ’7k+1 <||9k+1|| +4 k-1l |yl +4||gk+1|| 1y |||

V41 gk skl lgihsklst ywT SEYRTR
+2||gk+1||3||yk\| 2||91<+1||3||y1c|||wk| llgr+llllswllwp
sfyk |9;{+18k|Tk Sfym

2 w
ot Ploel® |t o lvel k] My,
Skyk Tk Skyk'rk
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combining (2.14), (2.15) and using cauchy inequality again, we have

2
L L iy + & [|gr+1l
G185kl 1gng15k] Gyl

_ 2 2
wﬁ1<H%+N o ol
Ye+1

1 1
Nig| < —lgr41]?
Nl < 3w |

+2||91c+1||||3/k|| +22+§2 spuk llgesll? n (24 &) [lgrallllsell
Stk G Myell? iy sel Ck llye?
Jr||y1e|\2 (2+&)? si 22+§2} .
SEYk G lyel? Ck
Under condition (2.18), we have Hy"ﬁw <. /&, lsll < L and
stk &1 lyell &1
g1l |yl _ gk 1 llylllg 15kl < lykllllsill lgrsl?
Sk Yk stuelgfosel T stue lgfasel

in the same way,

lgr+l < [k ||9k+1|\2.
lyell = Nlywll g sl
Note that ¢ > 1, the above inequality of |Ng| can be simplified to

1 I —vn skl [yl sl
Ml < gl |22 (5 a2 + o) + 2
My, Ve+1 (7 ST Yk
sEu [N 5T\ llyel?
sz )Pl 1 el +(1+erath) .
vkl lykll?/) 19§y 1snl lyell® /) siyx
Utilizing conditions (2.17)—(2.19) and the expression of K, we can obtain the upper bound
of Nk,
2 2+ 2 2
V)| < g+l ( &2 n 1> ||ka||
M;, &1 81 Yk

—7k+1| H9k+1\|2
Yer1 gy sk

2+&)?  (2+&) &2 1
+< e +6 o +2\/;+5>|
1 2+ £9)? 2+
§p0<2( 552) +8( &52)+2\/§+6>K1|9k+1|2
K
Po

(2482 (2+&) &2
(2 g T +2\/;+6>

Next, the upper bound of ny is acquired by the same way,
[Als L+ (2+&)% siyk 2(2+§2)>
styk G luwll? Ck

2
Sk Yk > llyr||?
luel? ) sFun

1
il < ol

IN

1 2
— 1 2
k||glc+1|| ( +(2+&2)

1 (&4+&+2)?

S i 3
L=z &i

< 6(51 + & +2)2
- 3

K1l|grs|?

K.
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For K1, it is easy to know that

K <max{{,&3}.

Through the above discussion, now we can give the upper bound of py41,

Pr+1 = G max{K, N, ny}
< 2K ||gr1]* x
&2

2+&)? | (2+8&) & (& + & +2)
5% +8 3 +2 3 +6)/po, 6 5%

< 2max{&, & }|gr41]*

2 2
max{ (22220 4 sC28) +2\/§2 +6)/po, 6T
1 1 1 1

max{(2

}

for convenience, we define

(2+£z)2+8(2+52)+2 5—2+6)/po, 6

£ &1 &1

(& + & +2)°
£

Lo £ 2max{(2 }max{&2, &3},

namely, pyi1 < Lollgr+1|>-
Since we have found the upper bound of pg41, then it turns to that of Dgy1. According to
(2.12), Dy, can be expressed as

Dyi1 = $EyeTeprrr My, — Sk = s§yrtie(Miprs1 — MpNy). (4.3)

Using the formula of M} and the upper bounds of pi41, we have

4 3
k 1— k k
|Dk:+1‘ < ||gk+1||25£yk7-k Lo+ Lo |,|13J ” + LOI i +1‘ (2”9 +1||||y ”

Sk YTk Ye+1 Sfym
gsalllsell ||gk+1||2|yk||2> - Ml ]
T 2
S Yk |gk+15K |k lgr+ll
Because
lgw-+1[/lyx* _ gk +1ll1yx1® lgk-+15%] < skl lgr+al®
SEYRTR stuetelgrrisel T okl lgkrisel’
lgrrallllsell _ Ngrsalllsklllgnasel _ llsell® llgrsall®
Sk Uk spyklokrisel 7 styk |grraskl’

and with the upper bound of Ni, the above inequality of D1 can be simplified to

skl n [EA SEyk) L= Vet [|grs1]?
loell  stwe  Nwell?) " sr lgerasl

&2 &2
Hag 6\/;+ 16)K11 .

Diy1 < |lgks1 st yrTe |:2L0 + Lo <2
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Finally, using (2.18) and (2.19), we can get

&2 &
2L + (4{5—1 g 6\/;+ 16) K, 1

9Lo+ (420 42 6\/§+ 16) maX{§2,§3}]

Dii1 < |lgrs1lI”sE yrti

< ||gk+1||23£yk7'k

& &
< Lillgn+1l* s yaTr, (4.4)
where
L2 |21y + (45—1 n 42—? n 6\/§2+ 16) max{gQ,gg}]

With (2.20), (4.2) and (4.4), the sufficient descent property of djy; under this case can be
established by

&5
Gyrdit < I llgk-+1][.
1

Case V(quadratic). when dj1; is calculated by (2.3) and (2.32), or by (1.8) and (2.39), we can prove that

T d < _ ||gk+1||4
Je41Gk4+1 > =
Pk+1

(4.5)
Firstly, if di41 is generated by (1.8) and (2.39), the proof can be referred to [13].
Secondly, if dj11 is generated by (2.3) and (2.32), we can take the same approach as last
case to obtain

H9k+1 H4
Ghs1dis1 = 1 ———h(z,y).
|A1]
Since we have figured out that
Akt
h(x7y)min = M?
Pk+1
it is obvious that 4
lgwsallt

T
Gr1dk+1 < —
Pk+1

With the property (4.5), we are able to give the upper bound of gi1di1 by finding the
upper bound of pi11. Based on the expression of (j and (2.33), it is easy to get

= Ck ||g 4117 < 292l gr1 |- (4.6)

Combining it with (4.5), we finally have
Gip1d1 < _ngkJrlHZ'
+ - 20,

After the above discussion, we can prove that there exists a constant x; such that

gg+1dk+1 < —k1|lgr11 1,
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where
&1

1
= min{#, =, 1 — 5, 2>, —}.
K1 mln{”, 27 57L17 2,92}

The proof is complete.
O

Lemma 4.4. Assume that f satisfies Assumption 4.2. If the search direction dy1 is calculated by TSCG_Conic,
then there exists a constant ko > 0 such that

ldi+1ll < mallgrall- (4.7)
Proof. Similar to Lemma 4.3, the proof is divided into several cases.

Case 1. if dy; is calculated by negative gradient, then there certainly holds

ksl < [lgrsall-

Case II. if the search direction is HS direction, according to Assumption 4.2 and the condition (2.27), we have

ldir1ll = 1| = grr1 + B

[l gk+1 |y [l dw
dgyk

L
<|(14— .
< (145 ) lowal

Case III(conic). if dj41 is calculated by (1.8) and (2.21), Li et al. [24] have proved that

< gkl +

10&2 + 5&1 + bm
|MM4ns(21)n%+m,

poéi

where m = 2no&/po with

2 _
no = max {4 - 3ﬁ07 1 + ;12} ) 5 = max{§2,§37§4}.
Case IV (conic). if diy; is formed by (2.3) and (2.8), we have
k1]l = ltk+19n+1 + pk18k + Verryill
1
< T(|q1|||gk+1|| + lazlllsell + laslllyxl), (4.8)
k+1

so in order to prove Lemma 4.4 under this case, we first need to obtain the lower bound of
Dj.41. Combining (2.13), (2.17), (4.3), and the value range of (j;, we can derive

Diy1 = 8p yr7i My, (G max{K, Ny, ng} — Ni)

[S13 =)

> SLYRTRPO (

K

> Sfympog'

maX{K, Nk,nk} - N}c>
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Then using the above inequality, we can transform (4.8) into

[drtall < (lgulllgrall + lg2llskll + lgsllyx )

Po K ST yrT
o lgrralPllyell* o llgrrallsellllysl
Sgkl{gk12+4 +2
poK” +1ll | lgrall Ty, T
lgr+llll skl llyell|wn] _|_2H9k+1|\||yk|||wk| +pk+1H5k”2
sTypTe Th STk
IISkQWi+2pk+1skllllyk|3+pk+1|ykllz]

T T
Sk YkTk SE Yk Tk Tk

5l gkr1ll lgr41ll? [ (24 &2)? (24 &) M, &
T ( ot +4§1+2\/;+5>

lg+111 256F + 5€3 + 30&1€2 + 1081v/Ex&a + (60 + 20Mp)&1 + 2082 + 20
poKl 5%

Since (2.18) implies that K7 > &;, we finally obtain the upper bound of dg1, that is

+4

IN

IN

2567 + 5&3 + 30&1&2 + 10&61vE1 &2 + (60 + 20M)Er + 20&5 + 20

di1]| <
i ks

lgk+1ll-

For convenience, we define

L2 (255% + 5635 + 30&1&2 + 1061v/E1&2 + (60 + 20Mp)€1 + 20&2 + 20)
B po? 7

namely, di+1 < Lo|grt1]-
Case V(quadratic). if diy; is formed by (1.8) and (2.39), it is similar to Lemma 4 in [23]. According to their
proof, we can get

20
k1]l < 197”91%1”-
1

Case VI(quadratic). if di4 is calculated by (2.3) and (2.32), we have

1
k1l = — (aulllgr+ll + lazlllse ]l + lasllyxl)-
| A1l

Therefore, it is necessary to seek for the lower bound of |Aj41|. By combining (2.34)
with (2.35) and (2.36), we can easily acquire

6
| Apy1] > 2*5791193||9k+1||2Hyk||4-

According to the above inequality and Cauchy inequality, it follows that,

25 lsel® | llsxl
dk S |: k k k 4 (2 +3
H +1H 6191193Hgk+1\|2||ka4 p +1Hg 'HHHy H S;‘gyk ||Z/kH

2 2
ANl +4||31cH [yl )]

g1 13 ye||* <10 +12
51 Yk (sTyx)?

Based on (4.6) and (2.35), it implies that



AN ALTERNATIVE THREE-DIMENSIONAL SUBSPACE METHOD BASED ON CONIC MODEL 795

A

25| gr1 | [V W2 P2 U
d ——— 10+ 124/ —4+4—+4—+6—
” k+1|| - 69193 + Al + Al + Al + Al

12591 + 150/¥192 + 17594
< 2 Hgk-HHv
3070,

likewise, we set

12591 + 150/ Y192 + 1750

L. 2
3 30203

According to the above analysis, the proof of Lemma 4.4 is completed by setting

10&5 + 5¢1 + 5m L 20
= — |, 1,14+ —,Lo,—,L3 .
Ko max{( Pol? ), ) +1917 271917 3

4.2. Convergence analysis

In this subsection, we will give the global convergence of the presented algorithm for general functions.

Lemma 4.5. Suppose «y, is generated by line search (1.5) and (1.6), and f(x) satisfies Assumption 4.2, then

o (L—0)lgidi|

a2 (4.9)
Ll |?
Proof. According to the line search (1.5), we can easily obtain
(0 = Dgir di < (9isr — 96) T di = yii die < lyrllldill < Lllselllldell = cnLlldk]?,
because 0 — 1 < 0 and g} dj < 0, it is obvious that
o s (L= allgldi]
~ Lldl?
O

Theorem 4.6. Suppose the objective function f(x) satisfies Assumption 4.1 and Assumption 4.2, and sequence
{zy} is generated by TSCG_Conic, then we have

lim ||gg| = 0. (4.10)
k—o00
Proof. According to (4.9), (4.1) and (4.7), it follows

1—0)d (9 dp)? (1 —0)6k?
Saugldy, < _( k < _ 1 2 Pl
Orgy Ok > L Hdk||2 = LK}Q ||gk‘|| ||gk|| )

& (1-0)6x?

where T' ,
K2

then combining (1.6), we have

fret1 < Ck + Sagldy, < C — T)|gr|*. (4.11)
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Notice (3.6) and (3.7), although Qo, Q1, Q2 and 1, 71, 72 are omitted in comparison to the standard ZH line
search, we could assume that Qo = 1, Q1 = 2, Q2 = 3 and 179 = 1 = 12 = 1. For large scale problem, its
dimension n is tremendous so that mod (k,n) # 0 always holds for small k, hence the assumption of 79, 71
and 75 is reasonable according to the update formula of 7. Moreover, all these quantities are in accord with the
update formula of Q41 in (1.7), hence such an assumption is desirable in order to simplify the computation of
Qk+1. Therefore, from (3.6) it is easy to acquire that

kE J
Qr+1 =1+ZH77;€,,», k=0,1,2...

j=0i=0
Combining (3.7), we can derive the general formula of Qg1
k/n
1—|—77k/"+n277i, mod(k,n) =0,
Qri1 = = Lk/n)

1+ mod(k,n) + nt*/™ 4 n Z n', mod(k,n) # 0,
i=1

where || denotes the floor function. Thus, it is easy to get the upper bound of Qp41,

lk/n|+1
Qi1 <14+ mod(k,n) + 1 +pth/m+t 4 p Z n
=1
lk/n]+1 _
<l4n++1) > o
=1
k+1 _
<l4n+m+1)) 7
=1
k+1 _
< (1 +n)Z771
=0
< 1+n
ST,
= (4.12)

where H = %
When &k > 3, Combining (1.7), (4.11) and (4.12), we get

Jot1 = Ck
k+1

T
Cr41=Ck + < Ck — ﬁHngZa

which means T
E||gk||2 < Ok = Ca- (4.13)
When k < 3, (1.6) and (3.5) implies that
CkJrl < fk+1 + Og(Ck — fk+1) =Cr+ Ol(karl — Ck) < Cj.

Hence CY, is monotonically decreasing. According to the Lemma 1.1 in [45], we have f;11 < Cyy1 for each k > 3,
and (3.5) indicates that fr11 < Cgy1 for each k < 3. Thus, with the assumption that f is bounded below, Cj
is certainly bounded from below.
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Summing up the above analysis and (4.13), we can finally obtain that

oo

T 2
S ol < oo,
k=0
which implies
lim [|gx[|* = 0.
k—o0

The proof is completed. O

Under the assumptions that objective function is continuously differentiable, bounded from below and gra-
dient function is Lipschitz continuous, we have established the sufficient descent property of our directions.
Moreover, our algorithm possesses the global convergence that

lim [|gx[|* = 0.
k—oo

Since we will compare our algorithm with SMCG_Conic [24], CONIC_CG3 [36] and SMCG_BB [26]in numer-
ical experiments, we briefly introduce the convergence properties of these algorithms. Under the same assump-
tions, the directions of SMCG_Conic, CONIC_CG3 and SMCG_BB also satisfy the sufficient descent property,
and SMCG_Conic shares the same global convergence with TSCG_Conic that kli»n;o llgx||? = 0 while CONIC_CG3

and SMCG_BB only have the property that

liminf ||gx|| = 0.
k—oo
But SMCG_BB can achieve the property that klim llgx]|> = 0 if the objective function is convex.

5. NUMERICAL RESULTS

In this section, the results of the numerical experiments are showed below. The unconstrained test functions
were taken from [1] with the given initial points. To prove the efficiency of the proposed TSCG_Conic algorithm,
we compare its numerical performance with SMCG_Conic, CONIC_CG3 and SMCG_BB. And the performance
profile proposed by Dolan and Moré [18] is used to evaluate the performance of these methods. The dimension
of the test functions is 10,000. All the programs were written in C code.

For each problem p in the test set P and each solver s in the solver set S, [18] defines the performance ratio

tp.s
min{t, s :s €S}’

r(p,s) =

where
tp s = CPU time required to solve problem p by solver s.

It is evident that r(p,s) > 1, and the equality holds if and only if solver s solves problem p with the least
computing time. Based on r(p, s), Dolan and Moré defines

1.
Por(ps)<r = ,’,TSlze{p €P:r(ps) <7},
D

which gives an overall assessment of the performance of the solver s. The function P,..(, )<, depicts the
probability for solver s of which the performance ratio r(p,s) is within a factor 7, and is the cumulative
distribution function for the performance ratio. In addition to CPU time, this function can be used with other
measures, including the number of iterations, function evaluations and gradient evaluations.
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FIGURE 1. Performance profile based on the number of iterations.

SMCG_Conic is a two-dimensional subspace minimization conjugate gradient algorithm based on conic model,
and is a pioneer one that combines subspace technique with conic model to seek for the search direction.
The numerical experiments in [24] show that the performance of SMCG_Conic is very efficient. Since the
biggest difference between TSCG_Conic and SMCG_Conic is the dimension of the used subspace, the comparison
between TSCG_Conic and SMCG_Conic can not only reflect the high efficiency of our algorithm, but also reveal
the influence to the numerical result due to the change of dimension for the adopted subspace in the subspace
minimization conjugate gradient algorithm.

Combining the subspace Q11 = Span{gxi1, Sk, Sk—1}, [36] develops a three-dimensional subspace mini-
mization conjugate gradient algorithm based on conic model CONIC_CG3, and has shown its high efficiency.
Our algorithm TSCG_Conic is also based on three-dimensional subspace and the difference is construction of
subspace, hence we compare it with CONIC_CGS3.

As for SMCG_BB, it is an efficient subspace minimization conjugate gradient method, and successfully apply
the idea of BB method and BBCG method which are employed in our algorithm as well. Besides, our scheme
of the choice for initial stepsize is a modification of that in SMCG_BB. Thus, it is also meaningful to compare
the numerical performance of TSCG_Conic and SMCG_BB.

For the initial stepsize of the first iteration, we adopt the adaptive strategy used in [23]. The other parameters
of TSCG_Conic are selected as follows.

=107, e, = 1073, e = 104, § = 0.001, o = 0.9999,

Amin = 10730, A = 1080, A} = 7 x 1078, Ay = 0.05, po = 0.3, po = 0.9,
£=02x102, €a=8x 10%, €3 =4 x 108, £, =7 x 107, & = 0.1,

Y1 =5 x 10_7, ¥y =3 % 103, 93 =09, 94 =7 X% 10_3, V5 = 1075,

SMCG_Conic, CONIC_CG3 and SMCG_BB use the original parameters in their papers respectively. In addition
to stopping when the stopping criterion ||gx||c < € holds, the algorithm also stops when the number of iterations
exceeds 200,000.

Figure 1 depicts the performance based on the number of iterations for the three methods. It shows that
TSCG_Conic performs better than three other algorithms, although it is a little inferior to them when 7 < 1.4.
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03| b
0.2 TSCG_Conic | -
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01} — — — -SMCG_Conic |
o CONIC_CG3
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FIGURE 2.
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FI1GURE 3. Performance profile based on the number of gradient evaluations.

In Figure 2, we observe that TSCG_Conic and SMCG_BB outperforms SMCG_Conic and CONIC_CG3 on
the number of function evaluations. Besides, TSCG_Conic and SMCG_BB can solve about 50% of test problems
with the least number of function evaluations, while SMCG_Conic and CONIC_CG3 solve about 35%.

Similar to Figures 1 and 3 illustrates that TSCG_Conic lags behind in comparison with three other algorithms
when 7 < 1.4, but is competitive to SMCG_BB and superior to SMCG_Conic and CONIC_CG3 when 7 > 1.4.

As regards the CPU time, we can see from Figure 4 that TSCG_Conic and SMCG_BB has an appreciable
improvement on SMCG_Conic and CONIC_CG3 when 7 > 1.2, which shows the high efficiency of TSCG_Conic.

For the 80 test problems, the numerical results show that while TSCG_Conic may perform a little worse than

other algorithms for the case that 7 is very small, it overall has significant improvements over SMCG_Conic
and CONIC_CGS3, and is competitive to SMCG_BB. Besides, TSCG_Conic can solve more problems than
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0.2} TSCG_Conic | -
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FIGURE 4. Performance profile based on the CPU time.
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FI1GURE 5. The natural logarithm of objective function value vs. CPU time.
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SMCG_Conic, which might show the advantage of the three-dimensional subspace minimization method com-
pared with the two-dimensional one. In a word, the TSCG_Conic is an efficient algorithm for solving uncon-
strained optimization problem.

To present the performance of these algorithms in numerical experiments more intuitively, we select three
test functions and depict the figures about the objective function value vs. CPU time in Figure 5. For better
visualization, we will use the natural logarithm of the objective function value as the y-axis.

6. CONCLUSION

(i) This paper has proposed a new three-dimensional subspace minimization conjugate gradient method based
on conic model, the sufficient descent property of the search direction and the global convergence of this
method are obtained under some suitable assumptions.

(ii) The selection of approximation model is alternative depending on whether certain criterions are satisfied.
Besides, the estimates of some quantities containing Bj1 are various. The strategies of initial stepsize and
nonmonotone line search are exploited which are beneficial to the convergence and efficiency.

(iii) From the numerical results and theoretical analysis, TSCG_Conic is competitive and promising.
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