COMPLEXITY RESULTS ON k-INDEPENDENCE IN SOME GRAPH PRODUCTS

MARCIA CAPPELLE*, ERIKA COELHO, OTAVIO MORTOSA AND JULIANO NASCIMENTO

Abstract. For a positive integer k, a subset S of vertices of a graph G is k-independent if each vertex in S has at most $k - 1$ neighbors in S. We consider k-independent sets in two graph products: Cartesian and complementary prism. We show that the problem of determining k-independence remains NP-complete even for Cartesian products and complementary prisms. Furthermore, we present results on k-independence in the Cartesian product of two paths, known as grid graphs.

Mathematics Subject Classification. 05C69, 05C76.

Received February 8, 2023. Accepted May 2, 2024.

1. Introduction

We consider finite, simple, and undirected graphs. For a graph G, the vertex set and the edge set are denoted $V(G)$ and $E(G)$, respectively. We use standard notation and terminology (see Bondy and Murty [5] for graph-theoretic terms not defined here).

A dominating set of a graph G is a subset $D \subseteq V(G)$ such that every vertex in G that is not in D is adjacent to at least one member of D. An independent set of G is a subset $S \subseteq V(G)$ such that its vertices are pairwise non-adjacent in G. An independent set S is maximal if it is a dominating set, and maximum if it has the largest possible cardinality. The independence number of a graph G, denoted by $\alpha(G)$, is the maximum cardinality of an independent set of G.

Fink and Jacobson [16] generalized the concepts of independent and domination sets as follows. Let k be a positive integer and S be a subset of vertices of a graph G. We say that S is k-independent if the maximum degree of the subgraph induced by S is at most $k - 1$; and we say that S is k-dominating if every vertex of $V(G) - S$ has at least k neighbors in S. A k-dominating set S is minimal if, for every vertex $v \in S$, $S - \{v\}$ is not k-dominating in G. The k-domination number $\gamma_k(G)$ is the minimum cardinality of a k-dominating set of G. A k-independent set S is maximal if for every vertex $v \in V(G) - S$, $S \cup \{v\}$ is not k-independent. The minimum cardinality of a maximal k-independent set of a graph G is denoted by $i_k(G)$ and its maximum cardinality is denoted by $\alpha_k(G)$, called the k-independence number. A k-independent set of G with maximum cardinality is called an $\alpha_k(G)$-set. Thus, for $k = 1$, the 1-independent and 1-dominating sets are the classical independent and dominating sets, respectively. Hence $i_1(G) = \iota(G)$, $\alpha_1(G) = \alpha(G)$, and $\gamma_1(G) = \gamma(G)$. A j-independent set

Keywords. Independence number, k-independent set, Cartesian product, complementary prism.

* This research is partially supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).
Instituto of Informática, Universidade Federal of Goiás, Goiânia, Brazil.
*Corresponding author: marcia@inf.ufg.br

© The authors. Published by EDP Sciences, ROADEF, SMAI 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
is also a k-independent set for $k \geq j$. Moreover, every set with k vertices is k-independent; so $i_k(G) \geq k$ when $|V(G)| \geq k$.

Favaron et al. [15] called k-dependent domination a set that is $(k+1)$-independent and dominating simultaneously. They established relationships between k-dependent domination and concepts of classical domination. Blidia et al. [4] gave some relations between $\alpha_k(G)$ and $\alpha_j(G)$ and between $i_k(G)$ and $i_j(G)$ for $j \neq k$. They studied two families of extremal graphs for the inequality $i_2(G) \leq i(G) + \alpha(G)$, gave an upper bound on $i_2(G)$, and a lower bound when G is a cactus. A cactus is a connected graph in which any two simple cycles have at most one vertex in common. Chellali et al. [9] studied graphs G for which the removal of any edge e yields a graph with the same k-independence number, that is, $\alpha_k(G-e) = \alpha_k(G)$. For a graph G on n vertices and average degree d, Caro and Hansberg [8] proved that $\alpha_k(G) \geq \frac{kn}{|V(G)|+k}$. This bound was improved by Kogan [26], who proved that $\alpha_k(G) \geq \frac{kn}{d+k}$ and, for $k = 2, 3$. Furthermore, he characterized the graphs for which the equality holds. Mao et al. [27] considered k-dependence on the lexicographic, strong, Cartesian, and direct products and presented several upper and lower bounds for these products of graphs. Aram et al. [12] studied 2-independence on trees. Bounds on k-independence were studied by Wang, Liu, and Liu [35] in the context of Nordhaus-Gaddum-Type results. For a given fixed integer $k \geq 1$, the k-INDEPENDENT SET decision problem is defined as follows.

k-INDEPENDENT SET

Instance: A graph G and a positive integer ℓ, where $\Delta(G) \geq k$ and $\ell \geq k$.

Question: Does G have a k-independent set of size at least ℓ?

For short, we write INDEPENDENT SET, when $k = 1$. The INDEPENDENT SET is a well-known NP-complete problem [17], Jacobson and Peters [24] established the NP-completeness of k-INDEPENDENT SET, for any fixed $k \geq 2$, and also provided linear-time algorithms for solving k-INDEPENDENT SET in trees and series-parallel graphs for all k. For more information on k-independence and k-domination, see a survey by Chellali et al. [10].

The Cartesian product of two graphs G and H is a graph denoted as $G \square H$, whose vertex set is $V(G) \times V(H)$ and two vertices (u,v) and (u',v') are adjacent precisely if $u = u'$ and $vv' \in E(H)$, or $uu' \in E(G)$ and $v = v'$. The graphs G and H are called factors of $G \square H$. Cartesian product graphs are widely studied in the literature, having several properties that involve the structure of the factors in a meaningful way [20]. The disjoint union of two graphs is a graph constructed from the unions of their respective vertex sets and edge sets. The complementary prism of a graph G, denoted by $G\overline{G}$, is the graph formed from the disjoint union of G and its complement \overline{G} by adding the edges of the perfect matching between the corresponding vertices of G and \overline{G}. Note that $V(G\overline{G}) = V(G) \cup V(\overline{G})$. The complementary prism of C_5, the graph $C_5 \overline{C_5}$, known as Petersen Graph, can be seen in Figure 1. The complementary prism is a particular case of a more general product called complementary product [22], which also generalizes Cartesian products.

Haynes et al. [21] investigated several graph theoretic properties of complementary prisms, such as independence, distance, and domination. Duarte et al. [13] proved that the clique, independent set and k-domination problems remain NP-complete for complementary prisms. Camargo, Souza, and Nascimento [7] obtained results regarding parameterized complexity on complementary prisms. In particular, they showed that when parameterized by the solution size, the clique and independent set problems are fixed-parameter tractable (FPT) but do
not admit polynomial kernel under some assumptions. Barbosa et al. [2] presented results for maximal independent sets in complementary prisms whose maximal independent sets are also maximum (known as well-covered graphs).

We consider k-independent sets in two graph products: Cartesian and complementary prism. We show that the problem of determining k-independence remains \mathbf{NP}-complete even for Cartesian products and complementary prisms. Furthermore, we present results on k-independence in the Cartesian product of two paths, known as grid graphs. Some results in this paper were previously presented in [30].

2. Preliminaries

For a positive integer i we denote $[i]$ the set $\{1, 2, \ldots, i\}$. Two graphs $G = (V, E)$ and $G' = (V', E')$ are isomorphic if and only if there is a bijection, called isomorphism function, $\varphi : V(G) \rightarrow V'(G')$ such that $uv \in E(G)$ if and only if $\varphi(u)\varphi(v) \in E'(G')$, for every $u, v \in V(G)$. We denote by $G \cong G'$ if G and G' are isomorphic.

Let G be a graph. For a vertex $v \in V(G)$, we denote its open neighborhood by $N_G(v)$, and its closed neighborhood by $N_G[v] : = N_G(v) \cup \{v\}$. For a set $U \subseteq V(G)$, let $N_G(U) = \bigcup_{v \in U} N_G(v) - U$, and $N_G[U] = N_G(U) \cup U$. The degree of a vertex $v \in V(G)$ on a set $U \subseteq V(G)$, denoted by $d_U(v)$, that is, $d_U(v) = |N_G(u) \cap U|$. If $U = V(G)$, we simply write $d_G(u)$, or $d(u)$ when G is clear from the context. The maximum degree of G is denoted by $\Delta(G)$.

We denote by $G \cup H$ the disjoint union of two graphs G and H. For an integer $\ell \geq 2$, the graph ℓG is obtained by the disjoint union of ℓ copies of G. The join of two graphs G and H, denoted by $G + H$, is the graph with $V(G + H) = V(G) \cup V(H)$ and $E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G) \text{ and } v \in V(H)\}$.

Let $G \Box H$ be the Cartesian product of the graphs G and H with $V(G) = \{u_1, u_2, \ldots, u_n\}$ and $V(H) = \{v_1, v_2, \ldots, v_m\}$. For $i \in [n]$, we refer to row \mathcal{L}_i as the subset of vertices $\{(u_i, v_1), (u_i, v_2), \ldots, (u_i, v_m)\}$ of $V(G \Box H)$, and for $j \in [m]$, we refer to column \mathcal{C}_j as the subset of vertices $\{(u_1, v_j), (u_2, v_j), \ldots, (u_n, v_j)\}$ of $V(G \Box H)$. See Figure 2 for an illustration. The graph induced by \mathcal{L}_i, denoted by $G[\mathcal{L}_i]$, is isomorphic to G and the graph induced by \mathcal{L}_i, denoted by $G[\mathcal{C}_j]$, is isomorphic to H. Let $S \subseteq V(G)$. The correspondence of S to the column \mathcal{C}_j is the set $S \mathcal{C}_j = \{(u_i, v_j) \in V(G \Box H) : u_i \in S\}$.

To simplify our discussion of complementary prisms, we say simply G and \overline{G} to refer to the subgraph copies of G and \overline{G}, respectively, in $G \overline{G}$. Also, for a vertex v of G, we let \overline{v} be the corresponding vertex in \overline{G}, and for a set $X \subseteq V(G)$, let \overline{X} be the corresponding set of vertices in $V(\overline{G})$.

![Figure 2. Graphs G, H, and the Cartesian product $G \Box H$. Rectangles \mathcal{L}_2 and \mathcal{C}_3 represent Row 2 and Column 3 of $G \Box H$, respectively.](image)
3. Cartesian Products

3.1. Complexity Results

A celebrated result stating bounds for the independence number of Cartesian product graphs appeared in 1963 by Vizing [34].

Theorem 3.1. [34] For any graphs G and H,
\[
\alpha(G \square H) \leq \min\{\alpha(G)|V(H)|, \alpha(H)|V(G)|\}, \\
\alpha(G \square H) \geq \alpha(G)\alpha(H) + \min\{|V(G)| - \alpha(G), |V(H)| - \alpha(H)|\}.
\]

This result has been improved by other researchers when G or H belong to specific graph classes such as bipartite [19], caterpillar [28], and odd cycle [25]. In particular, Jia and Slutzki [25] presented an algorithm that returns a maximal independent set of $G \square H$, which, for certain graphs, offers a superior lower bound compared to Vizing’s. Bounds for $\alpha(G \square H)$ have been established using the radius of its factors [1], with equalities noted when either G or H admit specific homomorphisms to independence graphs [6, 23]. In terms of complexity, Berge [3] and Nešetřil [31] observed an equivalence between the independence number of Cartesian products and the vertex coloring problem. A graph G is q-colorable if the vertices of G can be colored with at most q colors such that no adjacent vertices receive the same color.

Theorem 3.2. [3, 31] A graph G of order n is q-colorable if and only if $\alpha(G \square K_q) = n$.

Since deciding whether a graph G is q-colorable is NP-complete for $q \geq 3$ and polynomial time solvable otherwise [17], Theorem 3.2 implies that deciding whether $\alpha(G \square K_q) = n$ is NP-complete for $q \geq 3$. On the other hand, for $q = 2$ (resp. $q = 1$), it is clear that $\alpha(G \square K_q) = n$ if and only if G is bipartite (resp. $G \simeq K_n$), which is polynomial-time solvable. In addition, structural relations between the independence number of Cartesian product graphs and vertex coloring have been studied by Pleammani et al. [32].

Regarding the k-independence number, Mao et al. [27] extended Vizing’s result, proving tight upper and lower bounds for α_k of $G \square H$. Moreover, they applied these bounds when analyzing Cartesian products of various graph classes, including $K_n \square K_m$, $P_n \square P_m$, and $C_n \square C_m$.

As far as we know, the complexity of determining $\alpha_k(G \square H)$ has not been settled, and there is no NP-completeness result for $\alpha(G \square H)$ when H has two vertices. Thus, we fill this gap by showing that determining α_k of a graph, for every fixed $k \geq 1$, remains hard within the class of Cartesian product of graphs. Theorems 3.3 and 3.8 deal with the cases $k \geq 2$ and $k = 1$, respectively.

Theorem 3.3. The k-independent set problem is NP-complete when restricted to the Cartesian product of two nontrivial graphs, for any fixed $k \geq 2$.

Proof. Since k-INDEPENDENT SET is in NP [24], we just show its NP-hardness. We perform a reduction from k-INDEPENDENT SET on general graphs, which is NP-complete [24].

Let (G, ℓ) be an instance of k-INDEPENDENT SET, with $|V(G)| = n \geq 2$ and, since k is fixed, we may consider $\ell \geq k$. We construct a graph $H \square K_k$ as follows. First, let B be a graph arising from kn disjoint copies of K_2. The construction of H is obtained by a join of G and B. Finally, we compute $H \square K_k$. An example of this construction follows in Figure 3. We denote each copy of H in $H \square K_k$ by H_i, $i \in [k]$. Similarly, each copy of G is denoted by A_i, while each copy of B is denoted by B_i. Let $A = \bigcup_{i=1}^{k} V(A_i)$ and $B = \bigcup_{i=1}^{k} V(B_i)$.

We show that G has a k-independent set of order at least ℓ if and only if $H \square K_k$ has a k-independent set of order at least $\omega + 2k^2n - 2kn$.

Given a k-independent set S of G with order at least ℓ, let $X = S^{A_1} \cup (B - V(B_1))$. Since $A_1 \simeq G$ and $\Delta(K_2 \square K_{k-1}) = k - 1$, it follows that X is a k-independent set of $H \square K_k$. Recall that $|X| = |S^{A_1}| + |B| - |V(B_1)| \geq \omega + 2k^2n - 2kn$.

For the converse, let X be a k-independent set of $H \square K_k$ with $|X| \geq \omega + 2k^2n - 2kn$. We prove some claims first.
Claim 3.4. \(\ell + 2k^2n - 3kn \leq |X \cap B| \leq 2k^2n - 2kn. \)

Proof of Claim 3.4. Recall that, by construction, \(|A| = kn.\) For the lower bound, since \(|X| \geq \ell + 2k^2n - 2kn,\) we have that \(|X \cap B| \geq |X| - |A| = \ell + 2k^2n - 2kn - kn = \ell + 2k^2n - 3kn.\)

For the upper bound, recall that \(|E(B)| = kn, |V(B)| = 2kn\) and denote \(V(B) = \{b_1, b_2, \ldots, b_{2kn}\}.\) Let \(b_ib_j \in E(B),\) for \(i, j \in [2kn].\) We aim to determine an upper bound for \(|(L_i \cup L_j) \cap X|\). We consider whether every vertex of row \(L_i\) is in \(X.\) If \(L_i \cap X = L_i,\) then \(H \square K_k[L_i] \simeq K_k\) implies that \(d_X(v) = k - 1,\) for every \(v \in L_i.\) Since \(X\) is a \(k\)-independent set, we obtain that \(L_j \cap X = \emptyset\) and \(|(L_i \cup L_j) \cap X| = k.\) Otherwise, that is, \(L_i \cap X \neq L_i\) and \(L_j \cap X \neq L_j,\) we have that \(|L_i \cap X| \leq k - 1\) and \(|L_j \cap X| \leq k - 1.\) Consequently \(|(L_i \cup L_j) \cap X| \leq 2k - 2.\) Thus, \(|E(B)| = kn\) implies that \(|X \cap B| \leq kn(2k - 2) = 2k^2n - 2kn.\) \(\square\)

Claim 3.5. \(\ell \leq |X \cap A| \leq kn.\)

Proof of Claim 3.5. The upper bound is clear since \(|A| = kn.\) For the lower bound, by applying Claim 3.4, we have \(|X \cap A| = |X| - |X \cap B| \geq \ell + 2k^2n - 2kn - (2k^2n - 2kn) = \ell.\) \(\square\)

Claim 3.6. There exists \(j \in [k]\) such that \(X \cap V(A_j) \neq \emptyset\) and \(j\) is unique.

Proof of Claim 3.6. The existence of \(j \in [k]\) such that \(X \cap V(A_j) \neq \emptyset\) is implied by Claim 3.5. So, it remains to prove that \(j\) is unique. Suppose, by contradiction, that there exist distinct \(j, j' \in [k]\) such that \(X \cap V(A_j) \neq \emptyset\) and \(X \cap V(A_{j'}) \neq \emptyset.\)

Since \(|X \cap V(A_j)| \geq 1\) and \(|X \cap V(A_{j'})| \geq 1\) and \(X\) is a \(k\)-independent set, we have that \(|X \cap V(B_j)| \leq k - 1\) and \(|X \cap V(B_{j'})| \leq k - 1.\) Let \(F = A \cup (B - (V(B_j) \cup V(B_{j'}))).\) We have that

\[
|X \cap F| = |X| - |X \cap (V(B_j) \cup V(B_{j'})|)
\geq |X| - 2(k - 1)
= \ell + 2k^2n - 2kn - 2k + 2
> 2k^2n - 2kn - 2k
\geq 2k^2n - 3kn
\text{ (since } n \geq 2\)
= |F|.
\]

Since \(|X \cap F| > |F|,\) we reach a contradiction. \(\square\)

Claim 3.7. There exists \(j \in [k]\) such that \(X \cap V(B_j) = \emptyset\) and \(j\) is unique.

Proof of Claim 3.7. We first prove the existence. Suppose, by contradiction, that for every \(j \in [k], X \cap V(B_j) \neq \emptyset.\) The definition of \(k\)-independent set implies that \(|X \cap V(A_j)| \leq k - 1,\) for every \(j \in [k].\) By Claim 3.6, we obtain that \(|X \cap A| \leq k - 1.\) Thus,

\[
|X \cap B| = |X| - |X \cap A|
\geq \ell + 2k^2n - 2kn - k + 1
\geq 2k^2n - 2kn + 1
\text{ (since } \ell \geq k\)
> 2k^2n - 2kn,
\]

a contradiction to Claim 3.4.

Now, we show the uniqueness. Suppose, by contradiction, that there exist distinct \(j, j' \in [k]\) such that \(X \cap V(B_j) = \emptyset\) and \(X \cap V(B_{j'}) = \emptyset.\) This implies that \(|X \cap B| \leq 2kn(k - 2) = 2k^2n - 4kn.\) Hence,

\[
|X \cap A| = |X| - |X \cap B|
= \ell + 2k^2n - 2kn - (2k^2n - 4kn)
\geq \ell + 2kn
> n
\text{ (since } k \geq 2\).
\]
By Claim 3.6, we have that \(|X \cap \mathcal{A}| \leq k - 1\), if \(X \cap \mathcal{A} \subseteq V(A_j) \cup V(A_{j'})\), or \(|X \cap \mathcal{A}| \leq n\), otherwise. Then, we get a contradiction. \(\square\)

At this point, we know that \(\ell \leq |X \cap \mathcal{A}| \leq n\). Let \(j \in [k]\) such that \(X \cap V(A_j) \neq \emptyset\) (by Claim 3.6 we know that \(j\) is unique). Then \(\ell \leq |X \cap V(A_j)| \leq n\).

Since \(\ell \geq k\), \(|X \cap V(A_j)| \geq k\), and given that \(X\) is a \(k\)-independent set, we have that \(X \cap V(B_j) = \emptyset\).

Therefore, \(X \cap (\mathcal{B} - V(B_j))\) is a \(k\)-independent set in \(H \Box K_k\), as well as \(X \cap V(A_j)\). Finally, since \(A_j \simeq G\), \(X \cap V(A_j)\) gives to \(G\) a \(k\)-independent set of order at least \(\ell\). \(\square\)

Recall that the construction used for Theorem 3.8 when applied to \(k = 1\) produces a Cartesian product graph with a trivial factor. Since \(G\) is isomorphic to \(G \Box K_1\), this result is already known to be \(\text{NP}\)-complete [24]. Then, employing a specific construction, we demonstrate that \text{\(k\)-INDEPENDENT SET}, for \(k = 1\), is \(\text{NP}\)-complete on the Cartesian product of two nontrivial graphs.

Theorem 3.8. The \textsc{independent set} problem is \(\text{NP}\)-complete when restricted to the Cartesian product of two nontrivial graphs.

Proof. We show the \(\text{NP}\)-hardness of the problem by performing a reduction from \textsc{independent set} on general graphs [17].

Let \((G, \ell)\) be an instance of \textsc{independent set}, with \(|V(G)| = n\). Let \(B = (n + 1)K_1\) and \(H\) be a graph arising from the join \(G + B\). We use \(H\) to compute \(H \Box K_2\). Each copy of \(G\) (resp. \(B\)) in \(H \Box K_2\) is denoted by \(G_i\) (resp. \(B_i\)), \(i \in [2]\). We show that \(G\) has an independent set of order at least \(\ell\) if and only if \(H \Box K_2\) has an independent set of order at least \(\ell + n + 1\).

Let \(S\) be an independent set of \(G\) with \(|S| \geq \ell\). It is easy to verify that \(X = S^{G_1} \cup V(B_2)\) is an independent set of \(H \Box K_2\), since \(S\) (resp. \(V(B_i)\), \(i \in [2]\)) is an independent set itself, and by construction, no vertex in \(G_1\) is adjacent to a vertex in \(B_2\). Recall that \(|X| \geq \ell + n + 1\).

Let \(X\) be an independent set of \(H \Box K_2\) with order at least \(\ell + n + 1\). Since \(X\) is an independent set, by construction, we have that \(|X \cap \mathcal{L}_i| \leq 1\), for every row \(\mathcal{L}_i\) of \(H \Box K_2\). Thus, \(\ell \leq |X \cap V(G_1 \cup G_2)| \leq n\) and
$\ell + 1 \leq |X \cap V(B_1 \cup B_2)| \leq n + 1$. Let $i \in [2]$. By construction, we have that $uv \in E(H \Box K_2)$, for every $u \in V(G_i)$ and for every $v \in V(B_i)$. This implies that $X \cap V(G_1) \neq \emptyset$ if and only if $X \cap V(B_1) = \emptyset$. Consequently, the cardinality of X implies that either $X \cap V(G_1) \neq \emptyset$ or $X \cap V(G_2) \neq \emptyset$. Similarly, either $X \cap V(B_1) \neq \emptyset$ or $X \cap V(B_2) \neq \emptyset$. This implies that $X \cap V(G_1)$ gives an independent set to G of order at least ℓ. \hfill \Box

3.2. Results on grids

We denote $V(P_n) = \{u_1, u_2, \ldots, u_n\}$ and $V(P_m) = \{v_1, v_2, \ldots, v_m\}$, where two consecutive vertices in the sequence are adjacent. A Cartesian product of two paths is known as grid. Mao et al. [27] presented lower and upper bounds for the k-independence number in grid graphs.

Proposition 3.9. [27] Let $P_n \square P_m$ be a grid with $3 \leq n \leq m$.

1. If $k \geq 5$, then $\alpha_k(P_n \square P_m) = mn$.
2. If $k = 3, 4$, then $n \left\lceil \frac{n}{2} \right\rceil \leq \alpha_k(P_n \square P_m) \leq mn$.
3. If $k = 2$, then $n \left\lceil \frac{n}{2} \right\rceil + b \leq \alpha_k(P_n \square P_m) \leq (2 \left\lceil \frac{n}{2} \right\rceil + b)n$, where $b = m \mod 3$.
4. If $k = 1$, then $n \left\lceil \frac{n}{2} \right\rceil \leq \alpha_k(P_n \square P_m) \leq n \left\lceil \frac{n}{2} \right\rceil$.

The parameters α_k and γ_k are related. For instance, if S is a q-dominating set of a graph G of maximum degree $\Delta \geq q$, then $V(G) - S$ is a $(\Delta - q + 1)$-independent set.

Theorem 3.10. [14] For every graph G and positive integer $k \leq \Delta$, $\alpha_k(G) + \gamma_{\Delta-k+1}(G) \geq n$. Moreover, if G is d-regular, then $\alpha_k(G) + \gamma_{d-k+1}(G) = n$.

Although the problem of determining the domination number of a proper subgraph of $P_n \square P_m$ is NP-complete [11], Gonalves et al. [18] completely solved the problem of determining the domination number of grids. For grids $P_n \square P_m$, with $16 \leq n \leq m$, they proved the result below.

Theorem 3.11. [18] Let $P_n \square P_m$ be a grid with $16 \leq n \leq m$. Then

$$\gamma(P_n \square P_m) = \left\lfloor \frac{(n+2)(m+2)}{5} \right\rfloor - 4.$$

Rao and Talon [33] gave a closed formula for the 2-domination number of grids when $9 \leq n \leq m$.

Theorem 3.12. [33] Let $P_n \square P_m$ be a grid with $9 \leq n \leq m$. Then

$$\gamma_2(P_n \square P_m) = \left\lfloor \frac{(n+2)(m+2)}{3} \right\rfloor - 6.$$

Grids have maximum degree four. Consequently, for $k \geq 5$, both the k-independent and k-dominating sets contain the whole set of vertices of these graphs. In view of Theorem 3.10, we use results on q-domination, $q = 1, 2$, for grids to give results on k-independence, $k = 3, 4$. For a grid $P_n \square P_m$, with $n, m \geq 3$, let $B = \{(u_i, v_j) : d((u_i, v_j)) < 4\}$. We call subgrid the subgraph G^* induced by the vertex set $V(P_n \square P_m) - B$. Notice that, for every vertex $(u_i, v_j) \in V(G^*)$, $d_{P_n \square P_m}((u_i, v_j)) = 4$ and G^* is isomorphic to $P_{n-2} \square P_{m-2}$.

By applying Theorem 3.10, we get that $\alpha_4(G) \geq nm - \gamma(G)$. However, we show in Proposition 3.13 that $\alpha_4(G) = nm - \gamma(G^*)$.

Proposition 3.13. Let $G = P_n \square P_m$ be a grid with $3 \leq n \leq m$ and G^* its subgrid. If $D \subseteq V(G^*)$ is a minimum dominating set of G^*, then $V(G) - D$ is a maximum 4-independent set of G, that is, $\alpha_4(G) = nm - \gamma(G^*)$.

There is a complexity result on K-independence in some graph products.
Proof. Suppose that \(D \subseteq V(G^*) \) is a minimum dominating set of \(G^* \). If \(v \in V(G^*) \), \(d(v) = 4 \), otherwise, \(d(v) < 4 \). Hence, every vertex in the subgraph induced by \((V(G^*) - D) \) has degree at most 3. Then, \(V(G) - D \) is a 4-independent set of cardinality \(nm - \gamma(G^*) \). Therefore, \(\alpha_4(G) \geq nm - \gamma(G^*) \).

For a contradiction, suppose that there exists a set \(S \) which is maximum 4-independent of \(G \) such that \(|S| > nm - \gamma(G^*) \). Hence, there exists \(D \subseteq V(G) \) such that \(S = V(G) - D \) and \(|D| < \gamma(G^*) \). So, \(D \) does not dominate all vertices of \(V(G^*) \). Hence, \(S \) has at least a vertex \(v \) such that \(d_S(v) = 4 \), which is a contradiction. Therefore, \(\alpha_4(G) \leq nm - \gamma(G^*) \), which completes the proof.

\[\square \]

Corollary 3.14. Let \(G = P_n \square P_m \) be a grid with \(18 \leq n \leq m \). Then, \(\alpha_4(G) = 4\left(\lceil \frac{nm}{3} \rceil + 1 \right) + a \), where \(a = nm \text{ mod } 5 \).

Proof. By Proposition 3.13, we have \(\alpha_4(G) = nm - \gamma(G^*) \). Furthermore, by Theorem 3.11, \(\gamma(G^*) = \left\lfloor \frac{nm}{3} \right\rfloor - 4 \). Hence, \(\alpha_4(G) = nm - (\left\lfloor \frac{nm}{3} \right\rfloor - 4) = 4\left(\lceil \frac{nm}{3} \rceil + 1 \right) + (nm \text{ mod } 5) \). \[\square \]

Corollary 3.15. If \(G = P_n \square P_m \) with \(9 \leq n \leq m \), then \(\alpha_3(G) \geq nm - \gamma_2(G) \). By Theorem 3.12, \(\alpha_3(G) \geq nm - \left\lfloor \frac{(n+2)(m+2)}{3} \right\rfloor - 6 \).

Proof. By Theorem 3.10, we have \(\alpha_3(G) \geq nm - \gamma_2(G) \). By Theorem 3.12, \(\alpha_3(G) \geq nm - \left\lfloor \frac{(n+2)(m+2)}{3} \right\rfloor - 6 \). \[\square \]

Next, we present a closed formula for \(\alpha(P_n \square P_m) \).

Proposition 3.16. Let \(G = P_n \square P_m \) such that \(3 \leq n \leq m \). Then, \(\alpha(G) = n\left\lceil \frac{m}{2} \right\rceil + \left\lfloor \frac{n}{2} \right\rfloor a \), where \(a = m \text{ mod } 2 \).

Proof. For the lower bound, let \(S_1 = \{(u_i, v_j) : i \text{ mod } 2 = 1 \text{ and } j \text{ mod } 2 = 1\} \) and \(S_2 = \{(u_i, v_j) : i \text{ mod } 2 = 0 \text{ and } j \text{ mod } 2 = 0\} \). It is easy to verify that \(S_1 \cup S_2 \) is an independent set and \(|S_1 \cup S_2| = n\left\lceil \frac{m}{2} \right\rceil \), when \(m \) is even, and \(|S_1 \cup S_2| = n\left\lfloor \frac{m}{2} \right\rfloor + \left\lceil \frac{n}{2} \right\rceil \), when \(m \) is odd.

Since \(G \) has \(n \) copies of \(P_m \), a straightforward upper bound for \(\alpha(G) \) is \(n\left\lceil \frac{m}{2} \right\rceil \). This bound equals \(n\left\lceil \frac{m}{2} \right\rceil \) when \(m \) is even. However, in the case of odd \(m \), an additional consideration arises due to an extra copy of \(P_n \). This copy contributes with at most \(\left\lceil \frac{n}{2} \right\rceil \) vertices and therefore gives the bound \(n\left\lceil \frac{m}{2} \right\rceil + \left\lceil \frac{n}{2} \right\rceil \), completing the proof. \[\square \]

Corollary 3.17. Let \(G = P_n \square P_m \) such that \(3 \leq n \leq m \). Then, \(\alpha_2(G) \geq n\left\lceil \frac{m}{2} \right\rceil + \left\lfloor \frac{n}{2} \right\rfloor a \), where \(a = m \text{ mod } 2 \).

The lower bounds presented in Corollaries 3.15 and 3.17 are better than the ones shown in Proposition 3.9. Analogously to Proposition 3.13, we show that \(\gamma_4(G) = nm - \alpha(G^*) \).

Proposition 3.18. Let \(G = P_n \square P_m \) be a grid with \(3 \leq n \leq m \) and \(G^* \) its subgrid. If \(D \subseteq V(G^*) \) is a maximum independent set of \(G^* \), then \(V(G) - D \) is a minimum 4-dominating set of \(G \), that is, \(\gamma_4(G) = nm - \alpha(G^*) \).

Proof. Suppose that \(D \subseteq V(G^*) \) is a maximum independent set of \(G^* \). If \(v \in V(G^*) \), \(d(v) = 4 \), otherwise, \(d(v) < 4 \). Since \(D \) is independent, every vertex in \(D \) has exactly four neighbors not in \(D \). Then, \(V(G) - D \) is a 4-dominating set of cardinality \(nm - \alpha(G^*) \). Therefore, \(\gamma_4(G) \geq nm - \alpha(G^*) \).

For a contradiction, let us suppose that a set \(S \) exists, which is minimum 4-dominating of \(G \), such as \(|S| < nm - \alpha(G^*) \). Hence, there exists \(D \subseteq V(G) \) such that \(S = V(G) - D \) and \(|D| > \alpha(G^*) \). Consequently, \(D \) is not independent in \(V(G^*) \). Hence, \(S \) has at least a vertex \(v \) such that \(v \) has at most three neighbors in \(S \), which is a contradiction. Therefore, \(\gamma_4(G) \leq nm - \alpha(G^*) \), which completes the proof. \[\square \]
4. Complementary Prisms

Some preliminary results on k-independent sets in complementary prisms were presented in [29]. The authors showed sharp lower and upper bounds for the 2-independence number in these graphs and exact values for α_2 for the complementary prism of some particular graph classes.

In Theorem 4.1 we present bounds on $\alpha_k(G\ov{G})$ for a general graph G.

Theorem 4.1. Let $k \geq 2$. For a graph G, $\alpha_{k-1}(G) + \alpha_k(G) \leq \alpha_k(G\ov{G}) \leq \alpha_k(G) + \alpha_k(G)$.

Proof. For the lower bound, let S be an $\alpha_k(G\ov{G})$-set and T an $\alpha_{k-1}(G\ov{G})$-set. For any vertices $v \in S$ and $\ov{v} \in T$, it follows that $d_S(v) \leq k - 2$ and $d_T(\ov{v}) \leq k - 2$. Hence, in $G\ov{G}$, a vertex $v \in S \cup T$ satisfies $d_{S\cup T}(v) \leq (k - 2) + 1 = k - 1$. Consequently, $S \cup T$ is a k-independent set of $G\ov{G}$. As S and T are disjoint sets in $G\ov{G}$, $|S \cup T| = |S| + |T| = \alpha_{k-1}(G) + \alpha_k(G\ov{G})$. Then, $\alpha_k(G\ov{G}) \geq \alpha_k(G) + \alpha_k(G\ov{G})$. For the upper bound, let I be an $\alpha_k(G\ov{G})$-set, S be the vertices of I in G, and T be the vertices of I in $G\ov{G}$. Since $|S| \leq \alpha_k(G)$ and $|T| \leq \alpha_k(G\ov{G})$, it follows that $\alpha_k(G\ov{G}) = |S| + |T| \leq \alpha_k(G) + \alpha_k(G\ov{G})$.

The work by Duarte et al. [13] establishes the NP-completeness of INDEPENDENT SET on complementary prisms through a reduction from INDEPENDENT SET in general graphs. Inspired by that idea, we perform a reduction from k-INDEPENDENT SET, and through a straightforward adaptation, we generalized the construction by Duarte et al. [13] to obtain the result of Theorem 4.2. Since k-INDEPENDENT SET on complementary prisms for specifically $k = 1$ is due to Duarte et al. [13], we focus our attention on the case where $k \geq 2$.

Theorem 4.2. The k-INDEPENDENT SET problem remains NP-complete even when restricted to the complementary prisms.

Proof. Since k-INDEPENDENT SET is in NP [24], we just show its NP-hardness. We present a reduction from k-INDEPENDENT SET for this problem.

Given a graph G of order $n > k$, we construct a graph H, which is the disjoint union of G and the complete multipartite graph $K_{m_1,m_2,...,m_{n+1}}$, where $m_1 = m_2 = ... = m_{n+1} = 2k - 1$. Let $H\ov{H}$ be the complementary prism of H. The construction of $H\ov{H}$ is depicted in Figure 4. Let $K = V(K_{m_1,m_2,...,m_{n+1}})$, that is, K is a set of $(2k - 1)(n + 1)$ vertices of H. We show that, for integers ℓ' and k, G has a k-independent set of order at least ℓ' if and only if the complementary prism $H\ov{H}$ has a k-independent set of order at least $\ell = kn + 3k - 2 + \ell'$. First, suppose that I is a k-independent set of G of order at least ℓ'. Let $K^1, ..., K^{2k-1}$ be the set of vertices of each part of $H[K]$, and $\ov{K}^1, ..., \ov{K}^{2k-1}$ be the corresponding sets of vertices in \ov{K}. Let $D \subseteq K \cup \ov{K}$ containing $2k - 1$ vertices of K^1, $k - 1$ vertices of \ov{K}^1, and k vertices of each one of the sets $\ov{K}^2, ..., \ov{K}^{2k-1}$. That is, $|D \cap K| = kn + k - 1$ and $|D \cap K| = 2k - 1$. Each vertex in $H[D]$ has degree at most $k - 1$. Hence, $I \cup D$ is a k-independent set of $H\ov{H}$ of order $kn + k - 1 + 2k - 1 + \ell' = kn + 3k - 2 + \ell'$.

Now, suppose that $H\ov{H}$ has a k-independent set J of order at least $kn + 3k - 2 + \ell'$. We prove some claims first.

Claim 4.3. $|J \cap K| \leq 2k - 1$.

Proof of Claim 4.3. Suppose, for contradiction, that $|J \cap K| > 2k - 1$. Consequently, J has vertices in at least two parts of $H[K]$. If J contains all the k vertices of a part of $H[K]$, say K^i, a vertex u of another part of $H[K]$ which is a member of J has $d_J(u) \geq k$, a contradiction, since J is a k-independent set. If J contains less than k vertices of K^i, then J contains at least k vertices in other parts of $H[K]$. Hence, for a vertex $u \in K^i$, it follows that $d_J(u) \geq k$, which again leads to a contradiction. Therefore, $|J \cap K| \leq 2k - 1$.

Claim 4.4. $J \cap V(\ov{G}) = \emptyset$.
Proof of Claim 3.5. Suppose, for contradiction, that $J \cap V(G) \neq \emptyset$. If $J \cap K = \emptyset$, then J can contain at most the $2n$ vertices of $V(G) \cup V(G)$, and at most $2k - 1$ vertices of K, by (i). Recall that $k \geq 2$, $n > k$ and $\ell' \geq k$. Therefore, we have

$$|J| \leq 2n + 2k - 1$$
$$\leq kn + 2k - 1$$
$$< kn + 2k + (k - 2) + \ell'$$
$$= kn + 3k - 2 + \ell'.$$

If $J \cap K \neq \emptyset$, it follows that $|J \cap (V(G) \cup K)| \leq 2k - 2$, since each vertex in $V(G)$ is adjacent to each vertex in K, which implies in $|V(G) \cap J| \leq k - 1$ and $|K \cap J| \leq k - 1$. Furthermore, $|J \cap V(G)| \leq n$ and, by (i), $|J \cap K| \leq 2k - 1$. Therefore, we have

$$|J| \leq 2k - 2 + 2k - 1 + n$$
$$= (n + k) + 3k - 3$$
$$< 2n + 3k - 2$$
$$\leq kn + 3k - 2$$
$$< kn + 3k - 2 + \ell'.$$

Hence, any combination of vertices of J containing at least one vertex of $V(G)$ has cardinality less than $kn + 3k - 2 + \ell'$, which is a contradiction. So, we can conclude that $J \cap V(G) = \emptyset$.

Claim 4.5. $|J \cap (K \cup K)| \leq kn + 3k - 2$.

Proof of Claim 3.6. Suppose, for contradiction, that $|J \cap (K \cup K)| \geq kn + 3k - 1$. As $|J \cap K| \leq 2k - 1$, it follows that $|J \cap K| \geq kn + k = k(n + 1)$. If $|J \cap K| = 2k - 1$, there exists i with $K^i \subseteq J$ and $\nu \in K^i$ such that its corresponding vertex $v \in K^i$ also belonging to J, which implies that $d_J(v) = k$. If $|J \cap K| < 2k - 1$, we have $|J \cap K| \geq kn + k + 1 = k(n + 1) + 1$. Hence, there is at least a clique K^i of K such that $|K^i \cap J| \geq k + 1$, contradicting the fact that J is k-independent. Therefore, $|J \cap (K \cup K)| \leq kn + 3k - 2$.

By Claims 4.4 and 4.5, it can be concluded that $J - (K \cup K)$ is a k-independent set of G of order at least ℓ'. Therefore, the k-INDEPENDENT SET problem remains NP-complete even when restricted to the class of complementary prisms.

Figure 4. Example of $H\bar{H}$, with $k = 3$. The circled black vertices represent a k-independent set. The edges of G, \bar{G}, and K are omitted.
5. Concluding Remarks

We study k-independence and k-domination in Cartesian products and complementary prisms. We establish that the problem of determining a k-INDEPENDENT SET remains NP-complete when the input graph is one of these two products. Moreover, we present closed formulas and upper bounds for maximum k-independent sets in grid graphs, improving results presented in [27].

Furthermore, as a natural extension of our investigation, exploring the complexity of k-domination in these products is conceivable. Moreover, the quest for closed formulas for α_k, when $k = 2, 3$, and γ_q, when $q = 3$, in grid graphs, could be a compelling avenue for future research.

Acknowledgements

The authors thank the anonymous referees for their helpful comments that improved the quality of the paper.

References

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model (S2O). We are thankful to our subscribers and supporters for making it possible to publish this journal in open access in the current year, free of charge for authors and readers.

Check with your library that it subscribes to the journal, or consider making a personal donation to the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports, is available at https://edpsciences.org/en/subscribe-to-open-s2o.