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FUZZY NODE RUPTURE DEGREE OF SOME FUZZY GRAPH FAMILIES

Ferhan Nihan Murater and Goksen Bacak-Turan*

Abstract. In the event of the malfunction of nodes and/or links connecting nodes, the vulnerability
parameters defined in graph theory may be employed as a metric of the quality of service received via
a network. In graph theory, numerous different vulnerability parameters have been defined, including
toughness, rupture degree, tenacity, integrity, connectivity and others. The modelling of real-world
problems is made more effective by the use of fuzzy graphs as a specific type of graph. These issues
can be more accurately addressed through the use of membership values as they better represent
the inherent uncertainties involved. However, despite this advantage, there has been limited research
conducted on the vulnerability parameters in fuzzy graphs. In this paper, we consider the importance of
fuzzy graphs and the limitations of the existing literature on vulnerability parameters for these graphs.
We propose a definition of the fuzzy node rupture degree, a commonly used concept in graph theory,
for application in fuzzy graph theory. Furthermore, this study examines the theoretical aspects of fuzzy
wheel graphs, fuzzy cycle graphs and fuzzy star graphs, with the objective of providing general formulas
that can be applied in practice, and also an algorithm for calculating the fuzzy node rupture degree of
a given fuzzy graph is presented.
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1. Introduction

A network is a collection up of nodes and links, just like communication networks, transportation networks,
and water distribution networks, among others. Inefficiencies in links or nodes can have an influence on overall
network service quality. Network vulnerability is the term used to describe this issue. Vulnerability evaluates
the network’s ability to withstand disturbances caused by the breakdown of certain nodes or links. A network
should be designed to withstand initial disruptions and allow for possible reconstruction attempts [1].

The vulnerability of a network can be quantified by utilising graph parameters such as connectivity [2],
integrity [1], tenacity [3], toughness [4], rupture degree [5], among others. It is notable that the connectivity of
nodes and links has been a commonly used parameter. The connectivity of a graph only deals with the number
of elements that are not functioning. However, this parameter is typically insufficient, as it does not provide
insight into the remaining components of the graph after a disruption. Consequently, another vulnerability
parameter, rupture degree, was introduced. This parameter considers the number of connected components and
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the number of elements in the largest remaining graph within which mutual communication can still occur
besides the number of elements that are not functioning [2].

Fuzzy sets were defined by Zadeh in 1965 as a natural extension of fuzzy logic. An object may be a partial
element of a fuzzy set, while it may or may not be an element of a set [6]. Fuzzy graphs are a specialisation
of graphs which are defined by Rosenfeld [7] and Yeh et al. [8], independently in 1975. One of the important
differences between fuzzy graphs and graphs is that in a graph, the connection strength between any two nodes
is 0 or 1, while in fuzzy graphs it can be any real number between [0, 1]. Although fuzzy graphs and graphs are
structurally similar to each other, fuzzy graphs gain a special importance when there are an uncertainty in the
nodes and/or the links. Modelling by grading the relations is closer to reality in a world where everything is
not black and white. For instance, when modelling the traffic flow of a city with a graph, membership values
can be assigned to the links of the graph in response to the number of vehicles passing on a road. With the
vulnerability of a fuzzy graph modelled in this way indicates the effect of damage to crossroads or roads on the
entire traffic flow, or which crossroads or roads are most critical and what measures can be taken in advance
in case of damage. Although fuzzy graphs offer a more realistic modelling opportunity, there are only a few
studies in the literature when examined in terms of vulnerability. This study aims to fill this major gap in the
literature. Although many vulnerability parameters have been defined in graph theory and the vulnerability
of various graphs has been analysed, only connectivity [9] and integrity [10] parameters have been defined for
fuzzy graphs.

There is no other parameter available to determine the number of sub-networks where communication con-
tinues or the number of centres of the largest sub-network where communication continues.

The aim of this study is to establish a new vulnerability parameter for fuzzy graphs that considers both
the quantity of damaged nodes and the number of sub-networks that remain connected, as well as the number
of nodes within the largest sub-network that remain connected. Fuzzy graphs are preferred as they allow for
modelling that is closer to reality. This study defines the rupture degree for fuzzy graphs by considering the
reduction of flow and the strength of connectedness based on the study of Mathew et al. [11], which are important
in fuzzy graphs, instead of the disconnectedness of the graph that is the basis of vulnerability parameters in
graph theory.

In this study, the required definitions and theorems are given in Section 2. In Section 3, the new vulnerability
parameter fuzzy node rupture degree is defined and also some families of graphs are examined and the general
formulas for the fuzzy node rupture degree of these fuzzy graphs are obtained. Additionally, an algorithm to
evaluate the fuzzy node rupture degree of a given graph is given in Section 4.

The fuzzy node rupture degree is a vulnerability measure applicable in many different domains. For telecom-
munication networks, for instance, it can be utilized in determining the most vulnerable nodes, i.e. those whose
failure would result in serious communication disruption. This measure is useful in estimating the contribution
of certain nodes to the network reliability when such nodes become inoperative. In social network analysis, it
can determine the effect of central individuals (e.g. influencers) on the structural reliability and information
dissemination within a community. This is highly relevant in research on online platforms’ susceptibility to
targeted attacks or the spread of misinformation. In bioinformatics, the fuzzy node rupture degree can be used
to identify key proteins in protein-protein interaction networks, and hence potential biological drug targets. In
the case of transportation and logistics networks, this measure can evaluate the effects of road closures or major
junction failures on traffic flow and connection. To drive this point home, consider the effects of a highway
closure in an urban setting; such analysis can guide the development of more resilient infrastructure. These uses
show that the fuzzy node rupture degree is not only a theoretical measure but has immense practical importance
in several fields.

2. Preliminaries

The definition of fuzzy graph, some basic concept definitions and and theorems used in this study are given
in this section. The references [2, 9, 12] can be used for he definitions not given.
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Definition 2.1 ([12]). A fuzzy graph 𝐺 = (𝑉, 𝜎, 𝜇), also called 𝑓 -graph, is a triple where 𝑉 represents the
set of nodes, 𝜎 : 𝑉 → [0, 1] is the fuzzy subset of 𝑉 and 𝜇 : 𝑉 𝑥𝑉 → [0, 1] is the fuzzy relation on 𝜎 where
𝜇(𝑣1, 𝑣2) ≤ 𝜎(𝑣1) ∧ 𝜎(𝑣2), ∀𝑣1, 𝑣2 ∈ 𝑉 .

Definition 2.2 ([13]). An arc which is an edge of a fuzzy graph is the weakest arc if it has the smallest
membership value in 𝐺, denoted by 𝑑(𝜇) and the strongest arc if it has the largest membership value in 𝐺,
denoted by ℎ(𝜇).

Definition 2.3 ([7]). The strength of connectedness between two nodes 𝑣1 and 𝑣2 is equal to the largest value
of the strengths of all paths between 𝑣1 and 𝑣2 in a fuzzy graph 𝐺 = (𝑉, 𝜎, 𝜇), represented by CONN𝐺(𝑣1, 𝑣2).

Definition 2.4 ([11]). If 𝜇(𝑥, 𝑦) > CONN𝐺−(𝑥,𝑦)(𝑥, 𝑦), then the arc (𝑥, 𝑦) is called 𝛼-strong.
If 𝜇(𝑥, 𝑦) = CONN𝐺−(𝑥,𝑦)(𝑥, 𝑦), then the arc (𝑥, 𝑦) is called 𝛽-strong.
If 𝜇(𝑥, 𝑦) < CONN𝐺−(𝑥,𝑦)(𝑥, 𝑦), then the arc (𝑥, 𝑦) is called 𝛿-arc. An arc is called strong either it is 𝛼-strong

or 𝛽-strong.

Definition 2.5 ([7]). A node 𝑣 in a fuzzy graph 𝐺 = (𝑉, 𝜎, 𝜇) is called a fuzzy cut node if the deletion of this
node reduces the strength of connectedness between any two nodes of 𝐺. An arc is called a fuzzy bridge if the
deletion of this arc reduces the strength of connectedness between any two nodes of 𝐺.

Definition 2.6 ([9]). Fuzzy node cut (FNC) of a fuzzy graph 𝐺 = (𝑉, 𝜎, 𝜇) is the set of nodes 𝑆 =
{𝑢1, 𝑢2, . . . , 𝑢𝑛} where CONN𝐺−𝑆(𝑥, 𝑦) < CONN𝐺(𝑥, 𝑦) or 𝐺−𝑆 is trivial for every node 𝑥 and 𝑦 of 𝐺.

Definition 2.7 ([14]). A fuzzy graph 𝐺 = (𝑉, 𝜎, 𝜇) is called a fuzzy cycle if it contains more than one weakest
arc where 𝐺* is a cycle.

Theorem 2.8. If a fuzzy graph 𝐺 = (𝑉, 𝜎, 𝜇) has at most one 𝛼-strong arc where 𝐺* is a cycle, then 𝐺 does
not contain a fuzzy cut node [11].

Definition 2.9 ([14]). A fuzzy cycle 𝐺 = (𝑉, 𝜎, 𝜇) is called a locamin cycle if every node of 𝐺 is incident to the
weakest arc of 𝐺 and a multimin cycle is the fuzzy cycle containing more than one weakest arc.

Definition 2.10 ([15]). The sequence of strengths arcs in a fuzzy graph 𝐺 = (𝑉, 𝜎, 𝜇) given in a nonincreasing
order as {𝑞1, 𝑞2, . . . 𝑞𝑚} is called the arc strength sequence where 𝑞1 is depth of 𝜇 and 𝑞𝑚 is height of 𝜇 for
|𝜇*| = 𝑚.

Definition 2.11 ([9]). The strong weight 𝑠(𝑆) of a fuzzy node cut 𝑆 of a fuzzy graph 𝐺 = (𝑉, 𝜎, 𝜇) is the sum of
the smallest membership values among the strong arcs incident to the nodes in 𝑆. That is 𝑠(𝑆) =

∑︀
𝑣1∈𝑆 𝜇(𝑣1, 𝑣2),

where 𝜇(𝑣1, 𝑣2) is the minimum of the weights of strong arcs incident on 𝑣1.

3. Fuzzy node rupture degree of fuzzy graphs

This section presents a new vulnerability parameter for fuzzy graphs called fuzzy node rupture degree. This
parameter takes into account the number of damaged nodes, the number of remaining connected sub-networks,
and the number of nodes within the largest connected sub-network. This definition is based on the reduction of
flow and strength of connectedness, rather than the disconnection of the fuzzy graphs.

The following two definitions contain the variables 𝑚𝑓 (𝐺−𝑆) and 𝜔𝑓 (𝐺−𝑆) that are used in the definition
of fuzzy node rupture degree.

Definition 3.1 ([15]). Let 𝐺 = (𝑉, 𝜎, 𝜇) be a connected fuzzy graph and 𝑆 be a fuzzy node cut in 𝐺. Maximum
weight is the maximum of the degree of membership values of a pair of nodes whose strength of connectedness is
reduced after the fuzzy node cut is removed from 𝐺, denoted by 𝑚𝑓 (𝐺−𝑆). If 𝐺−𝑆 is trivial, then 𝑚𝑓 (𝐺−𝑆) = 0,
otherwise

𝑚𝑓 (𝐺−𝑆) = max
𝑆⊂𝜎*

{CONN𝐺−𝑆(𝑣1, 𝑣2) : CONN𝐺−𝑆(𝑣1, 𝑣2) < CONN𝐺(𝑣1, 𝑣2)}

where 𝑢, 𝑣 ∈ 𝜎* − 𝑆.
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Figure 1. An example of a fuzzy graph 𝐺.

Definition 3.2 ([15]). Let 𝐺 = (𝑉, 𝜎, 𝜇) be a connected fuzzy graph and 𝑆 be a fuzzy node cut in 𝐺. The
reduced connectedness strength is the maximum of the differences in connectedness between pair of nodes
whose strength of connectedness is reduced after the fuzzy node cut is removed from 𝐺, denoted by 𝜔𝑓 (𝐺−𝑆).

𝜔𝑓 (𝐺−𝑆) = max{CONN𝐺(𝑣1, 𝑣2)− CONN𝐺−𝑆(𝑣1, 𝑣2) : 𝑣1, 𝑣2 ∈ 𝜎*}.

The parameter of the fuzzy node rupture degree has been defined and examined in detail on an example.

Definition 3.3. Let 𝐺 = (𝑉, 𝜎, 𝜇) be a connected fuzzy graph. The fuzzy node rupture degree of 𝐺 is defined
as

𝑟𝑓 (𝐺) = max
𝑆⊆𝜎*

{𝜔𝑓 (𝐺−𝑆)− 𝑠(𝑆)−𝑚𝑓 (𝐺−𝑆) : 𝜔(𝐺−𝑆) > 1}

where 𝑆 is a fuzzy node cut, 𝑠(𝑆) is the strong weight of 𝑆, 𝑚𝑓 (𝐺−𝑆) is the maximum weight of 𝐺−𝑆 and
𝜔𝑓 (𝐺−𝑆) is the reduced connectedness strength of 𝐺−𝑆.

Example 3.4. According to Figure 1, 𝑢3, 𝑢4 and 𝑢5 nodes are 1-FNC.
For 𝑆1 = {𝑢3}, 𝑠(𝑆1) = 0.5, CONN𝐺−𝑆1(𝑢1, 𝑢2) = 0.3 < CONN𝐺(𝑢1, 𝑢2) = 0.5 and CONN𝐺−𝑆1(𝑢2, 𝑢4) =

0.3 < CONN𝐺(𝑢2, 𝑢4) = 0.5. We obtain 𝑚𝑓 (𝐺−𝑆1) = 0.3 and 𝜔𝑓 (𝐺−𝑆1) = CONN𝐺(𝑢1, 𝑢2) −
CONN𝐺−𝑆1(𝑢1, 𝑢2) = 0.5− 0.3 = 0.2. Therefore; 𝑟𝑓 (𝐺) = 𝜔𝑓 (𝐺−𝑆1)− 𝑠(𝑆1)−𝑚𝑓 (𝐺−𝑆1) = 0.2− 0.5− 0.3 =
−0.6.

For 𝑆2{𝑢4}, 𝑠(𝑆2) = 0.7 with CONN𝐺−𝑆2(𝑢1, 𝑢2) = 0.3 < CONN𝐺(𝑢1, 𝑢2) = 0.5 and CONN𝐺−𝑆2(𝑢3, 𝑢5) =
0.3 < CONN𝐺(𝑢3, 𝑢5) = 0.7. We get 𝑚𝑓 (𝐺−𝑆2) = 0.3 and 𝜔𝑓 (𝐺−𝑆2) = CONN𝐺(𝑢3, 𝑢5) −
CONN𝐺−𝑆2(𝑢3, 𝑢5) = 0.7− 0.3 = 0.4. So, 𝑟𝑓 (𝐺) = 𝜔𝑓 (𝐺−𝑆2)− 𝑠(𝑆2)−𝑚𝑓 (𝐺−𝑆2) = 0.4− 0.7− 0.3 = −0.6.

For 𝑆3 = {𝑢5}, 𝑠(𝑆3) = 0.9, CONN𝐺−𝑆3(𝑢1, 𝑢2) = 0.3 < CONN𝐺(𝑢1, 𝑢2) = 0.5 and CONN𝐺−𝑆3(𝑢1, 𝑢4) =
0.3 < CONN𝐺(𝑢1, 𝑢4) = 0.9. We obtain 𝑚𝑓 (𝐺−𝑆3) = 0.3 and 𝜔𝑓 (𝐺−𝑆3) = 0.6. So, 𝑟𝑓 (𝐺) = 0.6− 0.9− 0.3 =
−0.6.

For 𝑆4 = {𝑢1, 𝑢3}, 𝑠(𝑆4) = 0.9 + 0.5 = 1.4 with CONN𝐺−𝑆4(𝑢2, 𝑢4) = 0 < CONN𝐺(𝑢2, 𝑢4) = 0.5 and
CONN𝐺−𝑆4(𝑢2, 𝑢5) = 0 < CONN𝐺(𝑢2, 𝑢5) = 0.5. We get 𝑚𝑓 (𝐺−𝑆4) = 0 and 𝜔𝑓 (𝐺−𝑆4) = 0.5. Hence,
𝑟𝑓 (𝐺) = 0.5− 1.4− 0 = −0.9.

For 𝑆5 = {𝑢1, 𝑢4}, 𝑠(𝑆5) = 0.9 + 0.7 = 1.6 with CONN𝐺−𝑆5(𝑢2, 𝑢5) = 0 < CONN𝐺(𝑢2, 𝑢5) = 0.5 and
CONN𝐺−𝑆5(𝑢3, 𝑢5) = 0 < CONN𝐺(𝑢3, 𝑢5) = 0.7. We obtain 𝑚𝑓 (𝐺−𝑆5) = 0 and 𝜔𝑓 (𝐺−𝑆5) = 0.7. Therefore,
𝑟𝑓 (𝐺) = 0.7− 1.6− 0 = −0.9.

For 𝑆6 = {𝑢2, 𝑢4}, 𝑠(𝑆6) = 0.5 + 0.7 = 1.2 with CONN𝐺−𝑆6(𝑢3, 𝑢5) = 0 < CONN𝐺(𝑢3, 𝑢5) = 0.7 and
CONN𝐺−𝑆6(𝑢1, 𝑢3) = 0 < CONN𝐺(𝑢1, 𝑢3) = 0.7. We get 𝑚𝑓 (𝐺−𝑆6) = 0 and 𝜔𝑓 (𝐺−𝑆6) = 0.7. So, 𝑟𝑓 (𝐺) =
0.7− 1.2− 0 = −0.5.

For 𝑆7 = {𝑢2, 𝑢5}, 𝑠(𝑆7) = 0.5 + 0.9 = 1.4 with CONN𝐺−𝑆7(𝑢1, 𝑢4) = 0 < CONN𝐺(𝑢1, 𝑢4) = 0.9 and
CONN𝐺−𝑆7(𝑢1, 𝑢3) = 0 < CONN𝐺(𝑢1, 𝑢3) = 0.7. We obtain 𝑚𝑓 (𝐺−𝑆7) = 0 and 𝜔𝑓 (𝐺−𝑆7) = max{0.9, 0.7} =
0.9. And then, 𝑟𝑓 (𝐺) = 0.9− 1.4− 0 = −0.5.
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For 𝑆8 = {𝑢3, 𝑢5}, 𝑠(𝑆8) = 0.5 + 0.9 = 1.4 with CONN𝐺−𝑆8(𝑢2, 𝑢4) = 0 < CONN𝐺(𝑢2, 𝑢4) = 0.5 and
CONN𝐺−𝑆8(𝑢1, 𝑢4) = 0 < CONN𝐺(𝑢1, 𝑢4) = 0.9. We get 𝑚𝑓 (𝐺−𝑆8) = 0 and 𝜔𝑓 (𝐺−𝑆8) = max{0.5, 0.9} = 0.9.
Therefore, 𝑟𝑓 (𝐺) = 0.9− 1.4− 0 = −0.5.

For 𝑆9 = {𝑢3, 𝑢4}, 𝑠(𝑆9) = 0.5 + 0.7 = 1.2 with CONN𝐺−𝑆9(𝑢1, 𝑢2) = 0.3 < CONN𝐺(𝑢1, 𝑢2) = 0.5 and
CONN𝐺−𝑆9(𝑢2, 𝑢5) = 0.3 < CONN𝐺(𝑢2, 𝑢5) = 0.5. We obtain 𝑚𝑓 (𝐺−𝑆9) = 0.3 and 𝜔𝑓 (𝐺−𝑆9) = 0.2. So,
𝑟𝑓 (𝐺) = 0.2− 1.2− 0.3 = −1.3.

For 𝑆10 = {𝑢4, 𝑢5}, 𝑠(𝑆10) = 0.7 + 0.9 = 1.6 with CONN𝐺−𝑆10(𝑢1, 𝑢2) = 0.3 < CONN𝐺(𝑢1, 𝑢2) = 0.5
and CONN𝐺−𝑆10(𝑢1, 𝑢3) = 0.3 < CONN𝐺(𝑢1, 𝑢3) = 0.7. We get 𝑚𝑓 (𝐺−𝑆10) = 0.3 and 𝜔𝑓 (𝐺−𝑆10) =
max{0.2, 0.4} = 0.4. Therefore, 𝑟𝑓 (𝐺) = 0.4− 1.6− 0.3 = −1.5.

If the number of elements of 𝑆, which is a fuzzy node cut, increases the strong weight of 𝑆 also increases. In
this case the fuzzy node rupture degree decreases. But by the definition of the fuzzy node rupture degree must
be maximum.

By the definition;

𝑟𝑓 (𝐺) = max{−0.6,−0.6,−0.6,−0.9,−0.9,−0.5,−0.5,−0.5,−1.3,−1.5} = −0.5.

The parameter has been applied to various types of graphs and the general results for the fuzzy node rupture
degree of some types of fuzzy graphs are obtained and given below.

Theorem 3.5. Let 𝐺 = (𝑉, 𝜎, 𝜇) be a fuzzy cycle graph with 𝑛 ≥ 4. Then the fuzzy node rupture degree is

𝑟𝑓 (𝐺) = −𝑑(𝜇).

Proof. Let 𝑆 be a fuzzy node cut of a fuzzy cycle 𝐺. There are two cases according to the existence of a fuzzy
cut node of 𝐺.

Case 1. Let 𝐺 contain a fuzzy cut node, say 𝑎, and let 𝑆 = {𝑎}. So |𝑆 |= 1 and for 𝑥, 𝑦 𝜖 𝜎*, CONN𝐺(𝑥, 𝑦) =
𝑠(𝑆). If the set 𝑆 is removed from the graph then CONN𝐺−𝑆(𝑥, 𝑦) = 𝑑(𝜇) = 𝑞1. Hence 𝑚𝑓 (𝐺−𝑆) = 𝑞1.
Largest difference of strength of connectedness in 𝐺−𝑆 is 𝜔𝑓 (𝐺−𝑆) = 𝑠(𝑆)− 𝑞1. Thus, fuzzy node rupture
degree is

𝑟𝑓 (𝐺) = max
𝑆⊆𝜎*

{𝜔𝑓 (𝐺−𝑆)− 𝑠(𝑆)−𝑚𝑓 (𝐺−𝑆) : 𝜔(𝐺−𝑆) > 1}

𝑟𝑓 (𝐺) = 𝑠(𝑆)− 𝑞1 − 𝑠(𝑆)− 𝑞1 = −2𝑞1. (1)

If |𝑆 |= 2 for 𝑆 = {𝑎, 𝑏} where 𝑎, 𝑏 𝜖 𝜎* so that 𝑆 consist of adjacent elements then 𝑠(𝑆) = 𝑠(𝑎) + 𝑠(𝑏) when
the set 𝑆 is removed from the fuzzy graph 𝐺, CONN𝐺−𝑆(𝑥, 𝑦) = 𝑑(𝜇) = 𝑞1 for 𝑥, 𝑦𝜖𝜎* is obtained. Hence,
𝑚𝑓 (𝐺−𝑆) = 𝑞1. Since largest difference of strength of connectedness in 𝐺–𝑆 is 𝜔𝑓 (𝐺−𝑆) = CONN𝐺(𝑥, 𝑦)−
CONN𝐺−𝑆(𝑥, 𝑦) we have 𝜔𝑓 (𝐺−𝑆) = 𝑠(𝑎)− 𝑞1 for CONN𝐺(𝑥, 𝑦) = min{𝑠(𝑎)− 𝑠(𝑏)} = 𝑠(𝑎). So, fuzzy node
rupture degree is

𝑟𝑓 (𝐺) = max
𝑆⊆𝜎*

{𝜔𝑓 (𝐺−𝑆)− 𝑠(𝑆)−𝑚𝑓 (𝐺−𝑆) : 𝜔(𝐺−𝑆) > 1}

𝑟𝑓 (𝐺) = 𝑠(𝑆)− 𝑞1 − 𝑠(𝑎)− 𝑠(𝑏)− 𝑞1 = −𝑠(𝑏)− 2𝑞1. (2)

Let 𝑆 = {𝑎, 𝑏} for 𝑎, 𝑏 𝜖 𝜎* such that 𝑆 consist of non-adjacent elements. Hence 𝑠(𝑆) = 𝑠(𝑎) + 𝑠(𝑏). If the set
𝑆 is removed from the fuzzy cycle graph 𝐺 then CONN𝐺−𝑆(𝑥, 𝑦) = 0 for 𝑥, 𝑦𝜖𝜎*. Thus 𝜇𝑓 (𝐺−𝑆) = 0. The
largest difference of strength of connectedness in 𝐺−𝑆 is 𝜔𝑓 (𝐺−𝑆) = 𝑠(𝑏) for CONN𝐺(𝑥, 𝑦) = max{𝑠(𝑎)−
𝑠(𝑏)} = 𝑠(𝑏). From the definition of fuzzy node rupture degree;

𝑟𝑓 (𝐺) = max
𝑆⊆𝜎*

{𝜔𝑓 (𝐺−𝑆)− 𝑠(𝑆)−𝑚𝑓 (𝐺−𝑆) : 𝜔(𝐺−𝑆) > 1}

𝑟𝑓 (𝐺) = 𝑠(𝑏)− 𝑠(𝑎)− 𝑠(𝑏) = −𝑠(𝑎). (3)
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Since 𝑞1 ≤ 𝑠(𝑆) ≤ 𝑞𝑚, by the definition of fuzzy node rupture degree with (2) and (3) it is obtained that

𝑟𝑓 (𝐺) = −𝑑(𝜇) = −𝑞1. (4)

If | 𝑆 |≥ 3 such that 𝑆 consist of adjacent elements then 𝑠(𝑆) ≥ 𝑞𝑚 +(|𝑆 | −1)𝑞1. If the set 𝑆 is removed from
the fuzzy cycle graph 𝐺 then CONN𝐺−𝑆(𝑥, 𝑦) = 𝑞1 for 𝑥, 𝑦𝜖𝜎*. Hence 𝑚𝑓 (𝐺−𝑆) = 𝑞1. Since CONN𝐺(𝑥, 𝑦) ≤
𝑞𝑚 and CONN𝐺−𝑆(𝑥, 𝑦) = 𝑞1. The largest difference of strength of connectedness in 𝐺−𝑆 is 𝜔𝑓 (𝐺−𝑆) ≤
𝑞𝑚 − 𝑞1. Thus the fuzzy node rupture degree is

𝑟𝑓 (𝐺) = max
𝑆⊆𝜎*

{𝜔𝑓 (𝐺−𝑆)− 𝑠(𝑆)−𝑚𝑓 (𝐺−𝑆) : 𝜔(𝐺−𝑆) > 1}

𝑟𝑓 (𝐺) ≤ 𝑞𝑚 − 𝑞1 − 𝑞𝑚 + (1+ |𝑆 |)𝑞1 − 𝑞1

𝑟𝑓 (𝐺) ≤ −𝑞1(|𝑆 | +1).

By |𝑆 |≥ 3,
𝑟𝑓 (𝐺) ≤ −4𝑞1. (5)

If | 𝑆 |≥ 3 such that 𝑆 consist of non-adjacent elements then 𝑠(𝑆) ≥ 𝑞𝑚 + (| 𝑆 | −1)𝑞1. When the set
𝑆 is removed from the fuzzy cycle graph 𝐺, CONN𝐺−𝑆(𝑥, 𝑦) = 0 for 𝑥, 𝑦𝜖𝜎*. Thus 𝑚𝑓 (𝐺−𝑆) = 0. So
𝜔𝑓 (𝐺−𝑆) ≤ 𝑞𝑚 from CONN𝐺(𝑥, 𝑦) ≤ 𝑞𝑚 and CONN𝐺−𝑆(𝑥, 𝑦) = 0. The fuzzy node rupture degree is
𝑟𝑓 (𝐺) ≤ −𝑞1(|𝑆 | −1). By |𝑆 |≥ 3,

𝑟𝑓 (𝐺) ≤ −2𝑞1. (6)

From (1), (4), (5), (6) and by the definition of fuzzy node rupture degree, we obtain

𝑟𝑓 (𝐺) = −𝑑(𝜇) = −𝑞1.

Case 2. Let 𝑆 be a fuzzy node cut of a fuzzy cycle graph 𝐺. Since there is no fuzzy cut node, | 𝑆 |≥ 2. The
weakest arcs in the fuzzy cycle graph are 𝛽-strong the remaining arcs are 𝛼-strong arcs. Since there is no
fuzzy cut node in the fuzzy cycle graph 𝐺, each node is incident to the weakest arc. Thus 𝑠(𝑣𝑖) = 𝑑(𝜇) = 𝑞1

where 𝑖 = 1, . . . , 𝑛. When the set 𝑆 that consist of adjacent elements is removed from the fuzzy cycle graph
𝐺, the strength of connectedness between the node pairs doesn’t change. Thus the set 𝑆 should consist of
non-adjacent elements and 𝑠(𝑆) = 2𝑑(𝜇) = 2𝑞1 for | 𝑆 |= 2. If the set 𝑆 is removed from the fuzzy cycle
graph 𝐺 then CONN𝐺(𝑥, 𝑦) = 0 for 𝑥, 𝑦𝜖𝜎*. Thus 𝑚𝑓 (𝐺−𝑆) = 0. In the fuzzy cycle graph 𝐺, the strength
of connectedness between the remaining pair of nodes is CONN𝐺(𝑥, 𝑦) = 𝑑(𝜇) = 𝑞1 with 𝑥, 𝑦𝜖𝜎* except for
the pairs where 𝛼-strong arcs are incident. Thus 𝜔𝑓 (𝐺−𝑆) = CONN𝐺(𝑥, 𝑦)−CONN𝐺−𝑆(𝑥, 𝑦) = 𝑑(𝜇) = 𝑞1.
So, the fuzzy node rupture degree is

𝑟𝑓 (𝐺) = max
𝑆⊆𝜎*

{𝜔𝑓 (𝐺−𝑆)− 𝑠(𝑆)−𝑚𝑓 (𝐺−𝑆) : 𝜔(𝐺−𝑆) > 1}

𝑟𝑓 (𝐺) = −𝑞1 = −𝑑(𝜇). (7)

Let |𝑆 |≥ 3, so 𝑠(𝑆) ≥ 3𝑞1. When the set 𝑆 is removed from the fuzzy cycle graph 𝐺, CONN𝐺−𝑆(𝑥, 𝑦) = 0
for 𝑥, 𝑦𝜖𝜎*. Thus 𝑚𝑓 (𝐺−𝑆) = 0. Therefore 𝜔𝑓 (𝐺−𝑆) = 𝑞1 from CONN𝐺(𝑥, 𝑦) = 𝑑(𝜇) = 𝑞1. The fuzzy node
rupture degree is

𝑟𝑓 (𝐺) = max
𝑆⊆𝜎*

{𝜔𝑓 (𝐺−𝑆)− 𝑠(𝑆)−𝑚𝑓 (𝐺−𝑆) : 𝜔(𝐺−𝑆) > 1}

𝑟𝑓 (𝐺) ≤ −2𝑞1 = −2𝑑(𝜇). (8)

By (7), (8) and by the definition of fuzzy node rupture degree, we get

𝑟𝑓 (𝐺) = −𝑑(𝜇) = −𝑞1.

Thus we obtain the result by Case 1 and Case 2.

𝑟𝑓 (𝐺) = −𝑑(𝜇) = −𝑞1.

�
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Theorem 3.6. Let 𝐺 = (𝑉, 𝜎, 𝜇) be a fuzzy graph with only one weakest arc (𝑣1, 𝑣2) with 𝑣1, 𝑣2𝜖𝜎
* where 𝐺* is

a cycle graph. Then the fuzzy node rupture degree is

𝑟𝑓 (𝐺) = max{−2𝑞1,−𝑠(𝑣1),−𝑠(𝑣2)}.

Proof. Let (𝑣1, 𝑣2) be the weakest arc of a cycle graph such that 𝑣1, 𝑣2, . . . , 𝑣𝑛 are the nodes of the cycle graph.
This arc is 𝛿-arc. The others are 𝛼-strong arcs. Therefore the nodes 𝑣1 and 𝑣2 are fuzzy end nodes and the nodes
𝑣𝑖 for 𝑖 = 3, . . . , 𝑛 are fuzzy cut nodes.

Let 𝑆 be a fuzzy node cut. If | 𝑆 |= 1 then CONN𝐺(𝑥, 𝑦) = 𝑠(𝑆) for 𝑥, 𝑦𝜖𝜎*. If the set 𝑆 is removed
from the cycle graph 𝐺 then CONN𝐺−𝑆(𝑥, 𝑦) = 𝑑(𝜇) < CONN𝐺(𝑥, 𝑦) = 𝑠(𝑆). 𝑚𝑓 (𝐺−𝑆) = 𝑑(𝜇) = 𝑞1 and
𝜔𝑓 (𝐺−𝑆) = 𝑠(𝑆)− 𝑞1. Thus the fuzzy node rupture degree is

𝑟𝑓 (𝐺) = max
𝑆⊆𝜎*

{𝜔𝑓 (𝐺−𝑆)− 𝑠(𝑆)−𝑚𝑓 (𝐺−𝑆) : 𝜔(𝐺−𝑆) > 1}

𝑟𝑓 (𝐺) = 𝑠(𝑆)− 𝑞1 − 𝑠(𝑆)− 𝑞1

𝑟𝑓 (𝐺) = −2𝑞1. (9)

Let | 𝑆 |= 2 where 𝑆 contains adjacent elements but does not contain 𝑣1 and 𝑣2. Thus 𝑆 = {𝑣𝑖, 𝑣𝑖+1}
for 𝑖 = 3, . . . , 𝑛 − 1; 𝑣𝑖𝜖𝜎

*. Hence 𝑆(𝑆) = 𝑠(𝑣𝑖) + 𝑠(𝑣𝑖+1) when the set 𝑆 is removed from the cycle graph
𝐺. CONN𝐺−𝑆(𝑥, 𝑦) = 𝑞1 < CONN𝐺(𝑥, 𝑦) = min{𝑠(𝑣𝑖), 𝑠(𝑣𝑖+1)} = 𝑠(𝑣𝑖). Therefore 𝑚𝑓 (𝐺−𝑆) = 𝑞1 and
𝜔𝑓 (𝐺−𝑆) = 𝑠(𝑣𝑖)− 𝑞1. So, the fuzzy node rupture degree is

𝑟𝑓 (𝐺) = max
𝑆⊆𝜎*

{𝜔𝑓 (𝐺−𝑆)− 𝑠(𝑆)−𝑚𝑓 (𝐺−𝑆) : 𝜔(𝐺−𝑆) > 1}

𝑟𝑓 (𝐺) = 𝑠(𝑣𝑖)− 𝑞1 − 𝑠(𝑣𝑖)− 𝑠(𝑣𝑖+1)− 𝑞1

𝑟𝑓 (𝐺) = −2𝑞1 − 𝑠(𝑣𝑖+1).

The fuzzy node rupture degree should be maximum by the definition. So 𝑠(𝑣𝑖+1) ≥ 𝑞2 is accepted. Then

𝑟𝑓 (𝐺) ≤ −2𝑞1 − 𝑞2. (10)

Let |𝑆 |= 2 where the set 𝑆 consists of non-adjacent elements and {𝑣1, 𝑣2} ̸∈ 𝑆. Thus 𝑠(𝑆) = 𝑠(𝑣𝑖) + 𝑠(𝑣𝑗) for
𝑆 = {𝑣𝑖, 𝑣𝑗} with 𝑖, 𝑗 = 3, . . . , 𝑛. If the set 𝑆 is removed from the cycle graph 𝐺, then CONN𝐺−𝑆(𝑣1, 𝑣2) = 𝑞1

with CONN𝐺(𝑣1, 𝑣2) ≥ 𝑞2 and CONN𝐺−𝑆(𝑥, 𝑦) = 0 < CONN𝐺(𝑥, 𝑦) = max{𝑠(𝑣𝑖), 𝑠(𝑣𝑗)} = 𝑠(𝑣𝑗). Therefore
𝑚𝑓 (𝐺−𝑆) = 𝑞1, 𝜔𝑓 (𝐺−𝑆) = 𝑠(𝑣𝑗). So the fuzzy node rupture degree is

𝑟𝑓 (𝐺) = max
𝑆⊆𝜎*

{𝜔𝑓 (𝐺−𝑆)− 𝑠(𝑆)−𝑚𝑓 (𝐺−𝑆) : 𝜔(𝐺−𝑆) > 1}

𝑟𝑓 (𝐺) = 𝑠(𝑣𝑗)− 𝑠(𝑣𝑖)− 𝑠(𝑣𝑗)− 𝑞1

𝑟𝑓 (𝐺) = −𝑞1 − 𝑠(𝑣𝑖).

By the definition of fuzzy node rupture degree

𝑟𝑓 (𝐺) ≤ −𝑞2 − 𝑞1. (11)

Let | 𝑆 |= 2 where the set 𝑆 consists of non-adjacent elements and also 𝑣1 and 𝑣2. If 𝑆 = {𝑣1, 𝑣𝑖} with
𝑖 = 3, . . . , 𝑛; 𝑣𝑖 ∈ 𝜎* then 𝑠(𝑆) = 𝑠(𝑣1) + 𝑠(𝑣𝑖), CONN𝐺−𝑆(𝑣𝑛, 𝑣2) = 0 < CONN𝐺(𝑣𝑛, 𝑣2) = 𝑞2.

Thus CONN𝐺−𝑆(𝑣𝑖−1, 𝑣𝑖+1) = 0 < CONN𝐺(𝑣𝑖−1, 𝑣𝑖+1) = 𝑠(𝑣𝑖). So, 𝑚𝑓 (𝐺−𝑆) = 0 and 𝜔𝑓 (𝐺−𝑆) = 𝑠(𝑣𝑖).
Therefore the fuzzy node rupture degree is

𝑟𝑓 (𝐺) = 𝑠(𝑣𝑖)− 𝑠(𝑣1)− 𝑠(𝑣𝑖)
𝑟𝑓 (𝐺) = −𝑠(𝑣1).



992 F.N. MURATER AND G. BACAK-TURAN

If 𝑆 = {𝑣2, 𝑣𝑖} with 𝑖 = 3, . . . , 𝑛; 𝑣𝑖 ∈ 𝜎* then

𝑟𝑓 (𝐺) = −𝑠(𝑣2).

So, the fuzzy node rupture degree is

𝑟𝑓 (𝐺) = max{−𝑠(𝑣1),−𝑠(𝑣2)}. (12)

Let | 𝑆 |≥ 3 such that the set 𝑆 consists of adjacent elements. Hence 𝑠(𝑆) ≥ 𝑞𝑚 + (| 𝑆 | −1)𝑞2. If the set
𝑆 is removed from the fuzzy graph 𝐺, then CONN𝐺−𝑆(𝑥, 𝑦) = 𝑞1 for 𝑥, 𝑦 ∈ 𝜎*. Thus 𝑚𝑓 (𝐺−𝑆) = 𝑞1 and
𝜔𝑓 (𝐺−𝑆) ≤ 𝑞𝑚 − 𝑞1 for CONN𝐺(𝑥, 𝑦) ≤ 𝑞𝑚. The fuzzy node rupture degree is

𝑟𝑓 (𝐺) = max
𝑆⊆𝜎*

{𝜔𝑓 (𝐺−𝑆)− 𝑠(𝑆)−𝑚𝑓 (𝐺−𝑆) : 𝜔(𝐺−𝑆) > 1}

𝑟𝑓 (𝐺) ≤ 𝑞𝑚 − 𝑞1 − 𝑞𝑚 + (1− |𝑆 |)𝑞2 − 𝑞1

𝑟𝑓 (𝐺) ≤ (1− |𝑆 |)𝑞2 − 2𝑞1.

Since the fuzzy node rupture degree must be maximum by the definition, it must be |𝑆 |= 3. So,

𝑟𝑓 (𝐺) ≤ −2𝑞2 − 2𝑞1. (13)

Let| 𝑆 |≥ 3 such that the set 𝑆 consists of non-adjacent elements. Thus 𝑠(𝑆) ≥ 𝑞𝑚 + (| 𝑆 | −1)𝑞2 when the
set 𝑆 is removed from the fuzzy graph 𝐺, CONN𝐺−𝑆(𝑥, 𝑦) = 0 and CONN𝐺−𝑆(𝑥, 𝑦) = 𝑞1 for 𝑥, 𝑦 ∈ 𝜎*. Hence
𝑚𝑓 (𝐺−𝑆) = 𝑞1 and 𝜔𝑓 (𝐺−𝑆) ≤ 𝑞𝑚 for CONN𝐺(𝑥, 𝑦) ≤ 𝑞𝑚, 𝑥, 𝑦 ∈ 𝜎*.

Therefore the fuzzy node rupture degree is

𝑟𝑓 (𝐺) = max
𝑆⊆𝜎*

{𝜔𝑓 (𝐺−𝑆)− 𝑠(𝑆)−𝑚𝑓 (𝐺−𝑆) : 𝜔(𝐺−𝑆) > 1}

𝑟𝑓 (𝐺) ≤ 𝑞𝑚 − 𝑞𝑚 + (1− |𝑆 |)𝑞2 − 𝑞1

𝑟𝑓 (𝐺) ≤ (1− |𝑆 |)𝑞2 − 𝑞1.

Because the fuzzy node rupture degree must be maximum from the definition, |𝑆 |= 3. So,

𝑟𝑓 (𝐺) ≤ −2𝑞2 − 𝑞1. (14)

By (9)–(14) and the definition of the fuzzy node rupture degree, the result is

𝑟𝑓 (𝐺) = max{−2𝑞1,−𝑠(𝑣1),−𝑠(𝑣2)}.

�

Theorem 3.7. Let 𝐺 = (𝑉, 𝜎, 𝜇) be a fuzzy cycle graph with one 𝛼-strong arc and 𝑛 ≥ 4. Then the fuzzy node
rupture degree is

𝑟𝑓 (𝐺) = −𝑑(𝜇).

Proof. The proof is similar to the proof of Theorem 3.5. �

Theorem 3.8. Let 𝐺 = (𝑉, 𝜎, 𝜇) be a self-centered fuzzy cycle graph with 𝑛 nodes and let the arcs be represented
by 𝑒𝑖 = (𝑣𝑖, 𝑣𝑖+1) for 𝑖 = 1, . . . , 𝑛− 1 and 𝑒𝑛 = (𝑣𝑛, 𝑣1). If 0 < 𝑡 < 𝑠 ≤ 1 then;

(i) 𝜇(𝑒) = 𝑡 for 𝑖 = 1, . . . , 𝑛 and 𝑛 ≥ 4;
(ii) 𝜇(𝑒2𝑖−1) = 𝑡, 𝜇(𝑒2𝑖) = 𝑠 for 𝑛 = 2𝑘, 𝑘 ∈ Z and 𝑖 = 1, . . . , 𝑛

2 ;
(iii) 𝜇(𝑒2𝑖−1) = 𝑡, 𝜇(𝑒2𝑖) = 𝑠 and 𝜇(𝑒𝑛) = 𝑡 for 𝑛 = 2𝑘 + 1 𝑘 ∈ Z+ − {1} and 𝑖 = 1, . . . , 𝑛−1

2 ;
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(iv) 𝜇(𝑒2𝑖−1) = 𝑠, 𝜇(𝑒2𝑖) = 𝑡 and 𝜇(𝑒𝑛) = 𝑠 for 𝑛 = 2𝑘 − 1 𝑘 ∈ Z+ − {1} and 𝑖 = 1, . . . , 𝑛−1
2

𝑟𝑓 (𝐺) = −𝑑(𝜇).

Proof. The proof is similar to the proof of Theorem 3.5. �

Theorem 3.9. Let 𝐺 be a fuzzy wheel graph where the node 𝑣𝑛 is a fuzzy hub and the nodes 𝑣1, . . . , 𝑣𝑛−1 are
on the fuzzy cycle 𝐶𝑛−1 with 𝑛 ≥ 5. Assume that 𝜇(𝑣𝑛, 𝑣𝑖) ≤ 𝜇(𝑒) for all 𝜇(𝑒) values, the membership values of
the arcs lying on the cycle, are different for all 𝑒 ∈ 𝐸(𝐶𝑛−1) and for 𝑖 = 1, . . . , 𝑛 − 1 all 𝜇(𝑣𝑛, 𝑣𝑖) are equal to
the weakest arc on the cycle. Then the fuzzy node rupture degree is

𝑟𝑓 (𝐺) =

{︃
max{CONN𝐺(𝑣𝑖, 𝑣𝑗) | 𝜇(𝑣𝑖, 𝑣𝑗) = 0} − 3𝑑(𝜇), if FCN exists
−2𝑑(𝜇), otherwise.

Proof. All the paths on the fuzzy wheel graph 𝐺 are strong path. Therefore each arc of 𝐺 is either 𝛼-strong or
𝛽-strong. So the weakest arcs of 𝐺 are 𝛽-strong arcs and the rest are 𝛼-strong. All the nodes 𝑣𝑖 for 𝑖 = 1, . . . , 𝑛−1
are adjacent to the hub. Then we obtain 𝑠(𝑣𝑖) = 𝑑(𝜇). Hence there are two cases according to the existence of
fuzzy cut node of 𝐺 since 𝜇(𝑣𝑛, 𝑣𝑖) ≤ 𝜇(𝑒).

Case 1. Let fuzzy wheel graph 𝐺 contain a fuzzy cut node. A node is a fuzzy cut node if and only if it is a
common node of at least two 𝛼-strong arcs. In this case, the fuzzy cut node is incident to the 𝛼-strong arcs.
Since all 𝜇(𝑣𝑛, 𝑣𝑖) for 𝑖 = 1, . . . , 𝑛−1 are equal to the weakest arc on the cycle 𝐶𝑛−1, 𝑞1 < CONN𝐺(𝑣𝑖, 𝑣𝑗) ≤
𝑞𝑚 where 𝑖 ̸= 𝑗 and 𝑖, 𝑗 = 1, . . . , 𝑛− 1.
Let 𝑆 be a fuzzy node cut and |𝑆 |= 1. Hence 𝑠(𝑆) = 𝑑(𝜇) = 𝑞1. If the set 𝑆 is removed from the graph, then
CONN𝐺−𝑆(𝑣𝑖, 𝑣𝑗) = 𝑞1 for 𝑖 ̸= 𝑗 𝑖, 𝑗 = 1, . . . , 𝑛− 1. Thus 𝑚𝑓 (𝐺−𝑆) = 𝑞1. The largest difference of strength
of connectedness in 𝐺−𝑆 is 0 ≤ CONN𝐺(𝑣𝑖, 𝑣𝑗)−CONN𝐺−𝑆(𝑣𝑖, 𝑣𝑗) ≤ 𝑞𝑚−𝑞1 then 0 ≤ 𝜔𝑓 (𝐺−𝑆) ≤ 𝑞𝑚−𝑞1.
Therefore the fuzzy node rupture degree is

−2𝑞1 ≤ 𝑟𝑓 (𝐺) ≤ 𝑞𝑚 − 3𝑞1. (15)

Let | 𝑆 |= 2. So 𝑠(𝑆) = 2𝑑(𝜇) = 2𝑞1 when the set 𝑆 is removed from the fuzzy wheel graph
CONN𝐺−𝑆(𝑣𝑖, 𝑣𝑗) = 𝑞1 for 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, . . . , 𝑛 − 1. Thus 𝑚𝑓 (𝐺−𝑆) = 𝑞1. Hence 0 ≤ 𝜔𝑓 (𝐺−𝑆) ≤ 𝑞𝑚 − 𝑞1

since 𝑞1 ≤ CONN𝐺(𝑣𝑖, 𝑣𝑗) ≤ 𝑞𝑚 where 𝑖 ̸= 𝑗 𝑖, 𝑗 = 1, . . . , 𝑛− 1. The fuzzy node rupture degree is

−3𝑞1 ≤ 𝑟𝑓 (𝐺) ≤ 𝑞𝑚 − 4𝑞1. (16)

Let |𝑆 |≥ 3. So 𝑠(𝑆) ≥ 3𝑑(𝜇)−3𝑞1. If the set 𝑆 is removed from the fuzzy graph 𝐺 then CONN𝐺−𝑆(𝑣𝑖, 𝑣𝑗) ≥ 0
for 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, . . . , 𝑛 − 1. Hence 𝑚𝑓 (𝐺−𝑆) ≥ 0 and 𝜔𝑓 (𝐺−𝑆) ≤ 𝑞𝑚. Therefore the fuzzy node rupture
degree is

𝑟𝑓 (𝐺) ≤ 𝑞𝑚 − 3𝑞1. (17)

So, we get the result 𝑟𝑓 (𝐺) ≤ 𝑞𝑚 − 3𝑞1 by taking the maximum of equations (15)–(17). By the definition of
the fuzzy node rupture degree we obtain

𝑟𝑓 (𝐺) = max{CONN𝐺(𝑣𝑖, 𝑣𝑗) | 𝜇(𝑣𝑖, 𝑣𝑗) = 0} − 3𝑞1. (18)

Case 2. Let fuzzy wheel graph 𝐺 not contain a fuzzy cut node. Hence every node is incident to a weakest arc.
So fuzzy cycle 𝐶𝑛−1 is a locamin fuzzy cycle and CONN𝐺(𝑥, 𝑦) = 𝑞1 = 𝑑(𝜇) for 𝑥, 𝑦 ∈ 𝜎*. |𝑆 |≥ 2 since 𝐺
does not have a fuzzy cut node. If |𝑆 |= 2 then CONN𝐺(𝑥, 𝑦) = CONN𝐺−𝑆(𝑥, 𝑦) for 𝑥, 𝑦 ∈ 𝜎*. Thus |𝑆 |≥ 3.
Let | 𝑆 |≥ 3. So 𝑠(𝑆) ≥ 3𝑑(𝜇) ≥ 3𝑞1. If the set 𝑆 is removed from the fuzzy wheel graph then
CONN𝐺−𝑆(𝑥, 𝑦) = 0 for 𝑥, 𝑦 ∈ 𝜎*. Thus 𝑚𝑓 (𝐺−𝑆) = 0 and 𝜔𝑓 (𝐺−𝑆) = 𝑑(𝜇) = 𝑞1. The fuzzy node
rupture degree is

𝑟𝑓 (𝐺) = max
𝑆⊆𝜎*

{𝜔𝑓 (𝐺−𝑆)− 𝑠(𝑆)−𝑚𝑓 (𝐺−𝑆) : 𝜔(𝐺−𝑆) > 1}
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𝑟𝑓 (𝐺) ≤ −2𝑞1 = −2𝑑(𝜇).

By the definition of fuzzy node rupture degree and |𝑆 |= 3

𝑟𝑓 (𝐺) = −2𝑞1 = −2𝑑(𝜇). (19)

The proof is completed from (18) and (19). �

Theorem 3.10. Let 𝐺 be a fuzzy wheel graph where the node 𝑣𝑛 is a fuzzy hub and the nodes 𝑣1, . . . , 𝑣𝑛−1 are
on the fuzzy cycle 𝐶𝑛−1. If 𝜇(𝑣𝑛, 𝑣𝑖) < 𝜇(𝑒) for 𝑒 ∈ 𝐸(𝐶𝑛−1) then the fuzzy node rupture degree is

𝑟𝑓 (𝐺) = max{CONN𝐺(𝑣𝑖, 𝑣𝑗) | 𝜇(𝑣𝑖𝑣𝑗) = 0} − 3𝑑(𝜇).

Proof. Let 𝐺 be a fuzzy wheel graph and 𝜇(𝑣𝑛, 𝑣𝑖) values are constant for 𝑖 = 1, . . . , 𝑛−1 and 𝜇(𝑣𝑛, 𝑣𝑖) < 𝜇(𝑒) for
all 𝑒 ∈ 𝐸(𝐶𝑛−1). Thus all the paths on the wheel 𝐺 are strong paths. Since a strong path only contains 𝛼-strong
and 𝛽-strong arcs, 𝐺 does not contain any 𝛿-arc. So 𝑣𝑛 is adjacent to all the nodes 𝑣𝑖 with 𝜇(𝑣𝑛, 𝑣𝑖) < 𝜇(𝑒) for
𝑖 = 1, . . . , 𝑛− 1 and 𝑒 ∈ 𝐸(𝐶𝑛−1). All the arcs (𝑣𝑛, 𝑣𝑖) are 𝛽-strong arcs and 𝜇(𝑣𝑛, 𝑣𝑖) = 𝑑(𝜇). Therefore fuzzy
hub 𝑣𝑛 is not a fuzzy cut node. Thus 𝑠(𝑣𝑖) = 𝑑(𝜇) for 𝑖 = 1, . . . , 𝑛 and 𝑠(𝑆) =|𝑆 | ·𝑑(𝜇) where 𝑆 is a fuzzy node
cut of 𝐺. There are two cases according to the existence of a fuzzy node cut of 𝐺.

Case 1. Let fuzzy wheel graph 𝐺 have a fuzzy cut node. Hence the node is incident to the 𝛼-strong arcs.
So it has membership value among from {𝑞3, 𝑞4, . . . , 𝑞𝑚}. Let 𝑆 be a fuzzy node cut and | 𝑆 |= 1. Thus
𝑠(𝑆) = 𝑑(𝜇) = 𝑞1. If the set 𝑆 is removed from 𝐺 then CONN𝐺(𝑣𝑖, 𝑣𝑗) = 𝑞2 where 𝑖 ̸= 𝑗 𝑖, 𝑗 = 1, . . . , 𝑛− 1.
Therefore 𝑚𝑓 (𝐺−𝑆) = 𝑞2 and 𝑞3 − 𝑞2 ≤ 𝜔𝑓 (𝐺−𝑆) ≤ 𝑞𝑚 − 𝑞2. The fuzzy node rupture degree is

𝑟𝑓 (𝐺) = max
𝑆⊆𝜎*

{𝜔𝑓 (𝐺−𝑆)− 𝑠(𝑆)−𝑚𝑓 (𝐺−𝑆) : 𝜔(𝐺−𝑆) > 1}

𝑞3 − 2𝑞2 − 𝑞1 ≤ 𝑟𝑓 (𝐺) ≤ 𝑞𝑚 − 2𝑞2 − 𝑞1. (20)

Let |𝑆 |= 2. So 𝑠(𝑆) = 2𝑞1 = 2𝑑(𝜇). Then 𝑞1 ≤ CONN𝐺(𝑣𝑖, 𝑣𝑗) ≤ 𝑞𝑚 for 𝑖 ̸= 𝑗; 𝑖, 𝑗 = 1, . . . , 𝑛. If the set 𝑆 is
removed from the fuzzy wheel graph 𝐺 then 𝑞1 ≤ CONN𝐺−𝑆(𝑣𝑖, 𝑣𝑗) ≤ 𝑞2. Hence 𝑞1 ≤ 𝑚𝑓 (𝐺−𝑆) ≤ 𝑞2 and
𝑞1 − 𝑞2 ≤ 𝜔𝑓 (𝐺−𝑆) ≤ 𝑞𝑚 − 𝑞1. The fuzzy node rupture degree is

−2𝑞2 − 𝑞1 ≤ 𝑟𝑓 (𝐺) ≤ 𝑞𝑚 − 4𝑞1. (21)

Let |𝑆 |≥ 3. Thus 𝑠(𝑆) ≥ 3𝑑(𝜇) and 𝑞1 ≤ CONN𝐺(𝑣𝑖, 𝑣𝑗) ≤ 𝑞𝑚 for 𝑖 ̸= 𝑗; 𝑖, 𝑗 = 1, . . . , 𝑛 when the set 𝑆 is
removed from 𝐺, 0 ≤ CONN𝐺−𝑆(𝑣𝑖, 𝑣𝑗) ≤ 𝑞𝑚. So 0 ≤ 𝑚𝑓 (𝐺−𝑆) ≤ 𝑞2 and 𝑞1 − 𝑞2 ≤ 𝜔𝑓 (𝐺−𝑆) ≤ 𝑞𝑚. The
fuzzy node rupture degree is

−2𝑞2 − 2𝑞1 ≤ 𝑟𝑓 (𝐺) ≤ 𝑞𝑚 − 3𝑞1. (22)

By the taking maximum of equations (20)–(22)

𝑟𝑓 (𝐺) ≤ 𝑞𝑚 − 3𝑞1.

From the definition of the fuzzy node rupture degree

𝑟𝑓 (𝐺) = max{CONN𝐺(𝑣𝑖𝑣𝑗) | 𝜇(𝑣𝑖𝑣𝑗) = 0} − 3𝑑(𝜇). (23)

Case 2. Let 𝐺 not contain a fuzzy cut node in this case. So the node 𝑣𝑖 for 𝑖 = 1, . . . , 𝑛− 1 is incident to the
weakest arc. Thus the fuzzy cycle 𝐶𝑛−1 is a locamin cycle. Then CONN𝐺(𝑣𝑖, 𝑣𝑗) = 𝑞2 for the nodes those
are non-adjacent. Since the set 𝑆 does not contain a fuzzy cut node, |𝑆 |≥ 2.
If | 𝑆 |= 2, then 𝑠(𝑆) = 2𝑞1 = 2𝑑(𝜇). If 𝑆 contains adjacent elements then CONN𝐺(𝑣𝑖, 𝑣𝑗) =
CONN𝐺−𝑆(𝑣𝑖, 𝑣𝑗). Hence the set 𝑆 consists of non-adjacent elements where CONN𝐺−𝑆(𝑣𝑖, 𝑣𝑗) = 𝑞1 <
CONN𝐺(𝑣𝑖, 𝑣𝑗) = 𝑞2, 𝑚𝑓 (𝐺−𝑆) = 𝑞1 and 𝜔𝑓 (𝐺−𝑆) = 𝑞2 − 𝑞1. So the fuzzy node rupture degree is

𝑟𝑓 (𝐺) = 𝑞2 − 4𝑞1. (24)
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If |𝑆 |≥ 3, then 𝑠(𝑆) ≥ 3𝑑(𝜇). When the set 𝑆 is removed from 𝐺, CONN𝐺−𝑆(𝑣𝑖, 𝑣𝑗) ≥ 0. Hence 𝑚𝑓 (𝐺−𝑆) ≥
0 and 𝜔𝑓 (𝐺−𝑆) ≤ 𝑞2. So the fuzzy node rupture degree is

𝑟𝑓 (𝐺) ≤ 𝑞2 − 3𝑞1. (25)

When we get the maximum values from (23) to (25), by the definition of fuzzy node rupture degree and
|𝑆 |= 3 we obtain

𝑟𝑓 (𝐺) = max{CONN𝐺(𝑣𝑖, 𝑣𝑗) | 𝜇(𝑣𝑖, 𝑣𝑗) = 0} − 3𝑑(𝜇). (26)

The proof is completed from (23) and (26). �

Theorem 3.11. Let 𝐺 be a fuzzy wheel graph where the node 𝑣𝑛 is a fuzzy hub and the nodes 𝑣1, . . . , 𝑣𝑛−1

are on the fuzzy cycle 𝐶𝑛−1. Assume that 𝜇(𝑣𝑛, 𝑣𝑖) > 𝜇(𝑒) where 𝑒 ∈ 𝐸(𝐶𝑛−1) and 𝜇(𝑣𝑛, 𝑣𝑖) are constant for
𝑖 = 1, . . . , 𝑛− 1. Then the fuzzy node rupture degree is

𝑟𝑓 (𝐺) = −max{𝜇(𝑒) | 𝑒 ∈ 𝐸(𝐶𝑛−1)} − 𝑑(𝜇).

Proof. Since 𝜇(𝑣𝑛, 𝑣𝑖) > 𝜇(𝑒) for 𝑖 = 1, . . . , 𝑛 − 1 and 𝑒 ∈ 𝐸(𝐶𝑛−1) in a fuzzy wheel graph, (𝑣𝑖, 𝑣𝑛) arcs are
𝛼-strong arcs and the rest are 𝛿-arcs. Thus 𝑣𝑛 is a fuzzy cut node. So 𝑠(𝑣𝑖) = 𝑞𝑚 = ℎ(𝜇) for 𝑖 = 1, . . . , 𝑛 and
CONN𝐺(𝑣𝑖, 𝑣𝑗) = 𝑞𝑚 where 𝑖 ̸= 𝑗; 𝑖, 𝑗 = 1, . . . , 𝑛.

Let | 𝑆 |= 1 and 𝑆 = {𝑣𝑛}. So 𝑠(𝑆) = 𝑞𝑚. When the set 𝑆 is removed from the fuzzy wheel graph, then
𝑞1 ≤ CONN𝐺−𝑆(𝑣𝑖, 𝑣𝑗) ≤ 𝑞𝑚−1 for 𝑖 ̸= 𝑗; 𝑖, 𝑗 = 1, . . . , 𝑛− 1. Thus 𝑚𝑓 (𝐺−𝑆) = 𝑞𝑚−1 and 𝜔𝑓 (𝐺−𝑆) = 𝑞𝑚 − 𝑞1.
The fuzzy node rupture degree is

𝑟𝑓 (𝐺) = −(𝑞𝑚−1 + 𝑞1). (27)

Let | 𝑆 |= 2. So 𝑠(𝑆) = 2𝑞𝑚 = 2ℎ(𝜇). If the set 𝑆 is removed from 𝐺, then 𝑞1 ≤ 𝑚𝑓 (𝐺−𝑆) ≤ 𝑞𝑚−1 and
𝑞𝑚−1 − 𝑞1 ≤ 𝜔𝑓 (𝐺−𝑆) ≤ 𝑞𝑚 − 𝑞1. The fuzzy node rupture degree is

−𝑞𝑚 − 𝑞1 − 𝑞𝑚−1 ≤ 𝑟𝑓 (𝐺) ≤ −𝑞𝑚 − 2𝑞1. (28)

Let |𝑆 |≥ 3. So 𝑠(𝑆) ≥ 3𝑞𝑚 = 3ℎ(𝜇). Thus CONN𝐺(𝑥, 𝑦) ≥ 0 for 𝑥, 𝑦 ∈ 𝜎*, 𝑚𝑓 (𝐺−𝑆) ≥ 0 with 𝜔𝑓 (𝐺−𝑆) ≤
𝑞𝑚. The fuzzy node rupture degree is

𝑟𝑓 (𝐺) ≤ −2𝑞𝑚. (29)

From the definition of the fuzzy node rupture degree and the maximum values of equation (27)–(29), we get
the result

𝑟𝑓 (𝐺) = −[max{𝜇(𝑒) | 𝑒 ∈ 𝐸(𝐶𝑛−1)}+ 𝑑(𝜇)].

�

4. An algorithm to find fuzzy node rupture degree

Algorithm 1

The strength of connectedness algorithm given by Altundag, which calculates the strength of connectedness
between any two vertices in a fuzzy graph 𝐺 : (𝑉, 𝜎, 𝜇), is given below [15].

Step 1. Write the adjacency matrix of the fuzzy graph 𝐺 as matrix 𝐴.
Step 2. Obtain the matrix 𝐴𝐴 by replacing the diagonal elements with ∞ of the matrix 𝐴.
Step 3. If min{𝐴𝐴[𝑖, 𝑘], 𝐴𝐴[𝑘, 𝑗] > 𝐴𝐴[𝑖, 𝑗], then write

𝐶[𝑖, 𝑗] = min{𝐴𝐴[𝑖, 𝑘], 𝐴𝐴[𝑘, 𝑗]}, otherwise 𝐶[𝑖, 𝑗] = 𝐴𝐴[𝑖, 𝑗] as the matrix of strength of connectedness.

If this algorithm is applied to a fuzzy graph 𝐺, then the results will be obtained as follows [15]:

(1) The strength of connectedness between each nodes of 𝐺 are obtained.
(2) Determines the strong arcs where 𝐴𝐴[𝑖, 𝑗] ̸= 0. If 𝐴𝐴[𝑖, 𝑗] < 𝐶[𝑖, 𝑗], then (𝑖, 𝑗) is a 𝛿-arc and if 𝐴𝐴[𝑖, 𝑗] =

𝐶[𝑖, 𝑗], then (𝑖, 𝑗) is an 𝛼-strong arc or a 𝛽-strong arc.
(3) The strong weights of each nodes are obtained by 𝑠(𝑖) = min{𝐴𝐴[𝑖, 𝑗]|𝐴𝐴[𝑖, 𝑗] = 𝐶[𝑖, 𝑗]}.
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4.1. Algorithm 2

This section gives an algorithm to find the node rupture degree of a fuzzy graph 𝐺 : (𝑉, 𝜎, 𝜇). This algorithm
uses the Algorithm 1 in Section 4 above.

Step 1. Determine the strong weights of each nodes of 𝐺 by using the Algorithm 1. 𝑠(𝑖) =
min{𝐴𝐴[𝑖, 𝑗]|𝐴𝐴[𝑖, 𝑗] = 𝐶[𝑖, 𝑗]}.

Step 2. Find a set 𝑆 ⊆ 𝜎* which is a fuzzy node cut for 𝐺.
Step 3. Evaluate the value of 𝑠(𝑆) using the strong weights found in Step 1 of the nodes in 𝑆.
Step 4. Find the adjacency matrix of the graph 𝐺−𝑆 by replacing the entries on the columns and the rows,

corresponding to the nodes in 𝑆, of the adjacency matrix 𝐺 with zero.
Step 5. Obtain the matrix of strength of connectedness 𝐶 for the fuzzy graph 𝐺−𝑆 by using the Algorithm 1.

For the Step 1 of the Algorithm 1 use the adjacency matrix obtained in Step 4 above.
Step 6. If 𝑞 < 𝑝, then 𝑟 = 𝑝− 2𝑞 − 𝑠(𝑆) where 𝐶[𝑖, 𝑗] = 𝑝 for the fuzzy graph 𝐺 and 𝐶[𝑖, 𝑗] = 𝑞 for the fuzzy

graph 𝐺−𝑆, otherwise go to Step 2.
Step 7. Repeat the Steps 2 through 6 until there is no other set 𝑆 exists in Step 2.
Step 8. Find the maximum of all the values of 𝑟 which gives the node rupture degree value 𝑟𝑓 (𝐺) of the fuzzy

graph 𝐺.

5. Discussion and conclusion

Vulnerability metrics in graphs have been well studied in classical and fuzzy graph theory, and parameters
such as connectivity, integrity, toughness, tenacity, and rupture degree have played crucial roles in measuring
the resilience of networks. However, such traditional metrics fail to fully capture the impact of node removal in
uncertain environments where edges and nodes may possess varying degrees of connectedness. Compared with
the previous works, the fuzzy node rupture degree provided in this study is a more comprehensive measure of
graph vulnerability for fuzzy networks. Compared with the classical vulnerability measures, which consider only
the number of disconnected components, our approach involves:

– The resilience of remaining sub-networks after node removals.
– The size of the largest connected component, indicating the network’s capacity for maintaining communica-

tion.
– The summation of the effects of multiple node deletions, hence a more realistic metric in scenarios with

progressive deterioration.

The proposed fuzzy node rupture degree varies from other fuzzy graph vulnerability metrics, such as fuzzy
connectivity and fuzzy integrity, in several ways. While previous fuzzy vulnerability metrics had primarily dealt
with binary disconnection status, our approach quantifies the incremental loss of connections by considering
membership values and strength of connectedness. This gives a more realistic estimate of network robust-
ness, especially in complex systems such as transportation, bioinformatics, and communication networks, where
interconnection is not necessarily binary. Furthermore, the algorithm in this study also gives a viable means
to compute the fuzzy node rupture degree that can be utilized in realistic network analysis. The computa-
tion results on fuzzy cycle, fuzzy wheel, and fuzzy star graphs indicate our measure can be implemented on a
wide range of network topologies, and they convey meaningful information regarding the robustness of fuzzy
networks.

5.1. Future work

Despite this paper clearly establishing the basic properties of fuzzy node rupture degree, further work can
expand its applicability to more complex real-world networks. Some possible avenues for future work are:

– This metric should be used on large real-world databases such as transportation systems and biological
networks.
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– Develop heuristic algorithms that would efficiently calculate fuzzy node rupture degree for large graphs.
– Exploring multi-layered fuzzy networks, whose interactions between layers influence vulnerability of net-

works.
– Comparing this metric with other fuzzy vulnerability measures, such as fuzzy toughness and fuzzy tenacity,

for further refinement of its applicability.

By bridging the gap between classical vulnerability analysis and fuzzy network modeling, this study makes a
contribution to fuzzy graph theory development and provides a solid foundation for future studies on network
resilience.
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