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Abstract: This paper entails a systematic approach for measuring the Super Efficiency Scores 

of a set of rival firms. This evaluation process is dependent on the location of the worst 

Decision-Making Unit retained by the technology set. Unlike antecedent researches, the worst 

point is selected from a predefined neighbourhood with an application of a linear model. 

Finally, the new Super Efficiency model measures the Efficiency score while embedding the 

worst point within the direction vector. This two-stage model is akin to the standard form of a 

Directional Distance Function and does not end up with problems of infeasibility, negative data 

or zero data. In other words, the method is found robust to classify the Decision Making Units 

into the Super-Efficient, Strongly Efficient, Weakly Efficient and Inefficient groups. Two cases 

once addressed by Seiford and Zhu (1997) and Byrnes et al. (1984) are illustrated here to 

explore the functionality of the model in comparison to a few renowned ones. 
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1. Introduction: 

Measurement of “Super-efficiency (SE)” for Decision-Making Units (DMUs) in Data 

Envelopment Analysis (DEA) is needed to rank the efficient DMUs who achieve unity as an 

efficiency score (Charnes et al., 1978; Cooper et al., 2000). SE method excludes the DMU 

under evaluation from the reference set so that efficient DMUs may have efficiency scores 

larger than or equal to 1, and inefficient DMUs have identical efficiency scores as those 

obtained from the CCR model. Ranking of the best performers was made possible by several 

methods authored by Andersen and Petersen (1993), Doyle and Green (1993, 1994), Stewart 

(1994), Tofallis (1996), Seiford and Zhu (1999), and Zhu (2001). Tone (2001) used a non-

radial format to compute a slacks-based measure of efficiency (SBM). In this context, the 

additive integer-valued and additive SE integer-valued models of Du et al. (2012), partial 

frontier analysis by Gnewuch and Wohlrabe (2018) or the additive SE model of Yu and Hsu 

(2020) are worth mentioning. 

This provisional PDF is the accepted version. The article should be cited as: RAIRO: RO, doi: 10.1051/ro/2021165

https://doi.org/10.1051/ro/2021165


However, the crisis of infeasibility became evident when few special DMUs failed to trace a 

peer on the production frontier during their assessments made by the VRS based SE model 

(Lovell and Rouse, 2003; Chen, 2005). Lovell and Rouse (LR) modified the standard DEA 

model to overcome the infeasibility problem for computing SE for a few Strongly Super-

Efficient DMUs (Xue and Harker, 2002). LR approach appropriately scales up the observed 

input vector (scale down the output vector) of the relevant super-efficient firm to create its 

inefficient surrogate. Ray (2008) demonstrated an alternative way to use the directional 

distance function and the resulting Nerlove-Luenberger (NL) measure of SE. This measure was 

shown to be unique and did not depend on any arbitrary choice of a scaling parameter. The 

approach of Cook et al. (2009) could offer a feasible and optimal solution for the super-efficient 

DMUs that can cause infeasibility under the erstwhile SE models.  

The two-stage model of Lee et al. (2011) showed that the infeasibility could creep into the 

input-oriented (output-oriented) model due to the existence of any output surplus (input 

saving). The SE score was expressed in combination with both the radial efficiency and output 

surplus (input saving) attribute. Chen and Liang (2011) further solved the two-stage process 

using a single-stage linear program. The researches of Lin and Chen (2015), Lin and Chen 

(2017), Lin and Liu (2019) etc., later on, claimed to offer remedies to the so-called 

“Infeasibility, zero data and negative data” problems using the concepts of Directional Distance 

Function (DDF).      

On the other hand, the zero data problem emerges for those DMUs which contain zeros in 

their input-output bunches. For example, Thrall (1996) and Zhu (1996) earlier detected the 

infeasibility problem when zero input values were treated within the CRS SE model. Ray 

(2008) warned about this fallacy within the NL based SE model owing to its direct impact on 

the direction vector. Lee and Zhu (2012), moreover, pointed out the ineffectiveness of the 

models prescribed by Lee et al. (2011) and Chen and Liang (2011) even in zero data. The 

authors showed the applicability of their model for solving problems under CRS as well as 

VRS assumptions. 

In DEA deriving a solution to a negative-data problem has been a challenge as the initial 

postulates were constructed based on the positive data. Several models (Pastor (1996), Halme, 

Pro, Koivu (2002), Portela et al. (2004), Sharp et al. (2007), Emrouznejad et al. (2010), Matin 

and Azizi (2010) etc.) were applied to handle them. Hadi-Vencheh and Esmaeilzadeh (2013) 

modified the Range Directional Model (RDM) (Portela et al. (2004)) to generate SE scores 

without incurring the infeasibility problem. The models of Lin and Chen (2015), Lin and Chen 

(2017), Lin and Liu (2019) etc., were found reasonably effective for treating the negative data.  



 However, despite having advantages, these approaches failed to create a standard way of 

selecting the direction vector to locate the peer and its impact on the SE score. For example, 

few models even found negative numbers to reach the frontier along the direction vector while 

moving from the SE DMU. Some techniques could not succeed to resolve the infeasibility 

issues. In the case of the zero data, some models gave rise to the SE scores solely dependent 

on the model parameters (Lin and Chen (2017)). Some renowned models failed to compute the 

input saving index and output surplus index values under these circumstances. The extant 

research aims to develop a more rational and comprehensive procedure that can eliminate all 

these issues. In this context, the theme of the worst point is proposed in this paper to resolve 

the infeasibility crisis. It also provides a unique way of computing radial input slack index and 

output surplus index values which will remain effective for negative or zero data. 

In this regard, the subsequent sections are going to highlight the following aspects. Section 2 

provides a brief description of the traditional models to compute the SE scores and the ways to 

resolve the infeasibility crisis. Section 3 addresses the solution to remove this issue using a 

two-stepped approach. This section also depicts the need of defining and obtaining a Worst 

Point and its impact on the SE score. Section 4 describes a comparative study for the sake of 

appraisal of the new model. Finally, the last section provides the concluding remark about it. 

2. Description of Super Efficiency Models: 

Let there be a technology set T with c observed DMUs where each produces the same v outputs 

in diverse amounts using the same m inputs in different amounts. Any feasible unit r (= 1, 2... 

c) which is also a member of T consumes a desirable input 𝑥𝑟 to produce a desirable output 𝑦𝑟. 

In other words, the production system is depicted as: 

𝑇={(𝑥,𝑦):𝑦≥∑ 𝑥𝑟𝜆𝑟
𝑐
𝑟=1 ;𝑦≤∑ 𝑦𝑟𝜆𝑟;𝜆𝑟≥0 

𝑐
𝑟=1 }  

𝑤ℎ𝑒𝑟𝑒 𝑥𝑟=(𝑥1𝑟 𝑥2𝑟 … 𝑥𝑚𝑟)∈𝑹𝒎
+,𝑦𝑟=(𝑦1𝑟 𝑦2𝑟 … 𝑦𝑣𝑟)∈𝑹𝒗

+.  

Inputs (outputs) are assumed to be freely disposable and T should contain any bunch of input-

output (𝑥′,𝑦′) satisfying 𝑥′≥𝑥 𝑎𝑛𝑑 𝑦′≤𝑦. In addition to that, for any chosen value of 𝑘≥0 

(𝑘𝑥,𝑘𝑦) is feasible when the bunch (𝑥,𝑦) is feasible. DMU o is called efficient if there exists 

no unit (𝑥′,𝑦′)∈𝑇 such that 𝑥𝑜≥𝑥
′ 𝑎𝑛𝑑 𝑦𝑜≤𝑦′ where (𝑥𝑜,𝑦𝑜)≠(𝑥′,𝑦′). To support a 

Constant Returns to Scale (CRS) a Production Possibility Set (PPS) in this regard, is expressed 

mathematically as the formulation mentioned in (1): 

∑ 𝑥𝑖𝑟𝜆𝑟
𝑐
𝑟=1 ≤𝑥𝑖𝑜,              𝑖=1,2,…,𝑚  



∑ 𝑦𝑗𝑟𝜆𝑟 
𝑐
𝑟=1 ≥𝑦𝑗0               𝑗=1,2,…,𝑣  

𝜆=[𝜆1 𝜆2⋯ 𝜆𝑐]
𝑇, (𝜆𝑟≥0,∀𝑟)     (1) 

To involve an assumption of Variable Returns to Scale (VRS) here requires an additional 

constraint ∑ 𝜆𝑟
𝑐
𝑟=1 =1,𝑓𝑜𝑟 𝑟=1,2,…,𝑐.  

2.1 Standard SE-BCC Models:  

The Input Oriented Super-Efficiency score of the DMU o (which is a member of the PPS T 

defined above) is computed from the following VRS super-efficiency model: 

Min𝛽   

∑ 𝑥𝑖𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

≤𝛽𝑥𝑖𝑜,          𝑖=1,2,…,𝑚  

∑ 𝑦𝑗𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

≥𝑦0               𝑗=1,2,…,𝑣  

∑ 𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

=1,𝜆𝑟≥0,𝑓𝑜𝑟 𝑟=1,2…𝑐,𝑟≠𝑜    (2) 

Here, the DMU o under evaluation is excluded from the reference set. When DMU o is efficient 

and model (2) is feasible, then 𝛽>1 is indicative of the way the DMU o has to increase its 

input vector to reach the frontier formed by the rest of the DMUs. Similarly, the output-oriented 

VRS super-efficiency model can be expressed as follows: 

Max𝛽   

∑ 𝑥𝑖𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

≤𝑥𝑖𝑜,                 𝑖=1,2,…,𝑚  

∑ 𝑦𝑗𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

≥𝛽𝑦𝑗𝑜               𝑗=1,2,…,𝑣  

∑ 𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

=1; 𝜆𝑟≥0 𝑓𝑜𝑟 𝑟=1,2,…,𝑐 𝑎𝑛𝑑 𝑟≠𝑜    (3) 

When DMU o is efficient and model (3) is feasible, 𝛽<1, indicating that DMU o’s outputs 

are decreased to reach the frontier formed by the convex combination of the rest of DMUs. 

But, (2) and (3) was found infeasible when analysing a special type of VRS efficient DMU.  

2.1.1 The Problem of Infeasibility in the SE-BCC Model:  

Referring to the propositions of Xue and Harker (2002) the crisis of infeasibilities are seen in 



the following cases: 

If DMU-O is strongly super-efficient in the input-oriented VRS super-efficiency DEA model, 

the primal model for DMU-O is infeasible. In the primal (the corresponding dual problem) 

input-oriented VRS super-efficiency DEA model for a DMU-O is infeasible (unbounded) if and 

only if DMU-O is super-efficient in the input-oriented VRS super-efficiency DEA model.  

These exceptional individuals are those which can outperform others based on the usage of 

inputs or generation of outputs. In case of the first (second) type at least one input (output) will 

concluded that the root of this problem remains with the strongly super-efficient DMUs. A 

strongly super-efficient DMU is defined as “a DMU-O that strictly exceeds any other DMU in 

at least one dimension of the output (input) vector in model (2) ((3))”. 

2.2 Standard Directional Distance Function to Compute SE score: 

To detect the inefficiency of a DMU, Directional Distance Function was conceived by 

Chambers, Chung, and Färe (1996). It was derived based on Luenberger’s benefit function to 

obtain a measure of technical efficiency reflecting the potential for increasing outputs while 

reducing inputs simultaneously. To measure the Super Efficiency Score of a DMU an extended 

form of the DDF model is also found relevant (shown in (4)). (4) utilises a reference input-

output bundle (𝑔𝑋,𝑔𝑌) to reach a production frontier from some input-output bundle (𝑥𝑜,𝑦𝑜). 

Concerned with the PPS, T, the directional distance function is defined as: 

𝐷(𝑥𝑜,𝑦𝑜,𝑔𝑋,𝑔𝑌)=max𝛽:{(𝑥𝑜+𝛽𝑔𝑋,𝑦𝑜−𝛽𝑔𝑌)∈𝑇}    ∀𝛽∈𝑅
± 

When 𝑇={(𝑥,𝑦):𝑥≥∑ 𝑥𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

,𝑦≤∑ 𝑦𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

,∑ 𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

=1} 

These direction vectors must fulfil certain properties (Chambers, Chung, and Färe (1996)).  

Min𝛽   

∑ 𝑥𝑖𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

−𝛽𝑔𝑖𝑋≤𝑥𝑖𝑜,              𝑖=1,2,…,𝑚  

∑ 𝑦𝑗𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

+𝛽𝑔𝑗𝑌≥𝑦𝑗𝑜               𝑗=1,2,…,𝑣,𝛽∈𝑅
±  

∑ 𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

=1,𝜆𝑟≥0 𝑓𝑜𝑟 𝑟=1,2,…,𝑐,𝑟≠𝑜     (4) 

An optimal solution 𝛽>0 is indicative of the presence of a super-efficient (Nerlove-

Luenberger (NL)) DMU O. Barring this, it would suggest to scale down (up) the output (input)  



bundle of DMU O to get an attainable input-output bundle in the modified PPS. A firm achieves 

a superior rank between two firms on basis of the higher value of 𝛽.  

RDM (Portela et al (2004)) has also its limitation to resolve the infeasibility issue. Example 1 

is added here to (using Table 1 and Figure 1A) show that during the measurement of SE score 

of E the line (IE) connecting it with the Best Point (I) chosen by RDM fails to intersect the 

production frontier ABCDEEEXT. The corrections offered by Hadi-Vencheh and Esmaeilzadeh 

(2013) indeed created the way of applying RDM to determine the Super Efficiency scores while 

selecting a reference point from the set 𝑇/ (𝑥0,𝑦0). However, the solution was not free from 

glitches (Figure 1B).  

<Insert Table 1: Data Table> 

<Insert Figure 1A: Failure of RDM> 

<Insert Figure 1B: Failure of new RDM> 

The model of Cook et al (2009) features another form of a directional distance function (shown 

below in (5) (input-oriented form)) for measuring SE score under VRS where needed 

improvements on the input and output vectors are sought unequally (as 𝛽 and 𝛼 are used 

separately). DMUs having problems with their output constraints in Input Oriented VRS SE 

model succeeded to attain a Super Efficiency Score. 

Min𝛽+𝑀𝛼   

∑ 𝑥𝑖𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

≤(1+𝛽)𝑥𝑖𝑜,              𝑖=1,2,…,𝑚  

∑ 𝑦𝑗𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

≥(1−𝛼)𝑦𝑗𝑜               𝑗=1,2,…,𝑣;  𝛽∈𝑅
±  

∑ 𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

=1,𝜆𝑟≥0 𝑓𝑜𝑟 𝑟=1,2…𝑐;  𝑟≠𝑜     (5) 

The expression mentioned below was introduced to compute the input-oriented SE score: 

𝑆𝐸𝑜=(1+𝛽)+
1

(1−𝛼)
  

Lin and Chen (2015) (LC) criticised the model proposed by Chen et al (2013) for its lack of 

strength to remove the infeasibility crisis completely and employed a direction vector given as:  

[{(max
𝑟≠𝑜
𝑥𝑖𝑟+𝑥𝑖𝑜),𝑦𝑗𝑜},∀𝑖,𝑗].  



The model of Lin and Chen (2017) (shown below) revealed the inabilities of the NL and LC: 

Max𝛽   

∑ 𝑥𝑖𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

≤(1−𝛽)𝑥𝑖𝑜−𝛽𝑎𝑖,             𝑖=1,2,…,𝑚  

∑ 𝑦𝑗𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

≥(1+𝛽)𝑦𝑗𝑜−𝛽𝑏𝑗              𝑗=1,2,…,𝑣;  𝛽∈𝑅
±  

∑ 𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

=1,𝜆𝑟≥0 𝑓𝑜𝑟 𝑟=1,2…𝑐;  𝑟≠𝑜      

𝑎𝑖=𝑘(max
𝑟
𝑥𝑖𝑟),𝑘≥3,∀𝑖,𝑟,  

𝑏𝑗=(min
𝑟
𝑦𝑗𝑟),∀𝑗,𝑟       (6A) 

Hence, the entire research is hovering around the choice of selecting the reference point and 

the pair of direction vectors which could be relevant tool to treat positive as well as negative 

data. In this direction the new research is going to put few important inquisitions about the way 

of selecting the value of k. What is the implication of selecting a higher or lower value of it? 

For example, the input and output constraints of (6A) can be rearranged in the following 

manner: 

∑ 𝑥𝑖𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

≤𝑥𝑖𝑜−𝛽(𝑎𝑖+𝑥𝑖𝑜),             𝑖=1,2,…,𝑚  (6B) 

∑ 𝑦𝑗𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

≥𝑦𝑗𝑜+𝛽(𝑦𝑗𝑜−𝑏𝑗)             𝑗=1,2,…,𝑣;  𝛽∈𝑅
±  

Selection of two different values are set for k can have an impact on the efficiency scores on 

the SE score of the DMU. So, is it a robust way of choosing a direction vector?   

In this regard, the concept of a Worst Point is approved so that a direction be proposed which 

will be consistent with the positive as well as negative data. Apart from that the impact of such 

a selection on the SE score is needed to be explored.  

3. Proposed Solution to the Infeasibility Problem 

One reason for having a crisis of infeasibility is due to the selection of an inappropriate 

direction vector which ultimately fails to find a suitable point on the frontier. To place a curb 

on this matter a new vector is proposed which will be emanating from a technologically feasible 

Worst Point and ending at the DMU which is under consideration. In this context, there can be 



two possibilities that will help in deciding the location of the peer on the frontier. In the first 

case, if the DMU is Strongly Efficient then it will be away from the legitimate boundary of the 

convex set T. Hence, the peer will certainly create an internal division on the line joining the 

worst point and the stated DMU. The subsequent theorems are added in favour of this case: 

Theorem 1: The line segment connecting two points that remain at the interior and exterior to 

a Production Possibility Set T will find an element located on the closure of T. 

Proof: Let there be two points 𝐴0 𝑎𝑛𝑑 𝐴𝑤 which are external and internal to the production 

possibility set T. Then according to the definitions of the exterior and interior points there must 

a few positive numbers 𝜑0 𝑎𝑛𝑑 𝜑𝑤 such that the following conditions can prevail: 

‖𝐴0−𝑏0‖<𝜑0 𝑎𝑛𝑑 ‖𝐴𝑤−𝑏𝑤‖<𝜑𝑤  

𝑁𝜑0(𝐴0)⊂ 𝑇
𝑐 𝑎𝑛𝑑 𝑁𝜑𝑤(𝐴𝑤)⊂ 𝑇       (7) 

Here, 𝑁𝜑0(𝐴0) denotes the neighbourhood of 𝐴0. Let there be another point 𝐴𝑝 which is 

situated on the boundary of T such that due to a variable 𝜗∈(0,1) the following linear 

relationship is fulfilled: 

 𝐴𝑝=𝜗𝐴0+(1−𝜗)𝐴𝑤                   (8) 

In addition to this, for any point 𝑐𝑝 a couple of relationships can be conceived: 

‖𝐴𝑝−𝑐𝑝‖<𝜑𝑝  where 𝜑0<𝜑𝑝 𝑎𝑛𝑑 𝜑𝑤<𝜑𝑝 

𝑁𝜑𝑝(𝐴𝑝)∩ 𝑇
𝑐≠∅ 𝑎𝑛𝑑 𝑁𝜑𝑝(𝐴𝑝)∩ 𝑇≠∅        (9) 

In this case 𝑐𝑝 can either be within T or 𝑇𝑐. Now, if it is subsumed that there exists a variable 

𝜗 such that another point 𝑏𝑝 is obtained using a linear combination of 𝑏0 𝑎𝑛𝑑 𝑏𝑤: 

𝑏𝑝=𝜗𝑏0+(1−𝜗)𝑏𝑤        (10) 

Now, ‖𝐴𝑝−𝑏𝑝‖=‖𝜗𝐴0+(1−𝜗)𝐴𝑤−𝜗𝑏0−(1−𝜗)𝑏𝑤‖      (from (8)) 

‖𝜗(𝐴0−𝑏0)+(1−𝜗)(𝐴𝑤−𝑏𝑤)‖<𝜗‖𝐴0−𝑏0‖+(1−𝜗)‖𝐴𝑤−𝑏𝑤‖  

 =𝜗𝜑0+(1−𝜗)𝜑𝑤 < 𝜑𝑝        (11) 

But, (11) implies that 𝑏𝑝 exists in the neighbourhood of 𝐴𝑝. Thus, the theorem is proved.  

The second theorem is referred below in connection to an Inefficient DMU. 



Theorem 2: The line segment connecting two points that remain at the interior to a Production 

Possibility Set T will find a peer on the boundary of T. 

Proof: For any convex set S (⊂𝑅𝑛) with a nonempty interior if there exist two elements 𝐴1 

and 𝐴2 such that 𝐴1∈𝑐𝑙(𝑆) and 𝐴2∈𝑖𝑛𝑡(𝑆), then, the convex combination of these points 

will remain within the interior of S. In other words, 𝐴=𝜆𝐴1+(1−𝜆)𝐴2∈𝑖𝑛𝑡(𝑆) 𝑓𝑜𝑟 1≥

𝜆>0 (the proof is mentioned in the book of Bazaraa et al (2006)). This proposition also 

confirms that if two points 𝐴∈𝑖𝑛𝑡(𝑆) and 𝐴2∈𝑖𝑛𝑡(𝑆) are connected with a line then the 

extension of the line will find a point on the boundary of S. In this case, the point seems to be 

situated on the boundary due to an appropriate selection of 𝜆 ∀𝐴1=
1

𝜆
[𝐴−(1−𝜆)𝐴2]. Hence, 

this is the only matter that has to be shown to prove the theorem. 

Let there be a convex set S and there are two points B and 𝐴1 such that 𝐵∈𝑒𝑥𝑡(𝑆) and 𝐴1∈

𝑖𝑛𝑡(𝑆). It is then possible to locate another point 𝐴∈𝑐𝑙(𝑆) which will have a minimum 

distance from y. An inequality is strictly held in this case is (𝐵−𝐴)𝑇(𝐴1−𝐴)≤0. Now, if 

there exists another point 𝐴2∈𝑖𝑛𝑡(𝑆) so that for a positive value of 𝜌 the ratio 
(𝐴1−𝐴)

(𝐴2−𝐴)
=𝜌 is 

held. In other words, 𝐴2(=
1

𝜌
[𝐴−(1−𝜌)𝐴2]) will be situated on the same line joining two 

points 𝐴1 𝑎𝑛𝑑 𝐴. A positive value of 𝜌 is an indicator of an external division of the line created 

by 𝐴1 𝑎𝑛𝑑 𝐴2. This equivalence will end up with the inequality (𝐵−𝐴)𝑇(𝐴2−𝐴)≤0. This 

condition affirms that even if another point was chosen from the line joining 𝐴1 𝑎𝑛𝑑 𝐴 then 

also B 𝑎𝑛𝑑 𝐴 shall have the minimum distance. Hence, the proof of the theorem 2 is complete.  

3.1 Example 2 to show the way to Measure SE: 

The assessment of SE score is illustrated here with Example 2. Let there be a Production 

Possibility Set containing three DMUs say A (Efficient), B (Inefficient) and R (worst point) 

having their input-output vectors of (4, 6), (6, 5) and (8, 4) respectively. Then to compute the 

SE score of A, it has to be kept outside the convex zone defined by B and R. The current peer 

B will be located at the boundary of the zone to create an internal division (with a ratio of (1−

𝜏:𝜏) ∀ 1≥𝜏>0) of the line segment AR. 𝜏 is computed from the following ratio: 

𝜏=
𝐵𝑅

𝐴𝑅
=
8−6

8−4
=
6−5

6−4
=
1

2
             

But, the SE score of A is given by: 𝑆𝐸𝐴=
𝐴𝑅

𝐵𝑅
=2. Similarly, the SE score of B is obtained 

from the 𝑆𝐸𝐵=
𝐵𝑅

𝐴𝑅
=
1

2
. However, in this case, point A has to create an external division to the 



line segment BR (with a ratio of (𝜏−1:𝜏) ∀ 1<𝜏). The value of 𝜏 is computed from the ratio 

𝜏=
𝐴𝑅

𝐵𝑅
=2.    

This small example narrates the fact that 𝜏 will certainly possess a positive score even though 

the DMU is located within the convex zone or not. The SE score will be 
1

𝜏
 irrespective of the 

score possessed by 𝜏. Moreover, 𝜏 has the greatest lower bound which is solely dependent on 

the location of R. The more it moves towards B the more will be the SE score of A and the less 

will be the SE score of B. To incorporate this concept into a real-life problem four major steps 

are adopted to measure SE for a DMU (subsequent sections will sequentially illustrate them): 

¶ To define the neighbourhood within which the Worst Point is to be located 

¶ To select a Worst Point within the span of the neighbourhood using a Linear Model-1 

¶ To apply the Linear Model-2 on a DMU to determine the model parameter  

¶ To find SE of a DMU using the optimal value of the model parameter 

 

3.2 Definition of Worst Point: 

The vector (𝑥𝐼,𝑦𝐼) is designated as the “Worst Point” to exemplify a firm that consumes the 

highest amount of inputs to deliver the lowest possible outputs (in comparison to the current 

set of DMUs). 

𝑥𝐼=[𝑥1𝐼 𝑥2𝐼 … 𝑥𝑚𝐼], 𝑦𝐼=[𝑦1𝐼 𝑦2𝐼 … 𝑦𝑣𝐼]  

Where, 𝑥𝑖𝐼>𝑥𝑖𝑜,∀𝑖  as 𝑥𝑖𝐼=(max
𝑟
𝑥𝑖𝑟+𝛿)>max

𝑟
𝑥𝑖𝑟≥𝑥𝑖𝑜, for ∀𝑖,𝛿>0,   

𝑦𝑗𝑜>𝑦𝑗𝐼,∀𝑗 as 𝑦𝑗𝐼=(min
𝑟
𝑦𝑗𝑟−𝛿)<min

𝑟
𝑦𝑗𝑟≤𝑦𝑗𝑜, for ∀𝑗,𝛿>0, 

The worst member is obtained for any positive value of 𝛿. The inception of 𝛿 will eliminate 

the chance of having a DMU to become the worst member of the Production Possibility Set. 

Hence, for a least upper bound 2𝛿′ of 𝛿 ∀𝛿≤2𝛿′ there will be a set of worst points each of 

which can emerge as a candidate for becoming a perfect reference point.     

Definition: For a given Production Possibility Set T a 𝛿-worst member is the one which will 

be the element of the set defined by 𝑁𝛿′(𝑥𝐼,𝑦𝐼).   

Now the following proofs are instrumental to display that the worst point situated inside a con- 



vex set will trace a peer on the frontier (or on the extended frontier) when connected with a 

DMU (located inside or outside the zone) with the aid of a straight line.    

Theorem 3: During the Measurement of SE of a VRS efficient DMU a peer will always be 

obtained on the frontier or extended frontier if it (the VRS efficient DMU) is connected with a 

Worst Point which is Technologically Feasible. 

Proof: Let there be a hypothetical DMU which consumes 𝑥𝑖𝐼=(max
𝑟
𝑥𝑖𝑟+𝛿) ∀𝑖,𝛿>0 to 

generate output 𝑦𝑗𝐼=(min
𝑟
𝑦𝑗𝑟−𝛿) ∀𝑗,𝛿>0. With this designed DMU each of these two 

constraints will be ascertained.   

𝑥𝑖𝐼>𝑥𝑖𝑜,∀𝑖  as 𝑥𝑖𝐼=(max
𝑟
𝑥𝑖𝑟+𝛿)>max

𝑟
𝑥𝑖𝑟≥𝑥𝑖𝑜, for ∀𝑖,𝛿>0  

𝑦𝑗𝑜>𝑦𝑗𝐼,∀𝑗 as 𝑦𝑗𝐼=(min
𝑟
𝑦𝑗𝑟−𝛿)<min

𝑟
𝑦𝑗𝑟≤𝑦𝑗𝑜, for ∀𝑗,𝛿>0 

The point (𝑥𝐼,𝑦𝐼) will be feasible in T due to the rules stated in (1) and can be counted as an 

interior point as a neighbourhood 𝑁𝛿(𝑥𝐼,𝑦𝐼) is clearly defined for it so that 𝑁𝛿(𝑥𝐼,𝑦𝐼)⊂𝑇. 

Hence, this interior point can be effectively termed as the Worst Point within T and is suitable 

for the appraisal of measuring SE of the DMUs. Moreover, employing the Theorem 2 it can be 

stated that any vector connecting the SE DMU with the Worst Point will definitely produce an 

intersecting point on the boundary or extended boundary of the production frontier. Hence, 

there will be no infeasibility problem. But, unlike choosing an arbitrary reference point (Lin 

and Cheng (2017)) a point is selected after solving a linear problem. 

3.2.1. Selection of a Worst Point within the neighbourhood using a Linear Model-1 

The value of 𝛿(>0) is derived from the linear model described below: 

Max𝛿   

∑ 𝑥𝑖𝑟𝜆𝑟
𝑐
𝑟=1 ≤𝜏𝑥𝑖𝑚𝑎𝑥+(1−𝜏)(𝑥𝑖𝑚𝑎𝑥+𝛿),                             𝑖=1,2,…𝑚  

∑ 𝑦𝑗𝑟𝜆𝑟
𝑐
𝑟=1 ≥𝜏𝑦𝑗𝑚𝑖𝑛+(1−𝜏)(𝑦𝑗𝑚𝑖𝑛−𝛿),                             𝑗=1,2,…𝑣  

𝑥𝑖𝑜=𝑥𝑖𝑚𝑎𝑥+𝛿   where 𝑥𝑖𝑚𝑎𝑥=max
𝑟
𝑥𝑖𝑟 

𝑦𝑗𝑜=𝑦𝑗𝑚𝑖𝑛−𝛿,  where 𝑦𝑗𝑚𝑖𝑛=min
𝑟
𝑦𝑗𝑟     

𝜏=10  



∑ 𝜆𝑟
𝑐
𝑟=1 =1,𝜆𝑟≥0,∀𝑟,      (12A) 

Example 3 is incorporated here to illustrate the way of selecting the optimal value of 𝛿. Figure 

2 is added here to illustrate a technology involving a single-input and single-output (mentioned 

Table 2). A small value of 𝛿 establishes the equivalence 𝑥𝑖𝑜=𝑥𝑖𝑚𝑎𝑥∀𝑖 and 𝑦𝑗𝑜=𝑦𝑗𝑚𝑖𝑛∀𝑗.   

<Insert Table 2: EXAMPLE 3 - FOR FINDING A REFERENCE POINT > 

<Insert Figure 2: EXAMPLE 3> 

Following the data of Table 2 it is found that DMU A (among other three DMUs (say B, C and 

D)) is located on the VRS frontier A’AA’’ (shown in red dotted lines). The fundamental aim 

of using this model is to compute 𝛿 while creating a peer (A in this case) on the frontier from 

an external combination (by setting 𝜏>1) of two points D (𝑥𝑚𝑎𝑥,𝑦𝑚𝑖𝑛) and R (𝑥𝐼,𝑦𝐼). The 

ratio of the external division is kept constant by assigning 𝜏 a fixed quantity. Execution of the 

model on the data presented in Table 1 results in an optimal reference point R, owing to the 

premeditated value of 𝜏=10. As a consequence of this selection, the ratio between |𝐴𝐷|/|𝐴𝑅| 

remains around 91%. Hence, the reference point is located at the stated feasible zone.   

3.3. The Proposed Model: 

For a proportion of division, 𝜏, and an external point (𝑥𝑜,𝑦𝑜) (the above-mentioned set) the 

peer is likely to be located on the production frontier for a circumstance shown below: 

 𝛽𝑜=min(1−𝜏):(𝜏𝑥𝑜+(1−𝜏)𝑥𝐼,𝜏𝑦0+(1−𝜏)𝑦𝐼)∈𝑇/(𝑥𝑜,𝑦𝑜) 

The model depicted in (12B) is suggested for deriving the optimal value of 𝛽𝑜.  

Max𝜏   

∑ 𝑥𝑖𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

≤𝜏𝑥𝑖𝑜+(1−𝜏)(𝑥𝑖𝑚𝑎𝑥+𝛿′),                             𝑖=1,2,…𝑚  

∑ 𝑦𝑗𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

≥𝜏𝑦𝑗𝑜+(1−𝜏)(𝑦𝑗𝑚𝑖𝑛−𝛿′),        𝜏∈𝑅
±,       𝑗=1,2,…𝑣  

∑ 𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

=1,𝜆𝑟≥0 𝑓𝑜𝑟 𝑟=1,2…𝑐,𝑟≠𝑜    (12B) 

𝛿′ is optimal value obtained from the model (12A) where 𝜏 is set as an unrestricted variable. It 

can be negative as well for those points which remains within the convex zone of 𝑇/(𝑥𝑜,𝑦𝑜). 

The alternative expression of this model (12B) leads to another form of a DDF. 

𝛽𝑜=Min (1−𝜏)   



∑ 𝑥𝑖𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

≤𝑥𝑖𝑜+(1−𝜏)(𝑥𝑖𝑚𝑎𝑥+𝛿′−𝑥𝑖𝑜),                           𝑖=1,2,…𝑚  

∑ 𝑦𝑗𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

≥𝑦𝑗𝑜−(1−𝜏)(𝑦𝑗𝑜−𝑦𝑗𝑚𝑖𝑛+𝛿′)           𝜏∈𝑅
±,    𝑗=1,2,…𝑣  

∑ 𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

=1,𝑓𝑜𝑟 𝑟=1,2…𝑐,𝑟≠𝑜             (12C)  

(12C) has an analogy with the standard form of DDF. The elements (𝑔𝑖𝑋,𝑔𝑗𝑌) of the Direction 

Vector are found to be positive (as 𝑔𝑖𝑋=(𝑥𝑖𝑚𝑎𝑥+𝛿′−𝑥𝑖𝑜) 𝑎𝑛𝑑 𝑔𝑗𝑌=(𝑦𝑗0−𝑦𝑗𝑚𝑖𝑛+𝛿′) 

have to stay positive). The input saving index (𝐼𝑠) and output surplus index (𝑂𝑠) can be 

computed from (12C) using the following expressions for SE DMUs: 

𝐼𝑠𝑜=1+
1

𝑚
∑

[∑ 𝑥𝑖𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

−𝑥𝑖𝑜]

[(𝑥𝑖𝑚𝑎𝑥+𝛿
′)−∑ 𝑥𝑖𝑟𝜆𝑟

𝑐
𝑟=1
𝑟≠𝑜

]

𝑚
𝑖=1 ≤

1

𝜏
  

𝑂𝑠𝑜=1+
1

𝑣
∑

[𝑦𝑗𝑜−∑ 𝑦𝑗𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

]

[∑ 𝑦𝑗𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

−𝑦𝑗𝑚𝑖𝑛+𝛿′]

𝑣
𝑗=1 ≥ 

1

𝜏
            (12D) 

The expressions within (12D) always remain unaffected due to the zero data. However, the 

central issue is hovering around the justification of conceiving 𝛽𝑜 as a measure of an SE score. 

3.3.1. Interpretation of 𝛽𝑜using Example 1:  

Figure 3A to 3D (drawn from Table 1) are instrumental to distinguish between efficient, weakly 

efficient, strongly efficient and inefficient DMUs under VRS. As per the data provided, five 

DMUs (A, B, C, D, and E) are found strongly efficient.    

<Insert: Figure 3A to 3D> 

According to definitions provided by Xue, M. and Harker, P. T. (2002), B and D are categorised 

as Strongly Efficient DMUs whereas C is marked as an efficient DMU. The location of E (A) 

makes it special as under the output (input) oriented super-efficient BCC model it will certainly 

remain infeasible (hence is classified under Super Strongly Efficient DMU). W is the worst 

DMU among the available set of firms which is meant for creating a reference (shown in Figure 

3A to Figure 3D).  

Model (12B) is designed to measure the Super Efficiency Score of (say, for D) along the 

direction vector initiated from W (say 𝑊𝐷⃗⃗⃗⃗⃗⃗⃗ ). The model is built in a manner such that the optimal 



value of 𝛽𝑜 becomes positive when the vector needs a reduction to stay within the convex zone. 

In other words, following the concept of (12B), it can be stated that such a peer will always 

remain in between the Worst Reference Point W and the DMU which is under consideration. 

It certainly results in a positive value for 𝛽𝑜. On the contrary, it will score a negative value once 

it requires an extension towards the boundary defined by the production frontier. In addition to 

it, these figures can effectively state that an Efficient or Strongly Efficient DMU can never 

possess any type of slack or surplus due to inputs of outputs. In such cases, the peer appears to 

be constructed by the convex combination of the other efficient DMUs. However, the Super 

Strongly Efficient DMUs can possess slack or surplus values in their optimal solutions as the 

peer seems to be located on the extended portion of the frontier. The ways of detecting weakly 

efficient, strongly efficient DMUs are shown while using the following optimal values for the 

variables mentioned above in (12B) (corresponding theorems are referred in the Appendix):      

Proposition 1: An efficient DMU will score 𝛽=0 and have all slacks equal to 0.  

Proposition 2: A weakly efficient DMU will score 𝛽=0 with at least one non-zero slack. 

Proposition 3: A strongly efficient DMU will score 𝛽>0  and each slack is zero. 

Proposition 4: A strongly Super-efficient DMU will score 𝛽>0 and have at least one non-

zero slack. An output (input) oriented super strong member will certainly have at least one non-

zero input (output) slack. 

Proposition 5: An inefficient DMU will score 𝛽<0 and may or may not have a non-zero 

slack. 

These figures consolidate the fact that exists a one-to-one relationship between the sign of 𝛽 

and the vector joining the DMU under the scanner. 𝛽 attains a positive (negative) value as the 

arrowhead crosses (stays within) the convex zone defined by the remaining rivals. In other 

words, it cannot be the right terminology to express an SE score. 

3.3.2. Measurement of SE score: 

It is to be noted that the ranking of DMUs can be done according to the descending order of 

the 𝛽 (>0) values. But, 𝛽 can never be a true measure of the SE score as it will turn into a 

negative quantity in case of an inefficient DMU. So, it has to be computed from (13): 

𝑆𝐸𝑜=(
1

𝜏
)=(

1

1−𝛽
)      (13) 



This expression of 𝑆𝐸𝑜 is akin to the one described in (12D) and it always remains positive 

owing to the strictly positive trait of 𝜏. It rightly indicates that the radial measure of the input 

savings index and output surplus index are equivalent to the SE score. Moreover, the present 

model does not possess any problem with the zero data points. The problem of zero data point 

appears when 𝑥𝑖𝑜=𝑦𝑗𝑜=0 ∀𝑖,𝑗. In such cases, the total 𝜏𝑥𝑖𝑜+(1−𝜏)𝑥𝑖𝐼 𝑜𝑟 𝜏𝑦𝑗𝑜+(1−

𝜏)𝑦𝑗𝐼 claim non-zero values due to the second components.  

3.3.3. Elaboration with the Example 2: 

This example is cited to investigate the effect of choosing the greatest lower bound of 𝜏 as 0 

and keeping the worst point as (𝑥𝑚𝑎𝑥,𝑦𝑚𝑖𝑛) or (14, 1) to compare it with the proposed model. 

The outputs of (11B) are attached within Table 3A and Table 3B. The optimal value of 𝛽 can 

therefore is derived as (1−𝛽).  

<Insert: Table 3A> 

<Insert: Table 3B> 

The location of A is special as it can be classified as a super-strong efficient DMU in terms of 

output analysis. The optimal solution (obtained from 11B) specifies its peer as B. Moreover, 

the super-efficiency score is found to be 1.143 (as 𝜏=0.875). Most importantly, A does have 

slack in terms of output (2 units). Similar attributes can be observed for E as well (which is an 

input based super strong efficient DMU). It has not only attained a nonnegative value of 𝛽 

0.167 or (1 – 0.833) but also possesses an input based slack (3.17 units).       

B and D are Strongly-Super-Efficient as these DMUs score non-negative optimal values of 𝛽. 

C shows its location on the frontier (as 𝛽=0) therefore it is classified under an Efficient list. 

On the other hand, F, apart from having an input slack, on the contrary, possesses a 𝛽 value of 

– 0.2 or (1 – 1.2). Hence, as per the propositions stated before it has to be classified as an 

inefficient DMU with an SE score of (
1

1.2
) 𝑜𝑟 0.833. The first step identifies the optimal 

location of the worst point at (14.9, 0.1) (as 𝛿𝜏=10 is found equivalent to 0.9). The second stage 

whereas results in deciphers the optimal scores of 𝜏 while incorporating this information 

(shown in Table 3C and Table 3D).    

<Insert Table 3C: > 

<Insert Table 3D: > 



The SE scores of A, B, C, D, E and F are computed as 1.127, 1.052, 1, 1.064, 1.169 and 0.855 

respectively (as compared to the earlier scores 1.143, 1.063, 1, 1.076, 1.200, 0.833 which were 

obtained from the choice of 𝛿=𝜏=0). It can therefore be inferred that the SE scores of the 

Super-Efficient DMUs will deteriorate when a Worst Point is chosen as a basis of the reference. 

On the contrary, the opposite trend is observed for the Inefficient DMU. 

4. Case studies: 

Case 1: To verify the performance vis-à-vis other models the data set (Table 4A) of the 15 US 

cities having three inputs, namely, high-end housing price (1,000 US$), lower-end housing 

monthly rental (US$), and number of violent crimes, and three outputs, namely, median 

household income (US$), number of bachelor’s degrees (million) held by persons in the 

population, and number of doctors (thousand) from Seiford and Zhu (1997) are analysed.  

<Insert Table 4A: > 

The modified version of the Input and Output oriented models prescribed by Cook et al (2009) 

could explain the level of super-efficiency scores of those DMUs which had infeasibility 

problems while employing the input-oriented and output-oriented SE BCC models (the 

columns showing Model 1 and Model 2 in Table 4B). Philadelphia, Raleigh, St-Louis were 

able to achieve high scores due to the provisions of output reduction or input augmentation. 

One question will always be raised after this observing these outputs that is whether the model 

will be strong enough to handle negative data. For example, in presence of any negative input 

or output the direction vector may lose its power to select the peer on the production frontier.    

On the contrary, it is observed that none of these cities is posing any infeasibility problem 

during the application of the proposed model (PM column of Table 4B). Whether it remains 

inside or outside the proposed model will offer an appropriate solution.   

<Insert Table 4B: > 

In addition to that, the discrimination of the superefficient members from the inefficient 

members (as mentioned in Cook et al (2009)) is accomplished while noticing the signs of 𝛽. 

Moreover, consolidated SE scores are obtained without having any glitches (of finding very 

high SE scores).       

Case 2: The data set (Table 5) of Byrnes et al. (1984) is taken into account here to analyse the 

benefits of the proposed model vis-a-vis the methods of Ray (2008), Lee and Zhu (2012) and 



Lin and Chen (2017). The results found in Table 6 revealed the weakness of Ray (2008) to 

eliminate the infeasibility problem. But, in this context, the method of Lin and Chen (2017) 

remained successful after incorporating the Big-M approach. Both models, however, fail to 

produce positive values of 𝜏 and thus require further steps to determine SE scores. 

<Insert Table 5: Data for Case 2> 

<Insert Table 6: Comparison of Optimal Scores from Various Models> 

On the contrary, the prescribed model stresses on selecting a worst point located very close to 

the vector [𝑥1𝑚𝑎𝑥 𝑥2𝑚𝑎𝑥… 𝑥𝑚𝑚𝑎𝑥,𝑦1𝑚𝑖𝑛𝑦2𝑚𝑖𝑛… 𝑦𝑣𝑚𝑖𝑛]. None of the DMUs could 

pose any infeasibility problem during the application of (12B) even after feeding the optimal 

value of 𝛿=0.0002 derived from solving (12A) (for 𝜏=99). The optimal values of 𝜏 always 

remained positive and never offered any hurdle for computing SE scores. Apart from that these 

scores have a rank correlation of 88% with those ones obtained from the model of Lee and Zhu 

(2012) (shown in the 5th column of Table 6).  

5. Discussion and Conclusion: 

The major strength of this model is ability to detect a superefficient firm from the sign of 𝜏. 

The SE score always remains positive during the evaluation of an efficient or inefficient DMU. 

Barring this, the impact of selecting a worst point from the 𝛿-neighbourhood on the efficiency 

scores can be explained. In this context, the initial value of 𝜏 is instrumental.   

The proposed model is unit invariant. The constraint ∑ 𝑥𝑖𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

≤𝑥𝑖𝑜+(1−𝜏)(𝑥𝑜−𝑥𝑖𝑜) 

remains unchanged when 𝑥𝑖𝑟,𝑥𝑜 𝑎𝑛𝑑 𝑥𝑖𝑜 are replaced by 𝑄𝑥𝑖𝑟,𝑄𝑥𝑜 𝑎𝑛𝑑 𝑄𝑥𝑖𝑜 and never makes 

any impact on the efficiency score. Under VRS (∑ 𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

=1,𝜆𝑟≥0) assumption the model 

also becomes translation invariant. Thus, any change made in any ith input to an amount of η is 

not going to produce a new constraint. Incorporating these changes into the ith input constraint 

of the proposed model the following one is created: 

∑ (𝑥𝑖𝑟+𝜂)𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

≤(𝑥𝑖𝑜+𝜂)+(1−𝜏)(𝑥𝑜+𝜂−𝑥𝑖𝑜−𝜂))  

But, due to the VRS assumption this constraint remains similar to the original one cited in (10): 

∑ 𝑥𝑖𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

≤𝑥𝑖𝑜+(1−𝜏)(𝑥𝑜−𝑥𝑖𝑜). Hence, the model can handle the negative data. Lastly, 

the extant paper finds an expression of SE which symbolises the radial savings of all inputs 

and radial surplus of all outputs simultaneously.  
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APPENDIX:  

Theorem 4: A Super-efficient DMUs (Excluding the Strongly Super-efficient members) are 

those which offers an optimal output 𝛽≥0 with all zero slacks in the model depicted in (12A).  

Proof: A Super-efficient DMU is the one which remains feasible and does not carry any slack 

when it is treated under an Input or output oriented BCC DEA model. In other words, non-

existence of slack is observed as the peer appears from the optimal solution is located on the 

frontier. In this context, the following assumptions are necessary for the Super-efficient DMU 

under consideration when VRS technology is seen: 

𝑥𝑖𝑚𝑖𝑛<𝑥𝑖𝑜<𝑥𝑖𝑚𝑎𝑥,                           𝑖=1,2,…𝑚  

Here, 𝑥𝑖𝑚𝑖𝑛=min
𝑟≠𝑂
𝑥𝑖𝑟, 𝑥𝑖𝑚𝑎𝑥=max

𝑟≠𝑂
𝑥𝑖𝑟  

𝑦𝑗𝑚𝑖𝑛<𝑦𝑗𝑜<𝑦𝑗𝑚𝑎𝑥                           𝑗=1,2,…𝑣  

https://link.springer.com/journal/10479


𝑦𝑗𝑚𝑖𝑛=min
𝑟≠𝑂
𝑦𝑗𝑟, 𝑦𝑗𝑚𝑎𝑥=max

𝑟≠𝑂
𝑦𝑗𝑟 

∑ 𝑥𝑖𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

≥𝑥𝑖𝑜,  

∑ 𝑦𝑗𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

≤𝑦𝑗𝑜,   

∑ 𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

=1,𝑓𝑜𝑟 𝑟=1,2…𝑐,𝑟≠𝑜       (15) 

Now due to convexity rules the subsequent inequalities gets established: 

𝑥𝑖𝑚𝑎𝑥+𝛿>𝑥𝑖𝑚𝑎𝑥>∑ 𝑥𝑖𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

≥𝑥𝑖𝑜,∀𝑖,𝑟  

𝑦𝑗𝑚𝑖𝑛−𝛿<𝑦𝑗𝑚𝑖𝑛<∑ 𝑦𝑗𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

≤𝑦𝑗𝑜,∀𝑗,𝑟      (16) 

Now, according to the Theorem 3 the DMU has to remain away from the PPS and hence, the 

line drawn from it to connect the worst point has to intersect the production frontier. Since any 

point on the frontier can be specified by the convex sum of all weighed input and output so for 

a value of 𝜆𝑟=𝜆𝑟
∗
 the following equality can be possible: 

∑ 𝑥𝑖𝑟𝜆𝑟
∗𝑐

𝑟=1
𝑟≠𝑜

=𝜏𝑥𝑖𝑜+(1−𝜏)(𝑥𝑖𝑚𝑎𝑥+𝛿′),∀𝑖,𝑟  

∑ 𝑦𝑗𝑟𝜆𝑟
∗𝑐

𝑟=1
𝑟≠𝑜

=𝜏𝑦𝑗𝑜+(1−𝜏)(𝑦𝑗𝑚𝑖𝑛−𝛿
′),∀𝑗,𝑟      (17) 

At 𝜏=0 (𝜏=1) the right hand-side has a greatest (lowest) total of (𝑥𝑖𝑚𝑎𝑥+𝛿
′)[(𝑥𝑖𝑜)]. 

Hence, the peer can be traced in between the maximum and the minimum value due to 𝜏 having 

a restricted within 1>𝜏>0. In other words, 𝜏 has to be strictly positive.  

Theorem 5: Any DMU will be termed as Inefficient if it gives rise to an optimal output 𝛽<0 

when treated with the model (12A). 

Proof: An inefficient DMU is retained within the zone owing to the propositions described to 

create the PPS. Observing the property within PPS, an Inefficient DMU has to allow the 

subsequent input and output constraints: 

∑ 𝑥𝑖𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

=𝑥𝑖𝑜−𝑆𝑖,              𝑖=1,2,…,𝑚  

∑ 𝑦𝑗𝑟𝜆𝑟
𝑐
𝑟=1
𝑟≠𝑜

=𝑦𝑗𝑜+𝑆𝑗               𝑗=1,2,…,𝑣  



𝑆𝑖≥0 𝑎𝑛𝑑 𝑆𝑗≥0 ∀𝑖,𝑗         (18) 

Now, considering the optimal value 𝜏′ from the proposed model (12A) it can be stated that 

−(1−𝜏′)(𝑥𝑖𝑚𝑎𝑥+𝛿
′−𝑥𝑖𝑜)≥𝑆𝑖≥0  

−(1−𝜏′)(𝑦𝑗𝑜−𝑦𝑗𝑚𝑖𝑛+𝛿′)≥𝑆𝑗≥0      (19) 

The left hand side in these inequalities can only remain positive if and only if (1−𝜏′) becomes 

negative (or 𝛽𝑜=(1−𝜏′)<0).    

Theorem 6: Any DMU will be termed as a strongly Super-efficient if it gives rise to an optimal 

output 𝛽>0 when treated with the model (12A). 

Proof: A strongly Super-efficient DMU is the one which ends up with an infeasibility crisis 

when it is treated under an Input or output oriented BCC DEA model. Such a unit needs to 

have at least one extraordinary output (input) which is larger (smaller) than the peer obtained 

from the analysis. In other words, for any DMU which satisfies the following inequality 

conditions strictly for at least one value of 𝑖 and (or) 𝑗 will be called as a strongly Super-

efficient DMU.       

𝑥𝑖𝑚𝑖𝑛<𝑥𝑖𝑜<𝑥𝑖𝑚𝑎𝑥,                           𝑖=1,2,…𝑚,𝑖≠𝑡  

𝑥𝑖𝑜<𝑥𝑖𝑚𝑖𝑛<𝑥𝑖𝑚𝑎𝑥,                           𝑖=𝑡  

Here, 𝑥𝑖𝑚𝑖𝑛=min
𝑟≠𝑂
𝑥𝑖𝑟, 𝑥𝑖𝑚𝑎𝑥=max

𝑟≠𝑂
𝑥𝑖𝑟  

𝑦𝑗𝑚𝑖𝑛<𝑦𝑗𝑜<𝑦𝑗𝑚𝑎𝑥                           𝑗=1,2,…𝑣,𝑗≠𝑓  

𝑦𝑗𝑚𝑖𝑛<𝑦𝑗𝑚𝑎𝑥 <𝑦𝑗𝑜                          𝑗=𝑓  

𝑦𝑗𝑚𝑖𝑛=min
𝑟≠𝑂
𝑦𝑗𝑟, 𝑦𝑗𝑚𝑎𝑥=max

𝑟≠𝑂
𝑦𝑗𝑟      (21) 

Let there exists an optimal value 𝜏=𝜏′ such that for the optimal value of the intensity variable 

𝜆𝑟=𝜆𝑟
∗
 the following equality can be possible when ∀𝑖≠𝑡,𝑟≠𝑓: 

∑ 𝑥𝑖𝑟𝜆𝑟
∗𝑐

𝑟=1
𝑟≠𝑜

=𝜏′𝑥𝑖𝑜+(1−𝜏′)(𝑥𝑖𝑚𝑎𝑥+𝛿′),∀𝑖,𝑟  

∑ 𝑦𝑗𝑟𝜆𝑟
∗𝑐

𝑟=1
𝑟≠𝑜

=𝜏′𝑦𝑗𝑜+(1−𝜏′)(𝑦𝑗𝑚𝑖𝑛−𝛿
′),∀𝑗,𝑟      (22) 



Strongly super-efficient DMU has to have all properties possessed by a super-efficient DMU. 

Hence, the condition of (1−𝜏′)>0 has to be fulfilled. However, such equalities cannot be 

maintained at the time of 𝑖=𝑡,𝑟=𝑓 due to following reason. Such extraordinary cases are 

seen for only Super-efficient DMUs: 

𝑥𝑖𝑜<𝑥𝑖𝑚𝑖𝑛<𝑥𝑖𝑚𝑎𝑥,                           𝑖=𝑡  

𝑦𝑗𝑚𝑖𝑛<𝑦𝑗𝑚𝑎𝑥 <𝑦𝑗𝑜                          𝑗=𝑓      (23) 

Now, owing to the optimal solution 𝜏=𝜏′ and 𝜆𝑟=𝜆𝑟
∗
 along with the convexity assumptions 

the corresponding the following inequalities are obtained:  

𝑥𝑖𝑜<𝑥𝑖𝑚𝑖𝑛≤∑ 𝑥𝑖𝑟𝜆𝑟
∗𝑐

𝑟=1
𝑟≠𝑜

=𝜏′𝑥𝑖𝑜+(1−𝜏′)(𝑥𝑖𝑚𝑎𝑥+𝛿′)≤𝑥𝑖𝑚𝑎𝑥,       𝑖=𝑡  

𝑦𝑗𝑚𝑖𝑛≤∑ 𝑦𝑗𝑟𝜆𝑟
∗𝑐

𝑟=1
𝑟≠𝑜

=𝜏′𝑦𝑗𝑜+(1−𝜏′)(𝑦𝑗𝑚𝑖𝑛−𝛿
′),≤𝑦𝑗𝑚𝑎𝑥 <𝑦𝑗𝑜      𝑗=𝑓          (24) 

In other words, non-zero slacks are seen in these two cases:  

𝑥𝑡𝑜+𝑆𝑡=∑ 𝑥𝑡𝑟𝜆𝑟
∗𝑐

𝑟=1
𝑟≠𝑜

,                           𝑖=𝑡  

∑ 𝑦𝑗𝑟𝜆𝑟
∗𝑐

𝑟=1
𝑟≠𝑜

+ 𝑆𝑓=𝑦𝑗𝑜                          𝑗=𝑓  

𝑆𝑓,𝑆𝑓>0          (25) 

Hence, it is proved that any strongly Super-efficient DMU has to offer (1−𝜏′)>0 and at 

least one non-zero input or output slack. 

 

 

 

 

 

 

 

 



 

 

TABLE 1: DATA SET 

DMU INPUT OUTPUT 

A 6 1 

B 7 3 

C 9 5 

D 10 6 

E 13 7 

F 14 6 

 

TABLE 2: EXAMPLE 3 - FOR FINDING A REFERENCE POINT 

DMU X Y 

A 1 2 

B 2 -2 

C 3 -1 

D 4 -2 

R 4.333 -2.333 

 

 

TABLE 3A: OPTIMAL SOLUTION AT 𝛿=𝜏=0 

 A  B  C  

Variable Value Reduced Cost Value Reduced Cost Value Reduced Cost 

𝜏 
0.875 0.000 0.941 0.000 1.000 0.000 

𝜆1 
0.000 0.000 0.529 0.000 0.000 0.111 

𝜆2 
1.000 0.000 0.000 0.000 0.333 0.000 

𝜆3 
0.000 0.250 0.471 0.000 0.000 0.000 

𝜆4 
0.000 0.375 0.000 0.029 0.667 0.000 

𝜆5 
0.000 0.750 0.000 0.294 0.000 0.222 

𝜆6 
0.000 0.875 0.000 0.500 0.000 0.444 

Row Slack or Surplus Dual Price Slack or Surplus Dual Price Slack or Surplus Dual Price 

1.000 
0.875 1.000 0.941 1.000 1.000 1.000 

2.000 
0.000 0.125 0.000 0.118 0.000 0.111 

3.000 
2.000 0.000 0.000 -0.088 0.000 -0.111 

4.000 
0.000 -0.875 0.000 -0.618 0.000 -0.444 

5.000 
0.000 0.125 0.000 0.059 0.000 0.000 

 



 

 

TABLE 3B: OPTIMAL SOLUTION AT 𝛿=𝜏=0 

 D  E  F  

Variable Value Reduced Cost Value Reduced Cost Value Reduced Cost 

𝜏 
0.929 0.000 0.833 0.000 1.200 0.000 

𝜆1 
0.000 0.357 0.000 0.833 0.000 1.200 

𝜆2 
0.000 0.143 0.000 0.500 0.000 0.800 

𝜆3 
0.679 0.000 0.000 0.167 0.000 0.400 

𝜆4 
0.000 0.000 1.000 0.000 0.000 0.200 

𝜆5 
0.321 0.000 0.000 0.000 1.000 0.000 

𝜆6 
0.000 0.214 0.000 0.000 0.000 0.000 

Row Slack or Surplus Dual Price Slack or Surplus Dual Price Slack or Surplus Dual Price 

1.000 
0.929 1.000 0.833 1.000 1.200 1.000 

2.000 
0.000 0.071 3.167 0.000 1.000 0.000 

3.000 
0.000 -0.143 0.000 -0.167 0.000 -0.200 

4.000 
0.000 0.071 0.000 1.000 0.000 1.400 

5.000 
0.000 0.071 0.000 0.167 0.000 -0.200 

 

TABLE 3C: OPTIMAL SOLUTION AT 𝛿=0.9,  

 A  B  C  

Variable Value Reduced Cost Value Reduced Cost Value Reduced Cost 

𝜏 
0.888 0.000 0.950 0.000 1.000 0.000 

𝜆1 
0.000 0.000 0.536 0.000 0.000 0.093 

𝜆2 
1.000 0.000 0.000 0.000 0.333 0.000 

𝜆3 
0.000 0.225 0.464 0.000 0.000 0.000 

𝜆4 
0.000 0.337 0.000 0.025 0.667 0.000 

𝜆5 
0.000 0.674 0.000 0.248 0.000 0.185 

𝜆6 
0.000 0.787 0.000 0.422 0.000 0.370 

Row Slack or Surplus Dual Price Slack or Surplus Dual Price Slack or Surplus Dual Price 

1.000 
0.888 1.000 0.950 1.000 1.000 1.000 

2.000 
0.000 0.112 0.000 0.099 0.000 0.093 

3.000 
2.101 0.000 0.000 -0.074 0.000 -0.093 

4.000 
0.000 -0.787 0.000 -0.521 0.000 -0.370 

5.000 
0.000 0.112 0.000 0.050 0.000 0.000 

 

 



 

 

TABLE 3D: OPTIMAL SOLUTION AT 𝛿=0.9,  

 D  E  F  

Variable Value Reduced Cost Value Reduced Cost Value Reduced Cost 

𝜏 
0.940 0.000 0.855 0.000 1.169 0.000 

𝜆1 
0.000 0.299 0.000 0.725 0.000 1.017 

𝜆2 
0.000 0.120 0.000 0.435 0.000 0.678 

𝜆3 
0.677 0.000 0.000 0.145 0.000 0.339 

𝜆4 
0.000 0.000 1.000 0.000 0.000 0.169 

𝜆5 
0.323 0.000 0.000 0.000 1.000 0.000 

𝜆6 
0.000 0.180 0.000 0.000 0.000 0.000 

Row Slack or Surplus Dual Price Slack or Surplus Dual Price Slack or Surplus Dual Price 

1.000 
0.940 1.000 0.855 1.000 1.169 1.000 

2.000 
0.000 0.060 3.275 0.000 0.847 0.000 

3.000 
0.000 -0.120 0.000 -0.145 0.000 -0.169 

4.000 
0.000 0.060 0.000 0.870 0.000 1.186 

5.000 
0.000 0.060 0.000 0.145 0.000 -0.169 

 

Table 4A: 15 of Fortune’s top US cities in 1996 (from Cook et al (2009))  

City House price Rental Violent Income B. Degree Doctor 

Seattle 586 581 1193.06 46928 0.6534 9.878 

Denver 475 558 1131.64 42879 0.5529 5.301 

Philadelphia 201 600 3468 43576 1.135 18.2 

Minneapolis 299 609 1340.55 45673 0.729 7.209 

Raleigh 318 613 634.7 40990 0.319 4.94 

StLouis 265 558 657.5 39079 0.515 8.5 

Cincinnati 467 580 882.4 38455 0.3184 4.48 

Washington 583 625 3286.7 54291 1.7158 15.41 

Pittsburgh 347 535 917.04 34534 0.4512 8.784 

Dallas 296 650 3714.3 41984 1.2195 8.82 

Atlanta 600 740 2963.1 43249 0.9205 7.805 

Baltimore 575 775 3240.75 43291 0.5825 10.05 

Boston 351 888 2197.12 46444 1.04 18.208 

Milwaukee 283 727 778.35 41841 0.321 4.665 

Nashville 431 695 1245.75 40221 0.2365 3.575 

 

 

 



 

 

 

Table 4B: Comparison of Super Efficiency Scores 

DMU City Model 1 Model 2 Proposed Model 
SE 

RANK OF Prop-Model 

DMU1 Seattle 1.44335 1.0934 0.11897 
1.14 

6 

DMU2 Denver 1.01593 1.0527 0.02468 
1.03 

10 

DMU3 Philadelphia infeasible infeasible 0.34116 
1.52 

2 

DMU4 Minneapolis 1.22752 1.086 0.12986 
1.15 

5 

DMU5 Raleigh 1.16766 infeasible 0.03635 
1.04 

8 

DMU6 StLouis 1.51628 infeasible 0.13835 
1.16 

4 

DMU7 Cincinnati 0.94968 0.897 -0.075 
0.93 

12 

DMU8 Washington infeasible 1.5344 0.45381 
1.83 

1 

DMU9 Pittsburgh 1.04529 infeasible 0.06516 
1.07 

7 

DMU10 Dallas 0.92652 0.9532 -0.0415 
0.96 

11 

DMU11 Atlanta 0.77243 0.8137 -0.6304 
0.61 

14 

DMU12 Baltimore 0.73827 0.8009 -0.8664 
0.54 

15 

DMU13 Boston infeasible 1.3181 0.22675 
1.29 

3 

DMU14 Milwaukee 1.06559 1.0276 0.02651 
1.03 

9 

DMU15 Nashville 0.80117 0.873 -0.2275 
0.81 

13 

 

Table 5: Data for Case 2 

DMU LABOR K1 K2 K3 T1 1/D1 T2 1/D2 OUT 

1 98.5 142 245 0 6 0.016 4.3 0.012 3264 

2 96.5 30 215 0 6 0.016 0 0 3065 

3 57.6 18 105 0 5.6 0.026 4.2 0.016 2275 

4 59.2 160 0 0 5.9 0.025 3.7 0.011 1978 

5 57.6 200 0 0 8 0.022 3.5 0.011 1833 

6 49.9 27 85 0 4.5 0.019 0 0 1218 

7 53.5 143 65 0 6 0.01 0 0 928 

8 34 70 65 12 6 0.02 5 0.01 919 

9 39.6 67.5 40 0 6.5 0.013 0 0 777 

10 51.3 0 145 0 3.2 0.019 0 0 745 

11 74.2 110 65 0 2.1 0.014 0 0 742 

12 24 25 65 0 4.4 0.012 0 0 488 

13 26.5 58 0 0 3 0.014 0 0 407 

14 43.1 70 0 0 6.5 0.012 0 0 402 

15 20.7 236 0 0 5.7 0.01 0 0 396 

 



 

Table 6: Comparison of Optimal Scores from Various Models 

DMUs 
SE SCORE 

FROM BCC 

TAU VALUE 

FROM (12B) 

SE SCORE 

FROM (12C) 

SE scores (Lee 

& Zhu (2012)) 

BETA VALUE 

FROM RAY 

BETA VALUE 

FROM LIN 

DM1 INFEASIBLE 0.931 1.075 2.0649 -0.061 -0.069 

DM2 INFEASIBLE 0.634 1.577 3.7039 -0.603 -0.188 

DM3 1.5473 0.836 1.196 1.5473 -0.270 -0.041 

DM4 INFEASIBLE 0.845 1.183 2.4350 -0.203 -0.041 

DM5 1.7038 0.959 1.043 1.0738 -0.041 -0.009 

DM6 1.1598 0.968 1.033 1.1598 -0.102 -0.009 

DM7 1.1468 0.907 1.102 1.1468 -0.130 -0.017 

DM8 0.9375 1.027 0.973 0.9374 0.043 0.006 

DM9 1.0014 0.999 1.001 1.0014 -0.001 0.000 

DM10 INFEASIBLE 0.843 1.186 2.5329 INFEASIBLE -0.041 

DM11 1.5543 0.811 1.233 1.5543 -0.433 -0.044 

DM12 1.4788 0.859 1.165 1.4782 -0.479 -0.031 

DM13 INFEASIBLE 0.799 1.252 3.1680 -1.085 -0.052 

DM14 1.1275 0.939 1.065 1.1274 -0.127 -0.012 

DM15 1.3761 0.863 1.159 1.3760 -0.376 -0.031 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

FIGURE 1A: FAILURE OF RDM 

 

 

 FIGURE 1B: FAILURE OF THE ALTERNATIVE MODEL OF Hadi 
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FIGURE 2: EXAMPLE 3 

 

 

 

FIGURE 3A: 𝛽>0 for D (Strongly Efficient) 
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 FIGURE 3B: 𝛽=0 for C (Efficient) 

 

FIGURE 3C: 𝛽>0 for E (Super Strongly Efficient) 
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 FIGURE 3D: 𝛽<0 for F (Inefficient) 
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