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Abstract

A partition π = {V1, V2, ..., Vk} of the vertex set V of a graph G into k color classes
Vi, with 1 ≤ i ≤ k is called a quorum coloring if for every vertex v ∈ V, at least half
of the vertices in the closed neighborhood N [v] of v have the same color as v. The
maximum cardinality of a quorum coloring of G is called the quorum coloring number
of G and is denoted ψq(G). In this paper, we give answers to four open problems stated
in 2013 by Hedetniemi, Hedetniemi, Laskar and Mulder. In particular, we show that
there is no good characterization of the graphs G with ψq(G) = 1 nor for those with
ψq(G) > 1 unless P ̸= NP ∩ co−NP. We also construct several new infinite families
of such graphs, one of which the diameter diam(G) of G is not bounded.

Keywords: Defensive alliances, quorum colorings, good characterizations, complexity,
diameter.
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1 Introduction

Let G = (V,E) be a simple graph with order n = |V |. The graph induced in G by a subset
S of V is denoted by G[S]. For every vertex v ∈ V, the open neighborhood NG(v) is the set
{u ∈ V (G) : uv ∈ E(G)} and the closed neighborhood of v is the set NG[v] = NG(v) ∪ {v}.
The degree of a vertex v in G is dG(v) = |NG(v)|. A vertex of G with degree one is a leaf
of G. The maximum and minimum vertex degrees in G are denoted by ∆(G) and δ(G),
respectively. More generally, the degree of a vertex v in G[S] is denoted by dS(v). The
diameter of G, denoted diam(G), is the greatest distance between any pair of vertices of V.
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The join of two graphs G and H, denoted G + H is the graph consisting of the disjoint
union of G and H together with all edges between the vertices in G and those in H. For
every integer k ≥ 2, a k-partite graph is a graph whose vertices can be partitioned into
k different independent sets, that is, sets whose vertices are pairwise non adjacent. The
complete multipartite graph, denoted Kn1,n2,...,nℓ

is the graph Kn1 +Kn2 + · · · +Knℓ
, where

Kni
denotes the complete graph of cardinality ni, and Kni

denotes the complement of Kni

which consists of ni isolated vertices, for each i ∈ {1, 2, . . . , ℓ}.

The concept of defensive alliances in graphs was introduced in [6] by Kristiansen, Hedetniemi
and Hedetniemi as follows. A defensive alliance in a graph G is a subset S of V (G) such that
for every vertex v ∈ S, |NG[v]∩S| ≥ |NG[v]∩ (V \S)|, or equivalently dS(v)+1 ≥ d(V \S)(v).
The defensive alliance number of G, denoted a(G) equals the minimum cardinality of a
defensive alliance in G. A defensive alliance of cardinality a(G) is called a minimum defensive
alliance. The authors [4] also proved the following sharp upper bound on the alliance
defensive number which is obtained by complete graphs.

Theorem 1. [4] For any graph G of order n, a(G) ≤ ⌈n/2⌉ .

The definition of a defensive alliance was mainly motivated by the study of alliances between
nations so that, two adjacent vertices belonging to an alliance are considered as mutually
protective allies against a threat, while all the vertices outside an alliance are potential
enemies. This means that every vertex v of an alliance S is adjacent to at least as many
allies as enemies, where v is allied with itself. Haynes and Lachniet initiated on their part
in [5] the study of partitioning the vertex set of a graph into defensive alliances, where such
partitions are called alliance partitions. This problem was further investigated in [3] by Eroh
and Gera.

The concept of quorum colorings is closely related to that of defensive alliances in graphs.
It was introduced in [7] by Hedetniemi, Hedetniemi, Laskar and Mulder in order to study
the alliance partitions from the perspective of coloring theory. In fact, a partition π =
{V1, V2, ..., Vk} of the vertex set V of a graph G into k color classes Vi, with i ∈ {1, ..., k}
is called a quorum coloring if for every vertex v ∈ V, at least half of the vertices in the
closed neighborhood NG[v] have the same color as v. The color classes Vi are called quorum
classes. The maximum cardinalty of a quorum coloring of G is called the quorum coloring
number of G and is denoted by ψq(G). A quorum coloring of cardinality ψq(G) is called
a ψq-coloring. It can be seen from the definitions that every quorum class is a defensive
alliance and consequently, a quorum coloring of a graph G is the same thing as an alliance
partition of G. Nevertheless, we adopt in this paper the coloring notation and terminology
given in [7]. It is worth noting that two other articles on quorum colorings of graphs were
recently published ([10, 11]) containing answers to open problems posed in [7] including a
Gaddum-Nordhaus inequality and complexity results.

Quorum colorings have several real-world applications (cf. [7], [9] and [12]), including data
clustering, the goal of which is to partition a dataset into homogeneous packets in the sense
that the data in the same packet share more characteristics in common between them than
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with data outside of this packet. This problem can be modeled by a graph G in which each
data is represented by a vertex so that two vertices are adjacent if the corresponding data
share a fixed minimum number of common characteristics, and hence the objective is to
color the vertex set of the resulting graph such that at least half of the neighbors of each
vertex v have the same color as v, where v is counted itself as a neighbor. In other words,
at least half of the vertices in the closed neighborhood of v must have the same color as v,
that is, each color class is a quorum class. Therefore, the maximization of the number of
color classes has as aim the refinement of the data classification as much as possible.

In [7], Hedetniemi et al. proved the following three propositions.

Proposition 2. [7] For the complete graph Kn of odd order, ψq(Kn) = 1, while for any
complete graph Kn of even order, ψq(Kn) = 2.

Proposition 3. [7] If G is a graph of odd order n for which a(G) = ⌈n/2⌉ , then ψq(G) = 1.

Proposition 4. [7] For any graph G = Kr +Ks, where r + s is odd, ψq(G) = 1.

Furthermore, the authors [7] raised the following open problems.

1. Can you characterize the class of graphs for which ψq(G) = 1 or the class of graphs for
which ψq(G) > 1? In fact, can you find any infinite family of graphs other than those
of the form K2n+1 or Kr +Ks for r + s odd and r ≥ 2, for which ψq(G) = 1?

2. Is ψq(G) = 1 if and only if a(G) = ⌈n/2⌉ and n is odd?

3. If ψq(G) = 1, is diam(G) ≤ 2?

4. Is ⌊diam(G)/2⌋ ≤ ψq(G)? It is easy to prove the following.

Proposition 5. For any tree T,

⌊diam(T )/2⌋ ≤ ψq(T ).

In this paper, we answer Questions 1, 2, 3 and 4 as follows. In Sections 2 and 3 we
give a first and a second answer to Question 1, respectively. In Section 4, we give a third
answer to Question 1 which also answers Question 2 in negative, and in Section 5 we give a
fourth answer to Question 1 which again answers Question 2 as well as Questions 3 and 4 in
negative. We conclude our study by raising some open problems.

2 First answer to Question 1

In this section, we give a first answer to Question 1. We will first show that there exists
no linear-time algorithm solving the following two complementary decision problems unless
P ≠ NP ∩ co-NP .
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QUORUM-ONE
Instance: Graph G = (V,E).
Question: Is ψq(G) > 1?

ONE QUORUM
Instance: Graph G = (V,E).
Question: Is ψq(G) = 1?

Then, we provide three necessary and sufficient conditions for a graph G with ψq(G) ≥ 2.
Before establishing our first result which is related to the complexity aspect, we have to
recall the following definition due to Edmonds [2].

A characterization C of a given class of graphs G is said to be good if the decision problem
asking whether a given graph G satisfies the property C is both in NP and co-NP , that is,
if it belongs to NP ∩ co-NP . The author [2] also posed the following well-known conjecture.

Conjecture 6. [2] P = NP ∩ co−NP .

In [10], Sahbi showed that problem QUORUM-ONE is NP-complete.

Theorem 7. [10] Problem QUORUM-ONE is NP-complete.

Theorem 7 says that it is unlikely that polynomial-time algorithms exist to solve QUORUM-
ONE or ONE QUORUM. Therefore, our first announced result follows by Conjecture 6.

Corollary 8. There is no good characterization neither of the graphs G with ψq(G) = 1 nor
of those with ψq(G) > 1 unless P ≠ NP ∩ co−NP .

Although it is likely that no good characterization exists for graphs G with ψq(G) > 1, we
provide in the following three necessary and sufficient conditions, however. The statement
of the first one is inspired by a theorem proved by Shafique and Dutton [13] on graphs
admitting a satisfactory partition. Before presenting it, we need the following definitions.

An edge cutset of a connected graph G is a set S ⊆ E(G) such that G \ S is disconnected.
If no proper subset of S is a cutset, then S is called minimal cutset. The edges of the
cutset S which have one end vertex in V1 and the other in V2 is denoted by e(V1, V2). A
critical (−1)-cutset e(V1, V2) of a connected graph G is a minimal cutset, such that |Vi| ≥ 2,
i ∈ {1, 2} and moving any vertex from one set to the other decreases the size of e(V1, V2) by
at most one edge.

To prove our first result, we also need to use the following two propositions both due to
Hedetniemi et al. [7].
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Proposition 9. [7] Let G = (V,E) be a graph without isolated vertices, and let π =
{V1, V2, . . . , Vk} be a quorum coloring of G. Then, for every color class Vi, if |Vi| = 1 then
the only vertex in Vi is a leaf in G; otherwise |Vi| ≥ 2.

Proposition 10. [7] Let G be a graph, and let π = {V1, V2, . . . , Vk} be any ψq-coloring of
G. Then, for every i, 1 ≤ i ≤ k, the induced subgraph G[Vi] is connected.

For a connected graph admitting a bipartition as a quorum coloring, each vertex belonging
to any of the two classes of the bipartition has at most one less neighbor in its class than
outside it. Therefore, moving any vertex from a class to the other decreases the number of
edges between the two classes by at most one. This leads us to state our first equivalence.

Theorem 11. For a connected graph G without leaves, ψq(G) ≥ 2 if and only if G has a
critical (−1)-cutset.

Proof. Let e(V1, V2) be a critical (−1)-cutset of G. Then, for every i ∈ {1, 2}, moving any
vertex from Vi to V3−i decreases the size of e(V1, V2) by at most one edge. Thus, by putting
V ′
i = Vi\{v} and V ′

3−i = V3−i∪{v} for some i ∈ {1, 2} and some vertex v ∈ Vi, we have |V ′
i | ≥

1 (that is, V ′
i ̸= ∅) and |e(V ′

i , V
′
3−i)| = |e(Vi, V3−i)| − dV3−i

(v) + dVi
(v) ≥ |e(Vi, V3−i)| − 1. By

eliminating |e(Vi, V3−i)| on both sides of the inequality, we obtain that dVi
(v) + 1 ≥ dV3−i

(v),
which means that {V1, V2} is a quorum coloring of G of order 2. Consequently, ψq(G) ≥ 2.

Conversely, assume that ψq(G) ≥ 2 and let π = {V1, V2} be a quorum coloring of G of order
2. Then dVi

(v)+ 1 ≥ dV3−i
(v), for every i ∈ {1, 2} and v ∈ Vi. Furthermore, since G does not

have leaves, then we have by Proposition 9 that |Vi| ≥ 2 for every i ∈ {1, 2}. Let us show that
e(V1, V2) is a critical (−1)-cutset. For an arbitrarily chosen vertex v ∈ V, set V ′

i = Vi \ {v}
and V ′

3−i = V3−i ∪ {v}. Therefore, by moving any vertex v from Vi to V3−i, we obtain that
|e
(
V ′
i , V

′
3−i)| = |e(Vi, V3−i)| − dV3−i

(v) + dVi
(v). By using the inequality dVi

(v)+1 ≥ dV3−i
(v),

it follows that |e
(
V ′
i , V

′
3−i)| ≥ |e(Vi, V3−i)| − 1, which means that |e(V1, V2)| decreased by at

most 1. Moreover, since G[Vi] is connected according to Proposition 10, then e(V1, V2) is a
minimal (−1)-cutset. As a result, π is a critical (−1)-cutset. ■

The negation of Theorem 11 gives the following corollary as direct consequence.

Corollary 12. If G is a connected graph without leaves, then ψq(G) = 1 if and only if G
has no critical (-1)-cutset.

Remark 13. Note that if G has a leaf v, then the bipartition π = {{v}, V (G) \ {v}} is a
quorum coloring of order two, that is, ψq(G) ≥ 2.

To state the two other necessary and sufficient conditions, we need to recall a definition
and a proposition both due to Stiebitz [14].
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Definition 14. Let G = (V,E) be a graph and a, b : V → N two functions such that
dG(x) ≥ a(x) + b(x) + 1, for every vertex x ∈ V. A pair (A,B) is said to be feasible if A and
B are disjoint, non empty subsets of V such that:

(i) dA(x) ≥ a(x) for all x ∈ A, and

(ii) dB(x) ≥ b(x) for all x ∈ B.

Moreover, if A ∪B = V , then (A,B) is called a feasible partition of V.

Proposition 15. [14] If there exists a feasible pair, then there exists a feasible partition of
V (G), too.

Remark 16. Stiebitz pointed out that Proposition 15 remains valid under the weaker
assumption that dG(x) ≥ a(x) + b(x)− 1 for all x ∈ V (G).

Proposition 15 and Remark 16 will be used in the proof of our next result, which we can
now state.

Theorem 17. Let G be a connected graph with nϵ vertices of even degree at each of which
we join a leaf, resulting in a graph G′. Then the following assertions are equivalent:

(i) G admits two disjoint quorum classes.

(ii) ψq(G) ≥ 2.

(iii) ψq(G
′) ≥ nϵ + 2.

Proof. We will prove the following implications loop: (i) ⇒ (ii) ⇒ (iii) ⇒ (i).

(i) ⇒ (ii). Let A and B be two disjoint quorum classes of G. Then

for all x ∈ A : dA(x) + 1 ≥ d(V \A)(x) = dG(x)− dA(x)

⇔ dA(x) ≥
⌊
dG(x)

2

⌋
, and similarly

for all x ∈ B : dB(x) ≥
⌊
dG(x)

2

⌋
.

By putting a(x) = b(x) =
⌊
dG(x)

2

⌋
, we have

for every x ∈ V (G) : a(x) + b(x)− 1 = 2

⌊
dG(x)

2

⌋
− 1 ≤ 2

(
dG(x)

2
+

1

2

)
− 1 = dG(x).

Therefore, (A,B) is a feasible pair and it follows by Remark 16 and Proposition 15
that G admits a quorum coloring of order 2, that is, ψq(G) ≥ 2.
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(ii) ⇒ (iii). Let G′ = (V ′, E ′) be the graph obtained from G by joining a leaf to each vertex
of G of even degree. Let {V1, V2} be a quorum coloring of G. Let nϵ denote the
number of vertices of G of even degree. Then, one can easily see that the partition
π =

{
{v} ⊂ V ′ | dG′(v) = 1

}
∪ {V1, V2} is a quorum coloring of G′ of order nϵ + 2.

(iii) ⇒ (i). Assume that ψq(G
′) ≥ nϵ + 2 and let π′ be a ψq-coloring of G′. Let L denote

the set of the leaves of G′. We define the following sets W = {S ∈ π′ | S ⊆ V },
Y = {S ∈ π′ | S ⊆ L} and X = π′ − (Y ∪ W ). Observe that |L| = nϵ and |Y | ≤
|L| − |X| = nϵ − |X|. Using the facts that |π′| = |X|+ |Y |+ |W | and |π′| ≥ nϵ + 2, we
deduce that

nϵ + 2 ≤ |π′| = |X|+ |Y |+ |W | ≤ |X|+ |L| − |X|+ |W | ≤ nϵ + |W |,

and so |W | ≥ 2, which means that G admits at least two disjoint quorum classes.

The proof of Theorem 17 is complete. ■

Note that if the union of the two disjoint quorum classes of Assertion (i) of Theorem 17 is
maximal, then these two classes form a partition of V (G) and therefore a quorum coloring of
G as shown by the author [14] in the proof of Proposition 15. Furthermore, Assertion (iii)
of Theorem 17 comes from the fact that each vertex of even degree belonging to a quorum
class has at least as many neighbors in its class as outside it and hence, each leaf joined to
a vertex of even degree increases the quorum coloring number of G by one. On the other
hand, if ψq(G) = 1 and since G is connected, then by assigning in G′ the same color to all
the vertices of V (G) and nϵ new colors to the nϵ leaves of G

′, we obtain a quorum coloring of
G′ of order nϵ +1. Thus, by negating the equivalence of Assertions (ii) and (iii) of Theorem
17, we deduce the following corollary.

Corollary 18. Let G = (V,E) be a connected graph and G′ = (V ′, E ′) the graph obtained
from G by joining a leaf to each of the nϵ vertices of G of even degree. Then ψq(G) = 1 if
and only if ψq(G

′) = nϵ + 1.

3 Second answer to Question 1

Our aim in this section is to provide a second answer to Question 1 by showing how to
construct some infinite families of join graphs Kr+G satisfying the conditions of Proposition
3, and hence generalizing the family Kr+Ks of Proposition 4. Our result is stated as follows.

Theorem 19. Let r ≥ 2 be an integer and G a graph such that r+ |V (G)| is an odd integer,
and G satisfies one of the following two conditions:

1. ∆(G) ≤ r − 2;
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2. G is connected, δ(G) ≤ r − 2 and ∆(G) ≤ r − 1.

Then we have that ψq(Kr +G) = 1.

Proof. Let us show that a(Kr + G) =
⌈
r+|V (G)|

2

⌉
. Let A be a minimum defensive alliance

of Kr + G. Observe that if A contains a vertex v of V (Kr), then |A| = a(Kr + G) ≥⌈
d(Kr+G)(v)+1

2

⌉
=

⌈
|V (Kr+G)|

2

⌉
=

⌈
r+|V (G)|

2

⌉
. Therefore, we obtain by Theorem 1 that

a(Kr +G) =
⌈
r+|V (G)|

2

⌉
.

Now, we will show that if one of the conditions 1 and 2 is satisfied, then V (G) can not
contain A. Assume to the contrary that A ⊆ V (G) and set V (Kr) ∪ V (G) = W.
Case 1. ∆(G) ≤ r− 2. In this case, we have r ≤ d(W\A)(v) ≤ dA(v) + 1 ≤ ∆(G) + 1 ≤ r− 1
for every vertex v ∈ A, which is absurd.
Case 2. G is connected, δ(G) ≤ r − 2 and ∆(G) ≤ r − 1. Since ∆(G) ≤ r − 1, we have
r ≤ d(W\A)(v) ≤ dA(v) + 1 ≤ ∆(G) + 1 ≤ r for every vertex v ∈ A, which is equivalent to
dA(v) = r − 1, for every vertex v ∈ A. As consequence, no vertex u with dG(u) ≤ r − 2
(such a vertices exist since δ(G) ≤ r−2), belongs to A. Moreover, since G is connected, then
there exists necessarily a pair of adjacent vertices u and v of V (G) such that dG(u) ≤ r − 2
and v ∈ A. Therefore, using the fact that dA(v) = r − 1 we obtain that ∆(G) ≥ dG(v) ≥
dA(v) + 1 ≥ r, a contradiction.

Consequently, A contains necessarily a vertex of V (Kr) and by the first part of the theorem,

we deduce that a(Kr +G) =
⌈
r+|V (G)|

2

⌉
. The result follows by Proposition 3. ■

Theorem 19 allows to construct infinite classes of graphs Kr +G with r + |V (G)| odd and
ψq(Kr +G) = 1, as illustrated by the following corollaries.

Corollary 20. For any integer r ≥ 2 and every k-regular graph G, where k ≤ r − 2 and
r + |V (G)| is odd, ψq(Kr +G) = 1.

For every integer n ≥ 3, let Cn denote the cycle of order n.

Corollary 21. For any integers r ≥ 4 and n ≥ 3, where r + n is odd, we have
ψq(Kr + Cn) = 1.

Corollary 22. For every complete multipartite graph Kn1,n2,...,nℓ
, with ni ≥ 1 for every

i ∈ {1, 2, . . . , ℓ}, and every integer r ≥ 2 + max
1≤i≤ℓ

r∑
j=1
j ̸=i

nj where r +
ℓ∑

i=1

ni is odd, we have

ψq(Kr +Kn1,n2,...,nℓ
) = 1.

For every integer n ≥ 1, let Pn denote the path of order n.
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Corollary 23. For any integers r ≥ 3 and n ≥ 1, where r + n is odd, we have
ψq(Kr + Pn) = 1.

Corollary 24. For every complete multipartite graph Kn1,n2,...,nℓ
, with ni ≥ 1 for every

i ∈ {1, 2, . . . , ℓ} and nj ̸= nk for some j ̸= k, and for every integer r ≥ 1+max
1≤i≤ℓ

r∑
j=1
j ̸=i

nj, where

r +
ℓ∑

i=1

ni is odd, we have ψq(Kr +Kn1,n2,...,nℓ
) = 1.

Corollary 25. For every tree T of order n and every integer r ≥ ∆(T ) + 1, where r + n is
odd, we have ψq(Kr + T ) = 1.

Remark 26. Note first that Theorem 19 remains valid when G is disconnected and ∆(G) ≤
r− 2. Therefore, we can take, for example, in Corollary 20 a disjoint union of regular graphs
satisfying the condition 1 of Theorem 19. Furthermore, Corollary 22 (respectively Corollary
24) can be considered with general multipartite graphs satisfying the condition 1 (respectively
the condition 2) of Theorem 19.

4 Answer to Questions 1 and 2

In this section, we extend an observation made in [1] by Bazgan et al. saying that ψq(K3,3,3) =
1, by proving that the infinite family of (2k + 1)-partite graphs G = K3,3,...,3 has ψq(G) = 1,
which gives a third answer to Question 1. Moreover, the proof of this result shows that

a(G) <
⌈
|V (G)|

2

⌉
, which therefore answers also Question 2 in negative. Before proving this

generalization, we need first to recall the following result due to Olsen and Revsbæk [8].

Proposition 27. [8] Let G = (V,E) be a regular graph of odd order n and dG(u) = n − 3
for all u ∈ V. Then ψq(G) ≥ 2 if and only if G contains a clique with

⌊
n
2

⌋
vertices. Checking

whether such a clique exists can be done in polynomial time.

As mentioned by the authors [8], Proposition 27 shows among other things how to construct
a d-regular graph that is not a clique and impossible to partition into quorum classes for any
even integer d ≥ 6. Our result, as a consequence of Proposition 27, confirms this statement.

Corollary 28. For any integer k ≥ 1, if G is the (2k + 1)-partite graph K3,3,...,3, then
ψq(G) = 1.

Proof. For every k ≥ 1, set n = 6k + 3. Then, G is an (n− 3)-regular graph of odd order n.
Let us show that G contains no clique of order

⌊
n
2

⌋
. Assume to the contrary that G has a

clique of order
⌊
n
2

⌋
, and let A be such a clique. Since G is the (2k+1)-partite graph K3,3,...,3,

then G can be partitioned into 2k+1 independent sets V1, V2, . . . , V2k+1, each set containing
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exactly 3 independent vertices. Hence A contains at most one vertex of each independent
set Vi. Therefore, |A| ≤ 2k + 1 = n

3
<

⌊
n
2

⌋
=

⌊
6k+3
2

⌋
= 3k + 1, a contradiction. This implies

by Proposition 27 that ψq(G) = 1. ■

5 Answer to Questions 1, 2, 3 and 4

In this section, we exhibit a new infinite family of graphs Gℓ of even orders with ψq(Gℓ) = 1,

for any ℓ ≥ 1 (Figure 1). Moreover, we show that diam(Gℓ) and
(⌈

|V (Gℓ)|
2

⌉
− a(Gℓ)

)
are both

not bounded. On the one hand, this result gives an interesting fourth answer to Question
1 in the sense that {Gℓ}ℓ≥1 satisfies no condition of Proposition 3. On the other hand, it
answers in the same time Questions 2, 3 and 4 in negative, where the diameter as well as the
gap between half of the order of the graph and the alliance defensive number can both be
as large as we want. Before stating this result, let us recall the following useful proposition
due to Olsen and Revsbæk [8].

Proposition 29. [8] Let G = (V,E) be a graph and {B1, B2, . . . , Bℓ} a partition of V for
some ℓ ≥ 2, satisfying the following conditions:

|B1 ∪B2| is odd, (1)

∀u ∈ B1 : d(u) = dB1∪B2(u) = |B1 ∪B2| − 1 (2)

∀i ≥ 2, ∀u ∈ Bi : dBi−1
(u) > d(V \Bi−1)(u) + 1 (3)

Then ψq(G) = 1.

The authors [8] described Proposition 29 as a recipe for constructing infinitely many
examples of graphs that can not be partitioned into quorum classes. The {Gℓ}ℓ≥1 family is
one of these examples as shown in the following corollary.

Corollary 30. Let ℓ ≥ 1 be an integer, Gℓ a graph and {B1, B2, . . . , B4ℓ} a partition of
V (Gℓ) such that:

(i) Gℓ[B1] = K4ℓ.

(ii) For any integer i ∈ {2, . . . , 4ℓ}, Gℓ[Bi] = K4ℓ−i+1.

(iii) For every vertex v ∈ B1, NGℓ
[v] = B1 ∪B2.

(iv) For every vertex v ∈ B4ℓ, NGℓ
(v) = B4ℓ−1.

(v) For any integer i ∈ {2, . . . , 4ℓ− 1} and every vertex v ∈ Bi, NGℓ
(v) = Bi−1 ∪Bi+1.

Then ψq(Gℓ) = 1.
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Proof. First, the order of Gℓ equals
4ℓ∑
i=1

(4ℓ− i+ 1) = 16ℓ2+4ℓ−2ℓ(4ℓ+1) = 2ℓ(4ℓ+1) ≥ 10,

which is even for every ℓ ≥ 1. Now, let us verify that all the graphs of the {Gℓ}ℓ≥1 family
satisfy Conditions 1, 2 and 3 of Proposition 29.

� Firstly, we have by Hypothesis (i) and (ii) that

|B1 ∪B2| = 4ℓ+ 4ℓ− 1 = 8ℓ− 1,

which is odd. Hence, Condition 1 is satisfied.

� Secondly, for every vertex v ∈ B1, we have by Hypothesis (iii) that

dGℓ
(v) = |NGℓ

(v)| = |NGℓ
[v] \ {v}| = |NGℓ

[v]| − 1 = |B1 ∪B2| − 1,

which means that Condition 2 is satisfied.

� Finally, using Hypotheses (iv) and (v), we obtain that

for all v ∈ B4ℓ, dB4ℓ−1
(v) = |NGℓ

(v)∩B4ℓ−1| = |B4ℓ−1| = 4ℓ−1 > dV (Gℓ)\B4ℓ−1
(v)+1 = 1,

and

for all i ∈ {2, . . . , 4ℓ−1} and all v ∈ Bi, dBi−1
(v) = |NGℓ

(v)∩Bi−1| = |Bi−1| = 4ℓ−i+2

> dV (Gℓ)\Bi−1
(v) + 1 = dBi+1

(v) + 1 = 4ℓ− i,

which means that Condition 3 is satisfied.

The proof of Corollary 30 is complete. ■

Remark 31. For every ℓ ≥ 1, we have clearly diam(Gℓ) = 4ℓ− 1. Hence, we deduce that

lim
ℓ→+∞

diam(Gℓ) = +∞,

which answers Questions 3 and 4 in negative. Furthermore, we have
⌈
|B1∪B2|

2

⌉
=

⌈
8ℓ−1
2

⌉
=

4ℓ = |B1|, so it is easy to see that B1 is a defensive alliance of Gℓ (the set of gray vertices in
Figure 1). Consequently,

a(Gℓ) ≤ |B1| = 4ℓ.

It follows that

lim
ℓ→+∞

⌈|V (Gℓ)|/2⌉ − a(Gℓ) ≥ lim
ℓ→+∞

ℓ(4ℓ+ 1)− 4ℓ = lim
ℓ→+∞

4ℓ2 = +∞.

Finally,
lim

ℓ→+∞
⌈|V (Gℓ)|/2⌉ − a(Gℓ) = +∞,

which shows that {Gℓ}ℓ≥1 is another counter-example for Question 2.
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Figure 1: The partition {Bi}1≤i≤4 of the graph G1

6 Open problems

The following open problems are suggested from our present study.

1. Characterize the family of graphs Kr +G for which ψq(Kr +G) = 1.

2. Characterize the family of graphs G+H for which ψq(G+H) = 1.

3. Can you find complete multipartite graphs G other than those of Corollary 28 such

that ψq(G) = 1?

4. Characterize the class of graphs G, with diam(G) = 2 for which ψq(G) = 1.

5. Since every tree T satisfies ⌊diam(T )/2⌋ ≤ ψq(T ) (see Proposition 5), characterize the

graphs G for which ⌊diam(G)/2⌋ ≤ ψq(G).
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