Sufficient conditions for extremum of fractional variational problems

A. Pattnaik *, S.K. Padhan † and R.N. Mohapatra ‡

*, † Department of Mathematics, Veer Surendra Sai University of Technology, Burla, 768018, India
‡ Department of Mathematics, University of Central Florida, 32816 Orlando, FL, USA

Abstract

Sufficient conditions for extremum of fractional variational problems are formulated with the help of Caputo fractional derivatives. The Euler-Lagrange equation is defined in the Caputo sense and Jacobi conditions are derived using this. Again, Wierstrass integral for the considered functional is obtained from the Jacobi conditions and the transversality conditions. Further, using the Taylor’s series expansion with Caputo fractional derivatives in the Wierstrass integral, the Legendre’s sufficient condition for extremum of the fractional variational problem is established. Finally, a suitable counterexample is presented to justify the efficacy of the fresh findings.

keywords: Caputo fractional derivative; Jacobi conditions; Transversality conditions; Wierstrass integral; Legendre’s condition

Mathematics Subject Classifications 2020: 26A33; 58E15; 34K37; 49K10; 49K20; 35R11

1 Introduction and Preliminaries

*E-mail: pattnaik.ashapurna@gmail.com
†All Correspondence to E-mail: skpadhan_math@vssut.ac.in
‡E-mail: ram.mohapatra@ucf.edu
The fractional calculus deals with the problem of extremizing functionals, which are of non integer order and are differentiable. It’s origin is more than three centuries old, and dates back to L’Hôpital’s query to Leibniz about the significance of the fractional order derivative of a function. In his reply to the above question, Leibniz indicated it to be a paradox which can lead to useful consequences in the near future [36]. The subject caught the attention of many eminent mathematicians including Euler, Fourier, Laplace, Lacroix, Abel, Riemann, Liouville and Caputo et al. for its advancement. Several fractional derivatives in the sense of Grünwald Letnikov, Riemann-Liouville and Caputo et al. are discussed in [32]. However, it gained popularity in the last three decades for its wide applications in the field of science, engineering, statistics and mathematical biology [1, 2, 3, 4, 5, 6, 12, 14, 17, 19, 20, 24, 27, 28, 34, 35, 37] etc.

The fractional derivatives are used in calculus of variations to generalize it to non integer orders. Agrawal [1] formulated the Euler-Lagrange equations for fractional variational problem and proved the necessary conditions for extremum of fractional variational problems using Riemann-Liouville fractional derivatives. Legendre’s second order necessary optimality conditions for weak extremizers of the variational problems was subsequently established by Lazo and Torres [29], where the involved functionals are fractional differentiable in the sense of Riemann-Liouville. The isoperimetric problems have also been proved using the Caputo fractional derivatives [8, 30].

Variational functionals with a Lagrangian are considered by Odzijewicz et al. [31] using classical as well as Caputo fractional derivatives. Wang and Xiao [39] defined the fractional variational integrators in terms of Caputo derivatives. The notion of Euler-Lagrange fractional extremals is used to prove the Noether type theorem by Frederico and Torres [16]. Agrawal and Baleanu [7] studied fractional optimal control problems as an application of the Riemann-Liouville fractional derivatives.

Recently, Zhang [40] proved the necessary and sufficient optimality conditions for the fractional variational problems using the Caputo-Fabrizio fractional derivatives, and Baleanu et al. [11] presented suitable counterexamples to support it. Almeida [10] considered several problems of calculus of variations depending upon Lagrange function on a Caputo type fractional derivative. Again, Almeida [9], obtained the necessary and sufficient conditions, when the involved functionals are dependent upon the fractional integrals and fractional derivatives having indefinite integral and in the presence of time delay. Rahman et al. [33] established the generalized Riemann-Liouville fractional integrals in the
sense of increasing, positive, monotone, and measurable function Ψ and also discussed the Chebyshev functionals. Goufo et al. [18] explored the differential fractional operators, which include Atangana-Baleanu derivative and the Caputo-Fabrizio derivative.

Several interesting applications of fractional derivatives in modeling the ecological systems are found in [21, 23, 27]. Between the Haar wavelet and Adams-Bashforth-Moulton method, a comparative investigation for the fractional Lotka-Volterra (LV) system in the Caputo sense was done by Kumar et al. [22]. The fractional derivatives such as the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivatives are used to investigate a mathematical system numerically to figure out the possible dynamics for the spread of the diseases like HIV/AIDS and COVID-19 by Kumar et al. [25, 26].

In this paper, sufficient optimality conditions for fractional variational problems are investigated with the help of Legendre’s condition by using the Caputo fractional derivative. Again, the Jacobi condition and the transversality conditions are discussed to validate the aforementioned condition. With the help of fractional Taylor’s series expansion, the Legendre’s sufficient conditions for extremum of the fractional variational problems are obtained. A number of remarks are mentioned at appropriate places for verifying the proper generalizations of several classical equations and conditions. To support our new findings, a suitable counterexample is also provided.

Definition 1.1 [15] Let f be a real valued function in the interval $[a, b]$, α be a positive real number, n be the integer satisfying $(n - 1) \leq \alpha < n$, and Γ be the Euler gamma function. Then,

(i) the left Caputo fractional derivatives (CFD) of order α is defined by
\[
C_a^\alpha D_\mu f(\mu) = \frac{1}{\Gamma(n - \alpha)} \int_a^\mu \frac{f^{(n)}(\lambda)}{(\mu - \lambda)^{\alpha+1-n}} d\lambda,
\]
and
(ii) the right CFD of order α is defined by
\[
C^\alpha D_b f(\mu) = \frac{1}{\Gamma(n - \alpha)} \int_\mu^b (-1)^n \frac{f^{(n)}(\lambda)}{(\lambda - \mu)^{\alpha+1-n}} d\lambda.
\]

Remark 1.1 If $\alpha \in \mathbb{Z}$, then the derivatives discussed above can be standardized in the classical sense, i.e.,
\[
C_a^\alpha D_\mu f(\mu) = \left(\frac{d}{d\mu} \right)^\alpha f(\mu), \quad C^\alpha D_b f(\mu) = \left(-\frac{d}{d\mu} \right)^\alpha f(\mu), \quad \alpha = 1, 2, \ldots
\]

Remark 1.2 The CFD of a constant is always equal to zero.
Lemma 1.1 Consider a functional of the form
\[J(\mu) = \int_{\lambda_0}^{\lambda_1} f(\lambda, \mu, \frac{C}{a} \mathcal{D}_a^\alpha \mu, \frac{C}{\lambda} \mathcal{D}_\lambda^\beta \mu) d\lambda, \]
defined on the set of functions \(\mu(\lambda) \) with continuous left and right CFDs of order \(\alpha \) and \(\beta \) respectively in \([\lambda_0, \lambda_1]\), having boundary conditions \(\mu(\lambda_0) = \mu_0 \) and \(\mu(\lambda_1) = \mu_1 \). Then \(J[\mu] \) will have an extremum at \(\mu(\lambda) \) if \(\mu(\lambda) \) satisfies the necessary condition (1) i.e., the Euler-Lagrange equation:
\[
\frac{\partial F}{\partial \mu} + \frac{C}{a} \mathcal{D}_a^\alpha \frac{\partial F}{\partial \mathcal{D}_a^\alpha \mu} + \frac{C}{\lambda} \mathcal{D}_\lambda^\beta \frac{\partial F}{\partial \mathcal{D}_\lambda^\beta \mu} = 0. \tag{1}
\]

Remark 1.3 If the set of functions \(\mu(\lambda) \) have continuous left and right Riemann-Liouville derivatives of order \(\alpha \) and \(\beta \) respectively, then the above Lemma 1.1 becomes Theorem-1, Page-372 of [1].

2 Result and Discussion

2.1 The Jacobi Condition

Consider the functional \(J[\mu(\lambda)] = \int_{\lambda_0}^{\lambda_1} F(\lambda, \mu, \frac{C}{a} \mathcal{D}_a^\alpha \mu, \frac{C}{\lambda} \mathcal{D}_\lambda^\beta \mu) d\lambda, \) where the function \(F(\lambda, \mu, \frac{C}{a} \mathcal{D}_a^\alpha \mu, \frac{C}{\lambda} \mathcal{D}_\lambda^\beta \mu) \) under consideration has continuous first and second order partial derivatives with respect to all its arguments. Then the necessary condition for the functional \(J[\mu] \) to have an extremum is that it satisfies the Euler-Lagrange’s equation given by (1).

Let \(\mu = \mu(\lambda, \kappa) \), be the solution curves of the Euler-Lagrange’s equation having center at the point \(A(\lambda_0, \mu_0) \). The \(\kappa \)-discriminant curve is defined by the equations;
\[
\mu = \mu(\lambda, \kappa) \tag{2}
\]
and
\[
\frac{\partial \mu(\lambda, \kappa)}{\partial \kappa} = 0. \tag{3}
\]

The curves of this family that are close to the extremals \(\mu = \mu(\lambda) \) moving through the points \(A(\lambda_0, \mu_0) \) & \(B(\lambda_1, \mu_1) \) and the \(\kappa \)-discriminant curves will intersect at points close to the tangent points of the extremal under consideration with the \(\kappa \)-discriminant curve. The function \(\mu(\lambda) \) will have continuous left and right Caputo fractional derivatives of
order \(\alpha \) and \(\beta \), respectively with the boundary points \(A(\lambda_0, \mu_0) \) and \(B(\lambda_1, \mu_1) \).

Now let’s consider the functional on the pencil of extremals \(i.e, \)

\[
J[\mu(\lambda, \kappa)] = \int_{\lambda_0}^{\lambda_1} F(\lambda, \mu(\lambda, \kappa), C_a^C \mathcal{D}_\lambda^\alpha \mu(\lambda, \kappa), -C_b^\beta \mathcal{D}_b^\beta \mu(\lambda, \kappa)) d\lambda.
\]

The Jacobi condition states that, to establish a central field of extremals containing the arc \(AB \) of extremals it is sufficient that, there does not exist any common point (apart from \(A \)) between the \(\kappa \)-discriminant curve and the arc \(AB \) of extremals.

Now, let us define the Jacobi condition analytically in fractional variational sense.

Denote the function \(g := \frac{\partial u(\lambda, \kappa)}{\partial \kappa} \), where \(\kappa \) is given.

Hence \(g_\lambda' = g' = \frac{\partial^2 u(\lambda, \kappa)}{\partial \kappa \partial \lambda} \), since \(g \) is the function of \(\lambda \) alone.

The functions \(\mu = \mu(\lambda, \kappa) \); are solutions of the Euler-Lagrange’s equation.

\[
\partial F(\lambda, \mu(\lambda, \kappa), C_a^C \mathcal{D}_\lambda^\alpha \mu(\lambda, \kappa), -C_b^\beta \mathcal{D}_b^\beta \mu(\lambda, \kappa)) + C_a^C \mathcal{D}_\lambda^\alpha \partial F(\lambda, \mu(\lambda, \kappa), C_a^C \mathcal{D}_\lambda^\alpha \mu(\lambda, \kappa), -C_b^\beta \mathcal{D}_b^\beta \mu(\lambda, \kappa)) \partial \mu + C_a^C \mathcal{D}_a^\alpha \partial F(\lambda, \mu(\lambda, \kappa), C_a^C \mathcal{D}_\lambda^\alpha \mu(\lambda, \kappa), -C_b^\beta \mathcal{D}_b^\beta \mu(\lambda, \kappa)) \partial C_a^C \mathcal{D}_b^\beta \mu = 0. \tag{5}
\]

Differentiating the above equation with respect to \(\kappa \) in the Caputo sense, we get,

\[
F_{\mu \mu} g + F_{\mu \mu'} g' + F_{\mu g} + F_{\mu g'} - F_{\mu \mu} g + F_{\mu \mu} g' + F_{\mu g} + F_{\mu g'}\]

\[+ C_a^C \mathcal{D}_\lambda^\alpha \left(F_{\mu \mu} g + F_{\mu \mu} g' + F_{\mu g} + F_{\mu g'} \right) = 0, \tag{6}
\]

which is called the Jacobi’s equation.

The solution of the above equation \(g = \frac{\partial u(\lambda, \kappa)}{\partial \kappa} \) vanishes at the center of the extremals for \(\lambda = \lambda_0 \). If it does not vanishes further at any point in the interval \(\lambda_0 < \lambda < \lambda_1 \), then the Jacobi condition is fulfilled.

If the solution of the equation (3), vanishes at any other point of the interval \(\lambda_0 < \lambda < \lambda_1 \), then the point \(A^* \) conjugate to \(A \) is defined by the equations;

\[
\mu = \mu(\lambda, \kappa_0) \text{ and } \frac{\partial u(\lambda, \kappa)}{\partial \kappa} = 0 \text{ or } g = 0,
\]

which lies on the arc \(AB \) of the extremal.

Remark 2.1 When \(\alpha = \beta = 1 \), \(C_a^C \mathcal{D}_\lambda^\alpha \frac{d}{d\lambda} \) and \(C_b^\beta \mathcal{D}_b^\beta \frac{d}{d\lambda} \) and the above equation reduces to

\[
F_{\mu \mu} g + F_{\mu g} g' - \frac{d}{d\lambda} (F_{\mu \mu} g + F_{\mu g} g) = 0, \tag{7}
\]
which is the Jacobi equation in the classical sense [13].

Note that for fractional calculus of variational problems the resulting Jacobi equation contains both the left and right CFD. This is to be expected, since the optimum function must satisfy both terminal conditions. If there exists a solution of the Jacobi equation that vanishes only at the point $\lambda = \lambda_0$ and does not vanish at any other point in $[\lambda_0, \lambda_1]$, then no points are conjugate to the arc AB; and the Jacobi condition is fulfilled.

Remark 2.2 The functional $F(\lambda, \mu(\lambda, \kappa), \mathcal{C}_a^\alpha \mu(\lambda, \kappa), \mathcal{C}_b^\beta \mu(\lambda, \kappa))$, satisfies the Euler-Lagrange’s equation (1) but fails to satisfy the Jacobi equation(6) taken in right CFD sense and hence fails to satisfy the sufficient conditions for optimality. Whereas, the functional $F(\lambda, \mu(\lambda, \kappa), \mathcal{C}_a^\alpha \mu(\lambda, \kappa), -\mathcal{C}_b^\beta \mu(\lambda, \kappa))$, satisfies the Euler-Lagrange’s equation (1) as well as the Jacobi equation (6) in CFD sense. Therefore, the above functional is taken into consideration.

2.2 The transversality condition.

Consider the functional of the form (4) having fixed boundary points. This functional has a solution of the form (2). Now consider the case where one or both of the boundary points can move. Then we can get a larger class of acceptable curves comprising of the comparison curves having common boundary points with the curve under consideration and the curves that are generated by the extension of the boundary points. We establish the following result:

Theorem 2.1 Let $J[\mu(\lambda)]$ be a functional of the form (4) defined on the set of function $\mu(\lambda)$, which have continuous left and right CFD of order α and β respectively with moving boundary points. Then the extremal of the given functional satisfies the transversality condition given by

$$[(F + F_a^\alpha \mathcal{C}_a^\alpha \psi - F_a^\alpha \mathcal{C}_b^\alpha \mu)\delta \lambda]_{\lambda_1}^{\lambda_2} = 0 \text{ (in left CFD sense)}$$

$$[(F + F_b^\beta \mathcal{C}_b^\beta \psi - F_b^\beta \mathcal{C}_a^\beta \mu)\delta \lambda]_{\lambda_1}^{\lambda_2} = 0 \text{ (in right CFD sense)},$$

(8)

where ψ is a function of λ.

Proof: The variation of the functional $J[\mu(\lambda, \kappa)]$ on the extremals $\mu = \mu(\lambda, \kappa)$, when the boundary point is displaced from the position (λ_1, λ_2) to the position $(\lambda_1 + \delta \lambda_1, \lambda_2 + \delta \lambda_2)$
may be calculated in the fractional sense and is given by,

$$
\Delta J = \int_{\lambda_1}^{\lambda_2} \left[F(\lambda, \mu + h, c_\lambda^a \mathcal{D}_a^\alpha \mu + c_\lambda^a \mathcal{D}_a^\alpha h, -c_\lambda^\beta \mathcal{D}_\mu^\beta - c_\lambda^\beta \mathcal{D}_\mu^\beta h) d\lambda - \int_{\lambda_1}^{\lambda_2} F(\lambda, \mu, c_\lambda^a \mathcal{D}_a^\alpha \mu, -c_\lambda^\beta \mathcal{D}_\mu^\beta) d\lambda \right] d\lambda,
$$

where h is the difference between the original and the perturbed curve and is given by,

$$
h = \delta \mu - c_\lambda^a \mathcal{D}_\mu^a \delta \lambda \quad \text{(in left CFD sense)} \quad \text{and} \quad h = \delta \mu + c_\lambda^\beta \mathcal{D}_\mu^\beta \delta \lambda \quad \text{(in right CFD sense)}.
$$

Then

$$
\Delta J = \int_{\lambda_1}^{\lambda_2} \left[F(\lambda, \mu + h, c_\lambda^a \mathcal{D}_a^\alpha \mu + c_\lambda^a \mathcal{D}_a^\alpha h, -c_\lambda^\beta \mathcal{D}_\mu^\beta - c_\lambda^\beta \mathcal{D}_\mu^\beta h) d\lambda - \int_{\lambda_1}^{\lambda_2} F(\lambda, \mu, c_\lambda^a \mathcal{D}_a^\alpha \mu, -c_\lambda^\beta \mathcal{D}_\mu^\beta) d\lambda \right] d\lambda
$$

$$
- \int_{\lambda_1}^{\lambda_2 + \delta \lambda_1} F(\lambda, \mu + h, c_\lambda^a \mathcal{D}_a^\alpha \mu + c_\lambda^a \mathcal{D}_a^\alpha h, -c_\lambda^\beta \mathcal{D}_\mu^\beta - c_\lambda^\beta \mathcal{D}_\mu^\beta h) d\lambda
$$

$$
+ \int_{\lambda_2}^{\lambda_2 + \delta \lambda_2} F(\lambda, \mu + h, c_\lambda^a \mathcal{D}_a^\alpha \mu + c_\lambda^a \mathcal{D}_a^\alpha h, -c_\lambda^\beta \mathcal{D}_\mu^\beta - c_\lambda^\beta \mathcal{D}_\mu^\beta h) d\lambda
$$

$$
\approx \int_{\lambda_1}^{\lambda_2} F(\lambda, \mu + h, c_\lambda^a \mathcal{D}_a^\alpha \mu + c_\lambda^a \mathcal{D}_a^\alpha h, -c_\lambda^\beta \mathcal{D}_\mu^\beta - c_\lambda^\beta \mathcal{D}_\mu^\beta h) d\lambda - \int_{\lambda_1}^{\lambda_2} F(\lambda, \mu, c_\lambda^a \mathcal{D}_a^\alpha \mu, -c_\lambda^\beta \mathcal{D}_\mu^\beta) d\lambda
$$

$$
- F|_{\lambda=\lambda_1} \delta \lambda_1 + F|_{\lambda=\lambda_2} \delta \lambda_2.
$$

If, we expand the first term on the right hand side of the equation (9) by means of Taylor’s expansion [38] then,

$$
F(\lambda, \mu + h, c_\lambda^a \mathcal{D}_a^\alpha \mu + c_\lambda^a \mathcal{D}_a^\alpha h, -c_\lambda^\beta \mathcal{D}_\mu^\beta - c_\lambda^\beta \mathcal{D}_\mu^\beta h) = F + F_\mu h + F_{\mathcal{D}_a^\alpha \mu} c_\lambda^a \mathcal{D}_a^\alpha h - F_{\mathcal{D}_\mu^\beta} c_\lambda^\beta \mathcal{D}_\mu^\beta h.
$$

Thus,

$$
\int_{\lambda_1}^{\lambda_2} [F(\lambda, \mu + h, c_\lambda^a \mathcal{D}_a^\alpha \mu + c_\lambda^a \mathcal{D}_a^\alpha h, -c_\lambda^\beta \mathcal{D}_\mu^\beta - c_\lambda^\beta \mathcal{D}_\mu^\beta h) d\lambda - F(\lambda, \mu, c_\lambda^a \mathcal{D}_a^\alpha \mu, -c_\lambda^\beta \mathcal{D}_\mu^\beta) d\lambda] d\lambda
$$

$$
= \int_{\lambda_1}^{\lambda_2} (F_\mu h + F_{\mathcal{D}_a^\alpha \mu} c_\lambda^a \mathcal{D}_a^\alpha h - F_{\mathcal{D}_\mu^\beta} c_\lambda^\beta \mathcal{D}_\mu^\beta) d\lambda.
$$

The second part of the integration of the above equation is

$$
\int_{\lambda_1}^{\lambda_2} F_{\mathcal{D}_a^\alpha \mu} c_\lambda^a \mathcal{D}_a^\alpha h d\lambda = [F_{\mathcal{D}_a^\alpha \mu} h]^{\lambda_2}_{\lambda_1} + \int_{\lambda_1}^{\lambda_2} h c_\lambda^a \mathcal{D}_a^\alpha F_{\mathcal{D}_a^\alpha \mu} d\lambda,
$$

and the third part of the integration is

$$
\int_{\lambda_1}^{\lambda_2} F_{\mathcal{D}_\mu^\beta} c_\lambda^\beta \mathcal{D}_\mu^\beta h d\lambda = [F_{\mathcal{D}_\mu^\beta} h]^{\lambda_2}_{\lambda_1} + \int_{\lambda_1}^{\lambda_2} h c_\lambda^\beta \mathcal{D}_\mu^\beta F_{\mathcal{D}_\mu^\beta} d\lambda.
$$

Hence,

$$
\int_{\lambda_1}^{\lambda_2} (F_\mu h + F_{\mathcal{D}_a^\alpha \mu} c_\lambda^a \mathcal{D}_a^\alpha h - F_{\mathcal{D}_\mu^\beta} c_\lambda^\beta \mathcal{D}_\mu^\beta) d\lambda
$$

$$
= \int_{\lambda_1}^{\lambda_2} (F_\mu + c_\lambda^a \mathcal{D}_a^\alpha F_{\mathcal{D}_a^\alpha \mu} + c_\lambda^\beta \mathcal{D}_\mu^\beta F_{\mathcal{D}_\mu^\beta} h) + \int_{\lambda_1}^{\lambda_2} h c_\lambda^a \mathcal{D}_a^\alpha F_{\mathcal{D}_a^\alpha \mu} d\lambda.
$$

$$
\therefore \Delta J \approx \int_{\lambda_1}^{\lambda_2} (F_\mu + c_\lambda^a \mathcal{D}_a^\alpha F_{\mathcal{D}_a^\alpha \mu} + c_\lambda^\beta \mathcal{D}_\mu^\beta F_{\mathcal{D}_\mu^\beta} h) + [F_{\mathcal{D}_a^\alpha \mu} h]^{\lambda_2}_{\lambda_1} - [F_{\mathcal{D}_\mu^\beta} h]^{\lambda_2}_{\lambda_1} + [F \delta \lambda]^{\lambda_2}_{\lambda_1}.
$$
At the extremals,
\[\int_{\lambda_1}^{\lambda_2} (F_\mu + C_a D_\alpha a C_\theta a \mu + C_\lambda D_\beta a_\lambda a_\mu) h = 0. \quad (\text{by EL equation}) \]

\[\therefore \Delta J = [F_\mu D_\alpha a \mu h]_{\lambda_1}^{\lambda_2} - [F_\mu D_\beta a \mu h]_{\lambda_1}^{\lambda_2} + [F \delta \lambda]_{\lambda_1}^{\lambda_2} = 0. \quad (16) \]

Now replacing the value of \(h \) in the above equation (16) in left CFD sense, we have,
\[[F_\mu D_\alpha a \mu (\delta \mu - C_\alpha a D_\beta a \mu \delta \lambda)]_{\lambda_1}^{\lambda_2} + [F \delta \lambda]_{\lambda_1}^{\lambda_2} = 0 \]
\[\Rightarrow [(F - F_\mu D_\alpha a \mu C_\alpha a D_\alpha a \mu) \delta \lambda]_{\lambda_1}^{\lambda_2} + [F_\mu D_\beta a \mu \delta \mu]_{\lambda_1}^{\lambda_2} = 0. \quad (17) \]

Now the basic necessary condition for an extremum; \(\Delta J = 0 \) has the form (17).

If the variations are independent, then,
\[[(F - F_\mu D_\alpha a \mu C_\alpha a D_\alpha a \mu) \delta \lambda]_{\lambda_1}^{\lambda_2} = 0 \]
and
\[[F_\mu D_\beta a \mu \delta \mu]_{\lambda_1}^{\lambda_2} = 0. \quad (19) \]

If the variations are dependent; let \(\mu = \psi(\lambda) \),
\[\Rightarrow \delta \mu = C_\alpha a D_\beta a \psi \delta \lambda. \quad (20) \]

By substituting the value of \(\delta \mu \) from the above equation in equation (17);
\[[(F - F_\mu D_\alpha a \mu C_\alpha a D_\alpha a \mu) \delta \lambda + F_\mu D_\beta a \mu C_\beta a \psi \delta \lambda]_{\lambda_1}^{\lambda_2} = 0 \]
\[\Rightarrow [(F + F_\mu D_\beta a \mu (C_\beta a \psi - C_\beta a \alpha a \mu)) \delta \lambda]_{\lambda_1}^{\lambda_2} = 0. \quad (21) \]

Similarly, replacing the value of \(h \) in equation (16) and proceeding in the same way, we will get,
\[[(F + F_\mu D_\beta a \mu (C_\beta a \psi - C_\beta a \alpha a \mu)) \delta \lambda]_{\lambda_1}^{\lambda_2} = 0. \quad (22) \]

This establishes a relationship between the slopes of \(\psi \) and \(\mu \) at the boundary points. This condition is called the transversality condition.

Remark 2.3 When \(\alpha = \beta = 1 \), \(C_\alpha a D_\alpha a = \frac{d}{d\lambda} \) and \(C_\beta a D_\beta a = -\frac{d}{d\lambda} \), the above conditions will reduce to \([F + (\psi' - \mu')F_\mu'] = 0 \), which is the trasversality condition in classical sense.
3 Sufficient condition for extremum

In the preceding sections we have discussed the Euler-Lagrange equation, Jacobi condition and the transversality condition in the CFD sense. The Euler-Lagrange equation is the principal necessary condition which must be satisfied by the solution of the functional to achieve the extremum. The Jacobi condition determines the limitations to the extent of the region over which the integral may be extended. The transversality condition deals with the moving boundary conditions of the functional under consideration.

Next, we are going to prove the sufficient conditions for the solution of the functional to achieve the extremum. We now prove the following:

Theorem 3.1 A problem involving an extremal of the functional of the form (4) having boundary points \(\mu(\lambda_0) = \mu_0 \) and \(\mu(\lambda_1) = \mu_1 \) satisfies the Jacobi condition in Caputo sense. If \(\mu_0(\lambda) \) gives a relative minimum (or maximum) for \(\int_\kappa F(\lambda, \mu, C_a D_\alpha \lambda^\mu, -C_\lambda D_\beta \mu) \) then,

\[
E(\lambda, \mu, m, C_a D_\alpha \lambda^\mu, -C_\lambda D_\beta \mu) \geq 0 \text{ (or } \leq 0 \text{ for maximum),}
\]

(23)

\(\forall \lambda \in [\lambda_0, \lambda_1] \), and for all close permissible curve \(\bar{\kappa} \). Here \(m(\lambda, \mu) \) is the slope of the central field through which the extremal \(\kappa \) has passed.

Proof: Consider the problem involving an extremal of the functional of the form (4) having boundary points \(\mu(\lambda_0) = \mu_0 \) and \(\mu(\lambda_1) = \mu_1 \). Let the Jacobi conditions are satisfied. Suppose the extremal \(\kappa \), passes through the points \(A(\lambda_0, \mu_0) \) and \(B(\lambda_1, \mu_1) \) is included in the central field with slope \(m(\lambda, \mu) \). The increment \(\Delta J \), the difference of the functional \(J \) passing from the extremal \(\kappa \) to some close acceptable curve \(\bar{\kappa} \), is given by,

\[
\Delta J = \int_{\bar{\kappa}} F(\lambda, \mu, C_a D_\alpha \lambda^\mu, -C_\lambda D_\beta \mu) d\lambda - \int_\kappa F(\lambda, \mu, C_a D_\alpha \lambda^\mu, -C_\lambda D_\beta \mu) d\lambda.
\]

(24)

The symbols \(\int_{\bar{\kappa}} F(\lambda, \mu, C_a D_\alpha \lambda^\mu, -C_\lambda D_\beta \mu) d\lambda \) and \(\int_\kappa F(\lambda, \mu, C_a D_\alpha \lambda^\mu, -C_\lambda D_\beta \mu) d\lambda \), represent the values of the functional \(J = \int_{\lambda_0}^{\lambda_1} F(\lambda, \mu, C_a D_\alpha \lambda^\mu, -C_\lambda D_\beta \mu) d\lambda \) taken along the arcs of the curves \(\bar{\kappa} \) and \(\kappa \), respectively.

Now the auxiliary functional

\[
\int_{\bar{\kappa}} [F(\lambda, \mu, m) + (C_a D_\alpha \lambda^\mu - C_\lambda D_\beta \mu - m)F_m(\lambda, \mu, m)] d\lambda,
\]

(25)
In this notation;
\[\Delta \]
Hence, holds not just for \(\kappa \) (when \(\alpha = \beta = 1 \), \(c_a D_a^\alpha = \frac{d}{d\alpha} \) and \(c_\lambda D_\lambda^\alpha = \frac{d}{d\lambda} \)); since \(\frac{d\mu}{d\lambda} = m \) on extremals of the field.
The auxiliary functional (25);
\[
\int_{\tilde{\kappa}} [F(\lambda, \mu, m) + (c_a D_a^\alpha \mu - c_\lambda D_\lambda^\beta \mu - m)F_m(\lambda, \mu, m)]d\lambda \\
= \int_{\tilde{\kappa}} [F(\lambda, \mu, m) - mF_m(\lambda, \mu, m)]d\lambda + \int_{\tilde{\kappa}} [c_\lambda D_\lambda^\alpha \mu F_m(\lambda, \mu, m) - c_\lambda D_\lambda^\beta \mu F_m(\lambda, \mu, m)]d\lambda,
\]
is the integral of an exact differential.
The functional \(J[\mu(\lambda)] \) is obtained by taking the differential of the function \(\tilde{J}(\lambda, \mu) \) having the form (by the transversality condition (8))
\[
d\tilde{J} = (F + c_\lambda D_\lambda^\beta \mu F_c c_\lambda \rho_c \mu + c_\lambda D_\lambda^\alpha \mu F_c c_\lambda \rho_c \mu) d\lambda + (F_c c_\lambda \rho_c \mu - F_c c_\lambda \rho_c \mu) d\mu, \tag{26}
\]
or
\[
d\tilde{J} = (F + c_a D_a^\alpha \mu F_c c_\lambda \rho_c \mu + c_\lambda D_\lambda^\beta \mu F_c c_\lambda \rho_c \mu) d\lambda + (c_a D_a^\alpha \mu F_c c_\lambda \rho_c \mu + c_\lambda D_\lambda^\beta \mu F_c c_\lambda \rho_c \mu) d\mu. \tag{27}
\]
Thus, on the extremal \(\kappa \) the integral given by (8) coincides with the integral,
\[
\int_{\tilde{\kappa}} F(\lambda, \mu, c_a D_a^\alpha \mu, -c_\lambda D_\lambda^\beta \mu) d\lambda.
\]
Since the functional (8) is the integral of an exact differential equation, it does not depend on the path of integration. Therefore,
\[
\int_{\kappa} F(\lambda, \mu, c_a D_a^\alpha \mu, -c_\lambda D_\lambda^\beta \mu) d\lambda = \int_{\tilde{\kappa}} [F(\lambda, \mu, m) + (c_a D_a^\alpha \mu - c_\lambda D_\lambda^\beta \mu - m)F_m(\lambda, \mu, m)]d\lambda, \tag{28}
\]
holds not just for \(\kappa = \tilde{\kappa} \) but for any value of \(\tilde{\kappa} \) as well.
Hence,
\[
\Delta J = \int_{\tilde{\kappa}} F(\lambda, \mu, c_a D_a^\alpha \mu, -c_\lambda D_\lambda^\beta \mu) d\lambda - \int_{\tilde{\kappa}} [F(\lambda, \mu, m) + (c_a D_a^\alpha \mu - c_\lambda D_\lambda^\beta \mu - m)F_m(\lambda, \mu, m)]d\lambda. \tag{29}
\]
The integrand is called Weierstrass function and is denoted by \(E(\lambda, \mu, m, c_a D_a^\alpha \mu, -c_\lambda D_\lambda^\beta \mu) \);
\[
E = \int_{\tilde{\kappa}} [F(\lambda, \mu, c_a D_a^\alpha \mu, -c_\lambda D_\lambda^\beta \mu) - F(\lambda, \mu, m) - (c_a D_a^\alpha \mu - c_\lambda D_\lambda^\beta \mu - m)F_m(\lambda, \mu, m)]d\lambda. \tag{30}
\]
In this notation,
\[
\Delta J = \int_{\lambda_0}^{\lambda_1} E(\lambda, \mu, m, c_a D_a^\alpha \mu, -c_\lambda D_\lambda^\beta \mu) d\lambda. \tag{31}
\]
The functional ΔJ is minimum on the curve κ if the function $E \geq 0$, and maximum if $E \leq 0$. This condition is sufficient to determine the extremum of the given functional.

The Taylor’s series expansion [38] in Caputo sense for $F(\lambda, \mu, \alpha, \beta, \mu, \kappa)$, is given by

$$F(\lambda, \mu, \alpha, \beta, \mu, \kappa) = F(\lambda, \mu, m) + \frac{C_\alpha \mu - C_\beta \mu - m}{2!} F_m(\lambda, \mu, t),$$

(32)

where t lies between m and μ'.

Substituting the value of $F(\lambda, \mu, \alpha, \beta, \mu, \kappa)$ from Taylor’s series expansion in Weierstrass integral we get,

$$\Rightarrow E(\lambda, \mu, m, \alpha, \beta, \mu, \kappa) = \frac{(C_\alpha \mu - C_\beta \mu - m)^2}{2!} [F_m(\lambda, \mu, t) + F_m(\lambda, \mu, t)].$$

(33)

The sign of the function E depends on the sign of the functions $F_m(\lambda, \mu, t)$ and $F_m(\lambda, \mu, t)$.

Thus $E \geq 0$ implies $F_m(\lambda, \mu, t) > 0$ (or $F_m(\lambda, \mu, t) > 0$) for left (or right) CFD, where the functional achieves a weak minimum; and $E \leq 0$ implies $F_m(\lambda, \mu, t) < 0$ (or $F_m(\lambda, \mu, t) < 0$) for left (or right) CFD, where the functional achieves a weak maximum. The condition $F(\lambda, \mu, m, \alpha, \beta, \mu, \kappa) > 0$ (or $F(\lambda, \mu, m, \alpha, \beta, \mu, \kappa) > 0$) is called the Legendre condition.

The following example is given to understand some of our theoretical investigations considered in this paper.

Example 3.1 Test for an extremum for the functional

$$J[\mu](\lambda) = \int_0^1 \left(\left(C_\alpha \mu \right)^2 - \mu^2 \right) d\lambda,$$

where $\mu(0) = 0$, $\mu(1) = 1$ and $\frac{\partial \mu}{\partial \lambda} = \kappa \cos \lambda$.

The Euler-Lagrange equation for left CFD is given by equation (1);

$$-2\mu + \frac{C_\alpha \mu}{\left(\frac{C_\alpha \mu}{\mu} \right)} = 0.$$

For $\alpha = 1$,

$$\Rightarrow -2\mu - 2\mu'' = 0$$

$$\Rightarrow \mu'' + \mu = 0.$$

It’s general solution is given by

$$\mu = \kappa_1 \cos \lambda + \kappa_2 \sin \lambda.$$
Applying the initial conditions, we get, $\kappa_1 = 0$ and $\kappa_2 = 1.188396$. The Jacobi condition for left CFD is given by,

$$F_{\mu\mu}g + F_{\rho\rho}g\rho\rho' + \frac{\partial}{\partial \lambda}(F_{\mu\mu}g\rho + F_{\rho\rho}g\mu) = 0$$

$$\Rightarrow -2g + \frac{\partial}{\partial \lambda}(2g') = 0$$

$$\Rightarrow -g + \frac{\partial}{\partial \lambda}(g') = 0.$$

When $\alpha = \frac{1}{2}$,

$$\frac{\partial}{\partial \lambda}\left(\frac{\partial}{\partial \lambda}\left(\frac{\partial}{\partial \lambda}(g')\right)\right) = 0$$

$$\Rightarrow g'' + g = 0$$

$$\Rightarrow g = \kappa_1 \sin \lambda,$$

where κ_1 is a constant. The function vanishes at the points $\lambda = r\pi$, where r is an integer. On the interval
0 ≤ λ ≤ 1, the function g vanishes only at the point λ = 0 and the Jacobi equation is satisfied.

By the Legendre’s condition,

\[
\frac{\partial^2 F}{\partial (\frac{C}{0} \mathcal{D}_\lambda^\alpha \mu)^2} = 2 > 0,
\]

for any value of \(\frac{C}{0} \mathcal{D}_\lambda^\alpha \mu \).

It follows that on the straight line \(\mu = 0 \) a strong minimum is achieved for \(\lambda < \pi \).

4 Conclusion

The sufficient conditions for fractional variational problems of the type

\[
J[\mu(\lambda)] = \int_{\lambda_0}^{\lambda_1} F(\lambda, \mu(\lambda, \kappa), \frac{C}{\alpha} \mathcal{D}_\lambda^\alpha \mu(\lambda, \kappa), -\frac{C}{\beta} \mathcal{D}_\kappa^\beta \mu(\lambda, \kappa)) d\lambda,
\]

are formulated with the help of Cauputo fractional derivatives. The sufficient conditions for the proposed problems are established using the Weierstrass integral and the Legendre condition. It is observed that the present work generalizes many classical investigations [13]. Again, with the help of discussed counterexample, our fresh findings have been justified. Many concepts of classical calculus of variations were found to be the extension of fractional calculus of variations with minor modifications. Thus, ample of opportunities are open for further investigation in this area.

Acknowledgements The authors wish to thank the referees for their valuable comments and suggestions that helped to improve the presentation of the paper.

References

