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Abstract. In this paper, we investigate necessary and su¢ cient optimality conditions for mathemati-

cal programs with equilibrium constraints. For this goal, we introduce an appropriate type of MPEC

regularity condition and a stationary concept given in terms of directional upper convexi�cators and di-

rectional upper semi-regular convexi�cators. The appearing functions are not necessarily smooth/locally

Lipschitz/convex/continuous, and the continuity directions�sets are not assumed to be compact or convex.

Finally, notions of directional pseudoconvexity and directional quasiconvexity are used to establish su¢ cient

optimality conditions for MPECs.
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1 Introduction

In this paper, we investigate the following mathematical program with equilibrium constraints:

(MPEC) :

8>>><>>>:
Minimize f (x)

s.t.

8<: g (x) � 0; h (x) = 0;

G (x) � 0; H (x) � 0; G (x)>H (x) = 0;

where f : Rn ! R; g : Rn ! Rm; h : Rn ! Rp; G : Rn ! Rl and H : Rn ! Rl are lower semicontinuous

functions; n; m; p; l 2 N:

Such a problem has been discussed by several authors at various levels of generality [1, 7, 8, 9, 10, 20, 28].

In [8], Flegel and Kanzow presented a straightforward and elementary approach to �rst-order optimality

1LAMA, FSDM, Sidi Mohamed Ben Abdellah University, Fes, Morocco. Emails: abderrazzak.gadhinazih@usmba.ac.ma ,

ohda.fsdm2021@gmail.com

1This provisional PDF is the accepted version. The article should be cited as: RAIRO: RO, doi: 10.1051/ro/2022203

https://doi.org/10.1051/ro/2022203


conditions for the MPECs and showed that Fritz-John approach leads to a new optimality condition under

a Mangasarian-Fromovitz-type assumption. In [9], the authors introduced a new Abadie-type constraint

quali�cation for the MPECs and showed it to be weaker than any of the existing ones. In [1], Ardali et al.

de�ned nonsmooth stationary conditions based on the convexi�cators and showed that generalized strong

stationary is the �rst-order optimality condition under a generalized standard Abadie constraint quali�cation.

The notion of convexi�cator can be seen as a generalization of the idea of subdi¤erential. For a locally

Lipschitz function, most known subdi¤erentials are convexi�cators and these subdi¤erentials may contain

the convex hull of a convexi�cator [16]. Noting that convexi�cators admitted by discontinuous functions

may be unbounded and because the boundedness of convexi�cators is of crucial importance in many well-

known results, Dempe and Pilecka [3] developed the concept of directional convexi�cators. They were

able to create a convexi�cator for a given lower semicontinuous function using directional convexi�cators,

presuming convexity and closedness of the set of continuity directions (see [3, Corollary 2 and Proposition

1]). Notice that directional convexi�cators are closed sets which can be bounded and/or strictly included

in convexi�cators (see Example 10). Using this new tool, Gadhi [11] established mean value conditions in

terms of directional convexi�cators and formulate variational inequalities of Stampacchia and Minty type

in terms of directional convexi�cators; he used these variational inequalities as a tool to �nd out necessary

and su¢ cient conditions for a point to be an optimal solution of an inherent optimization problem. In [14],

Gadhi et al. gave optimality conditions for a set valued optimization problem using support functions of set

valued mappings.

Motivated by the above work of Dempe and Pilecka [3], we investigate necessary and su¢ cient optimality

conditions for (MPEC) where data functions are not necessarily smooth/locally Lipschitz/convex/continuous.

Because the directional upper (semi-regular) convexi�cator of such a data function can be bounded while

the upper (semi-regular) convexi�cator is not, our results may be applicable in situations where other results

imposing local Lipschitzity or continuity are not (see Example 20). To achieve our goal, we introduce an

alternative stationarity concept and a generalized Abadie-type regularity condition using directional upper

(semi-regular) convexi�cator; and, assuming the feasible set is locally star-shaped, we show that alternative

stationarity is in fact a �rst-order necessary optimality condition for MPECs. Unlike Dempe and Pilecka [3]

and Gadhi et al. [14], we do not assume that the sets of all continuity directions are convex or compact. Under

some directional generalized convexities, we establish su¢ cient optimality conditions for (MPEC) : Notice

that directional upper semi-regular convexi�cators are not necessarily upper semi-regular convexi�cators;

moreover, they may not even be directional upper regular convexi�cators (see Example 11).

The outline of the paper is as follows : Section 2 describes the preliminary and basic de�nitions; Sections 3

and 4 establish the main results; and Section 5 provides a conclusion.
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2 Preliminaries

Throughout this section, let Rn be the usual n-dimensional Euclidean space. Given a nonempty subset S of

Rn; the closure, convex hull, and convex cone (including the origin) generated by S are denoted respectively

by cl S; conv S and pos S: The negative polar cone of S is de�ned by

S� := fv 2 Rn j hx; vi � 0; 8x 2 Sg :

Let x 2 cl S: The cone of feasible directions of S at x; the cone of weak feasible directions of S at x; and

the contingent cone of S at x are given by

F(S; x) = fv 2 Rn : 9� > 0; 8� 2 (0; �) such that x+ �v 2 Sg;

W (S; x) = fv 2 Rn : 9tn ! 0+ such that x+ tnv 2 S; 8ng

and

T (S; x) = fv 2 Rn : 9tn ! 0+; 9vn ! v such that x+ tnvn 2 S; 8ng:

Notice that, for all x 2 cl S; we have

F(S; x) �W (S; x) � T (S; x): (1)

The regular (Fréchet) normal cone NS (x) of S at x 2 S; following [27, De�nition 6.3 ], is de�ned by

NS (x) =

(
v 2 Rn : lim sup

y 7�!x; y2S; y 6=x

hv; y � xi
ky � xk � 0

)
:

Observe that NS (x) = T (S; x)
�
; see [27, Theorem 6.28 (a)]. On the one hand, F(S; x) is not necessarily

convex or closed. On the other hand, T (S; x) is closed but not necessarily convex. When S is convex, T (S; x)

is also convex and F(S; x) merges with W (S; x); and we have F(S; x) =W (S; x); T (S; x) = cl F(S; x) and

NS (x) = fx� 2 Rn : hx�; y � xi � 0; 8y 2 Sg :

De�nition 1 [6] A nonempty set S � Rn is said to be locally star-shaped at x 2 S; if there exists some

scalar a (x; x) 2 (0; 1] ; corresponding to x and each x 2 S; such that

x+ � (x� x) 2 S; for all � 2 (0; a (x; x)) :

If a (x; x) = 1 for each x 2 S; then S is said to be star-shaped at x:

Open sets and convex sets, for instance, are locally star-shaped at each of their elements, whereas cones are

locally star-shaped at their origin. If S is closed and is locally star-shaped at each x 2 S; then S is convex

[21]. However, there exist locally star-shaped sets (at some x) that are neither star-shaped nor locally convex

(at x). For example,

S = R2n
�
(x; y) 2 R2 : x2 = y and x 6= 0

	
is locally star-shaped at x = (0; 0) and is neither star-shaped nor locally convex at x [17].

The following result is due to Kabgani and Soleimani-damaneh; for more details see [17, Theorem 3.1].
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Proposition 2 [17] Assume that 
 is locally star-shaped at x 2 
: Then

T (
; x) = cl F(
; x):

Remark 3 In case 
 is locally star-shaped at x 2 
; according to Proposition 2 together with inclusions

(1) ; we have

T (
; x) = cl W (
; x):

Let f : Rn ! R [ f+1g be a given function and let x 2 Rn such that f(x) is �nite. The expressions

f�(x; d) = lim inf
t7�!0+

f(x+ td)� f(x)
t

and f+(x; d) = lim sup
t7�!0+

f(x+ td)� f(x)
t

signify, respectively, the lower and upper Dini directional derivatives of f at x in the direction d: When

f : Rn ! R is locally Lipschitz, both of the above derivatives exist �nitely.

De�nition 4 [5] The function f : Rn ! R[f+1g is said to have an upper convexifactor ; 6= @uf(x) � Rn

at x if @uf(x) is closed and, for each d 2 Rn;

f�(x; d) � sup
x�2@uf(x)

hx�; di:

The function f : Rn ! R [ f+1g is said to have an upper semi-regular convexifactor ; 6= @usf(x) � Rn at

x if @usf(x) is closed and, for each d 2 Rn;

f+(x; d) � sup
x�2@usf(x)

hx�; di:

Remark 5 The class of functions that admit an upper (semi-regular) convexifactor is extensive. Observe

that Gâteaux di¤erentiable functions and regular functions in the sense of Clarke [2] are members of this

class. Clarke subdi¤erentials of locally Lipschitz functions and tangential subdi¤erentials of tangentially

convex functions [23] are both upper (semi-regular) convexifactors.

Remark 6 It is worth noting that the upper convexi�cator for a given function is not always unique. In

certain instances, it is possible to �nd an upper convexi�cator that is smaller than the most well-known sub-

di¤erentials, such as those of Clarke [2], Michel-Penot [25], and Mordukhovich [24]. Demyanov and Jeyaku-

mar�s concept of minimal upper convexi�cator [4] appears promising for this purpose. In [16], Jeyakumar

and Luc presented conditions for unique minimal upper convexi�cators in terms of the set of extreme points

[16].

We shall need the following de�nition.

De�nition 7 [3] Consider f : Rn ! R [ f+1g: A vector d 2 Rn is a continuity direction of f at the point

x 2 Rn if for all sequences ftkg � R with ftkg & 0 we have

lim
k 7�!1

f (x+ tkd) = f (x) :

The set of all continuity directions of f at x is denoted by D or Df (x) :
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Note that the Fréchet normal cone to D at d = 0n is given by ND (0n) = T (D; 0n)� :

Remark 8 The set D is a non-empty cone (it always contains 0n) which is not necessarily closed or convex.

When D is convex, T (D; 0n) is also convex, and thus ND (0n) = D�:

Dempe and Pilecka introduced directional convexi�cators using the set of continuity directions. For more

details, see [3, De�nition 3].

De�nition 9 [3] Let f : Rn ! R [ f+1g be a given function.

� f admits a directional upper convexi�cator ; 6= @uDf (x) at x 2 Rn if the set @uDf (x) is closed and for

each d 2 D we have :

f� (x; d) � sup
x�2@uDf(x)

hx�; di:

� f admits a directional upper semi-regular convexi�cator ; 6= @usD f (x) at x 2 Rn if the set @usD f (x) is

closed and for each d 2 D we have :

f+ (x; d) � sup
x�2@usD f(x)

hx�; di: (2)

In the case where f is continuous at x 2 Rn; we have D = Df (x) = Rn and the directional upper convex-

i�cator (resp. directional upper semi-regular convexi�cator) coincides with the upper convexi�cator (resp.

upper semi-regular convexi�cator). If inequality (2) holds as equality for every d 2 D; then @usD f (x) is known

as a directional upper regular convexi�cator of f at x; for more details see [3, De�nition 3]. The following

example shows that a directional upper convexi�cator is not necessarily an upper convexi�cator.

Example 10 Consider the function

8x = (x1; x2) 2 R2 : f (x) =

8>>><>>>:
2x2 � 1 if x1 = 0; x2 > 0;

�3x1 � 1 if x1 < 0; x2 = 0;

jx1j � jx2j � 2 elsewhere

at the point x = (0; 0) :

� The set of all continuity directions

D = R2 n (f0g � (0;+1) [ (�1; 0)� f0g)

is neither closed nor convex. The normal cone to the set D equals ND (0; 0) = f(0; 0)g :

� The function f admits @uDf (x) = f(1;�1) ; (�1; 1)g as a directional upper convexi�cator at x: Notice

that this directional upper convexi�cator is not an upper convexi�cator of f at x: Indeed, for d = (0; 1) ;

we have

+1 = f�
�
x; d
�
> 1 = sup

x�2@uDf(x)
hx�;di:

Observe that both @uDf (x) and @
u
Df (x) +ND (0; 0) are compact sets.
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Example 11 shows that a directional upper semi-regular convexi�cator is not necessarily an upper semi-

regular convexi�cator; further, it may not even be a directional upper regular convexi�cator.

Example 11 Consider the function f : R2!R de�ned by

f (x1; x2) =

8<: 0 if x1 � 0;

x22 + 1 if x1 < 0:

� The set of all continuity directions of f at x = (0; 0) is D = R+ � R:

� @usD f (x) = f(1; 0)g is a directional upper semi-regular convexi�cator at x: Indeed, @usD f (x) is closed

and for each d = (d1; d2) 2 D; we have

f+ (x; d) = 0 � d1 = sup
x�2@usD f(x)

hx�; di:

� @usD f (x) is not an upper semi-regular convexi�cator of f at x: Indeed, for ed = (�1; 0) 2 R2; we
have

f+
�
x; ed� = +1 > �1 = sup

x�2@usD f(x)

hx�; edi:
� @usD f (x) is not a directional upper regular convexi�cator of f at x: Indeed, for d = (1; 0) 2 D; we

have

f+
�
x; d
�
= 0 6= 1 = sup

x�2@usD f(x)

hx�;di:

The following lemma is of interest for our investigations.

Lemma 12 [13] Let B a nonempty, convex and compact set and A be a convex cone. If

sup
v2B

hv; di � 0; for all d 2 A�

then 0 2 B + clA:

3 Necessary optimality conditions

Let 
 be the feasible set of (MPEC) de�ned by


 :=
n
x 2 Rn : g (x) � 0; h (x) = 0; G (x) � 0; H (x) � 0; G (x)tH (x) = 0

o
:

Let x 2 
 and let

I := f1; :::; mg ; J := f1; :::; pg ; L := f1; :::; lg and I (x) := fi 2 I : gi (x) = 0g :

Consider the sets

A := fi 2 L : Gi (x) = 0; Hi (x) > 0g ; B := fi 2 L : Gi (x) = 0; Hi (x) = 0g ;
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and

D := fi 2 L : Gi (x) > 0; Hi (x) = 0g :

The set B is known as the degenerate set. If it is empty, the vector x is said to ful�ll strict complementarity

[28] and we have L = A [D: Throughout this section, we assume that B is a nonempty set. A partition of

B is of the form (B1; B2) where B = B1 [B2 and B1 \B2 = ;: We denote the set of all partitions of B by

P (B) : Now, we recall a nonlinear program MPEC (B1; B2) as given by Ye [28], with respect to a partition

(B1; B2) of B; given by

MPEC (B1; B2) :

8>>>>>><>>>>>>:

Minimize f (x)

s.t.

8>>><>>>:
g (x) � 0; h (x) = 0;

Gi (x) � 0; i 2 B1; Hj (x) � 0; j 2 B2;

Gi (x) = 0; i 2 A [B2; Hj (x) = 0; j 2 D [B1:

Notice that x 2 
 is a local optimal solution of MPEC if and only if it is a local optimal solution of

MPEC (B1; B2) for all (B1; B2) 2 P (B) :

For the rest of the paper, we will make use of the following assumptions.

� Assumption 1

The function f admits a compact directional upper semi-regular convexi�cator @usD f (x) at x 2 
:

� Assumption 2

The functions gi; i 2 I (x) ; hj ; j 2 J; Gs; s 2 A [ B2; and H� ; � 2 D [ B1; admit directional upper

convexi�cators @uDgi (x) ; i 2 I (x) ; @uDhj (x) ; j 2 J; @uDGs (x) ; s 2 A[B2; and @uDH� (x) ; � 2 D[B1:

� Assumption 3

The functions (�hj) ; j 2 J; (�Gs) ; s 2 A [ B; and (�H� ) ; � 2 D [ B; admit directional upper

convexi�cators @uD (�hj) (x) ; j 2 J; @uD (�Gs) (x) ; s 2 A [B; and @uD (�H� ) (x) ; � 2 D [B:

Here, D is the set of all continuity directions of the functions f; gi; i 2 I (x) ; hj ; (�hj) ; j 2

J; Gs; (�Gs) ; s 2 A [B; and H� ; (�H� ) ; � 2 D [B:

Now, assuming that all of the constraint functions have directional upper convexi�cators at x; we introduce

the following notations:

TD(
; x) := T (
; x) \ D; WD(
; x) :=W (
; x) \ D and � (x) := � (x) [ND (0n) ;
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where

� (x) : =

0@ [
i2I(x)

conv @uDgi (x)

1A [ [
i2J
conv @uDhi (x)

!
[
 [
i2J
conv @uD (�hi) (x)

!

[
 [
i2A[B2

(conv @uDGi (x) [ conv @uD (�Gi) (x))
!
[
 [
i2D[B1

(conv @uDHi (x) [ conv @uD (�Hi) (x))
!

[
 [
i2B1

conv @uD (�Gi) (x)
!
[
 [
i2B2

conv @uD (�Hi) (x)
!
:

Using the aforementioned notations and the concept of a directional upper convexi�cator, we can now state

our Abadie regularity condition.

De�nition 13 Suppose that Assumption 2 and Assumption 3 hold for some (B1; B2) 2 P (B) : We say that

the Abadie regularity condition @D �ACQ (B1; B2) holds at x 2 
 if

f0ng 6= �(x)� � TD (
; x) :

Remark 14 The preceding regularity condition extends a number ones addressed in the literature. Indeed, if

all the constraint functions are continuous, D = Rn and @D�ACQ (B1; B2) reduces to the generalized MPEC

Abadie constraint quali�cation given by Ardali et al. in [1, De�nition 3.2]. If in addition h � 0; G � 0; and

H � 0; it merges with the Abadie constraint quali�cation (ACQ) presented by Li and Zhang in [22].

In the following de�nition, we introduce a generalized alternatively stationarity concept in terms of direc-

tional upper convexifactors. For continuous functions, De�nition 15 merges with [1, De�nition 4.3] and [12,

De�nition 4.1] since in this case ND (0n) = f0ng and D = Rn:

De�nition 15 A feasible point x of MPEC is said to be a generalized alternatively stationary point if there

exists a vector
�
�g; �h; �h; �G; �H ; �G; �H

�
2 Rm � R2p � R2l � R2l such that

0 2

266666666664

conv @usD f (x) +
mP
i=1

�gi conv @
u
Dgi (x)

+
P
i2J
�hi conv @

u
Dhi (x) +

P
i2J
�hi conv @

u
D (�hi) (x)

+
lP
i=1

�Gi conv @
u
D (�Gi) (x) +

lP
i=1

�Hi conv @uD (�Hi) (x)

+
lP
i=1

�Gi conv @
u
DGi (x) +

lP
i=1

�Hi conv @uDHi (x) +ND (0n) :

377777777775
(3)

with

�gi gi (x) = 0; 8i 2 I (4)
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and 8>>>>>>>>><>>>>>>>>>:

�Gi = 0 or �
H
i = 0; 8i 2 B;

�Gi = 0; �
G
i = 0; 8i 2 D;

�Hi = 0; �
H
i = 0; 8i 2 A;

�Gi ; �
H
i ; �

G
i ; �

H
i � 0; 8i 2 L;

�gi � 0; 8i 2 I; and �
h
i � 0; �hi � 0; 8i 2 J:

(5)

Remark 16 Observe that if all functions are di¤erentiable and the upper convexi�cator is replaced by the

upper regular convexifactor in the preceding stationary notion, then this concept reduces to the A-stationary

condition given by Flegel and Kanzow in [10] and by Flegel in [7].

Proposition 17 Let x be a local optimal solution of MPEC where Assumption 1 holds. Then,

sup
�2@usD f(x)

h�; vi � 0; 8v 2 cl WD(
; x): (6)

Proof. Let v 2 cl WD(
; x) be arbitrary. Then, there exist vs 2 WD(
; x) such that vs ! v as s ! 1:

Consequently, vs 2 W (
; x) \ D and thus we can �nd a sequence tqs ! 0+ such that x+ tqsvs 2 
; 8q 2 N:

For q large enough, since x is a local optimal solution of f over 
; we have f (x+ tqsvs) � f (x) : Then,

f (x+ tqsvs)� f (x)
tqs

� 0; for su¢ ciently large q:

Thus,

f+d (x; vs) = lim sup
q

f (x+ tqsvs)� f (x)
tqs

� 0: (7)

Using the upper semi-regularity of @usD f (x) at x; since vs 2 D; we get

sup
�2@usD f(x)

h�; vsi � 0:

Since @usD f (x) is compact and taking the limit as s!1; we obtain

sup
�2@usD f(x)

h�; vi � 0:

Because v is arbitrarily chosen in cl WD(
; x); we can deduce the desired inquality (6) :

Theorem 18 Let x be a local optimal solution of MPEC: Suppose that D 6= f0ng ; that 
 is locally star-

shaped at x and that Assumption 1 holds. If, in addition, Assumption 2 and Assumption 3 are true for a

partition (B1; B2) of B such that @D�ACQ (B1; B2) holds at x and pos � (x) is closed, then x is a generalized

alternatively stationary point.

Proof. Let x be a local optimal solution of MPEC: By Proposition 17, we have

sup
�2@usD f(x)

h�; vi � 0; 8v 2 cl WD(
; x):
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Consequently,

sup
�2conv@usD f(x)

h�; vi � 0; for all v 2 cl WD(
; x):

Since 
 is locally star-shaped at x; we have TD(
; x) = cl WD(
; x); and thus

sup
�2conv@usD f(x)

h�; vi � 0; for all v 2 TD(
; x):

� Since @D �ACQ (B1; B2) holds at x; we have

sup
�2conv@usD f(x)

h�; vi � 0; for all v 2 � (x)� :

Since � (x) � pos � (x) ; we get

sup
�2conv@usD f(x)

h�; vi � 0; for all v 2 (pos � (x))� :

� Since @usD f (x) is compact, conv @usD f (x) is also a compact set (see [15, Theorem 1.4.3]). By Lemma

12, we get

0 2 conv @usD f (x) + cl pos � (x) :

� Since pos � (x) is closed, we obtain

0 2 conv @usD f (x) + pos � (x) + pos ND (0n) :

Since ND (0n) is a convex cone, we get pos ND (0n) = ND (0n) : Then, there exist scalars �
g
i �

0; i 2 I (x) ; �hi � 0; �
h
i � 0; i 2 J; �Gi � 0; i 2 A[B2; �

G
i � 0; i 2 A[B; �Hi � 0; i 2 D[B1;

and �Hi � 0; i 2 D [B; such that

0 2

26666666664

conv @usD f (x) +
P

i2I(x)
�gi conv @

u
Dgi (x)

+
P
i2J
�hi conv @

u
Dhi (x) +

P
i2J
�hi conv @

u
D (�hi) (x)

+
P

i2A[B2

�Gi conv @
u
DGi (x) +

P
i2A[B

�Gi conv @
u
D (�Gi) (x)

+
P

i2D[B1

�Hi conv @uDHi (x) +
P

i2D[B
�Hi conv @uD (�Hi) (x) +ND (0n) :

37777777775
:

� Setting 8>>>>>><>>>>>>:

�Gi = 0; 8i 2 D [B1
�Hi = 0; 8i 2 A [B2
�Gi = 0; 8i 2 D

�Hi = 0; 8i 2 A

we obtain (3) ; (4) and (5) : The proof is then �nished.
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Remark 19 The additional condition mentioned above, the closedness of pos � (x) ; has been previously used

by several authors in the continuous case (see [1], [18] and [19]). Observe that if conv � (x) is a polyhedral

set containing the origin, then pos � (x) is a polyhedral convex cone [26, Corollary 19.7.1] and, thus, closed.

Notice that pos � (x) = pos conv � (x) :

The following example provides a case where Theorem 18 is applicable while both [20, Theorem 4.4] and

[1, Theorem 4.5] are not. Observe that in Example 20, the objective function f is not continuous; thus not

locally Lipschitz and consequently [20, Theorem 4.4] and [1, Theorem 4.5] cannot be used with this last

property imposed.

Example 20 Consider the following nonsmooth optimization problem:

(MPEC) :

8>>><>>>:
Minimize f (x1; x2)

s.t.

8<: g (x1; x2) � 0; h (x1; x2) = 0;

G (x1; x2) � 0; H (x1; x2) � 0; G (x1; x2)>H (x1; x2) = 0;

where g (x1; x2) = jx2j ; h (x1; x2) = 0; H (x1; x2) = x2

G (x1; x2) =

8<: x1 if x2 � 0

x2 + 1 elsewhere.

and

f (x1; x2) =

8>>><>>>:
2x2 � 1 if x1 = 0; x2 > 0;

�3x1 � 1 if x1 < 0; x2 = 0;

jx1j � jx2j � 2 elsewhere.

� On the one hand, since

Df (x) = R2 n (f0g � (0;+1) [ (�1; 0)� f0g) ; Dg (x; y) = Dh (x; y) = DH (x; y) = R� R

and

DG (x; y) = R� R+

we have

D =
�
R� R+

�
n (f0g � (0;+1) [ (�1; 0)� f0g) :

Consequently,

ND (02) = f0g � R�:

� On the other hand, x = (0; 0) is an optimal solution of (MPEC) : Moreover, A = D = ;; B =

f1g ; I = f1g ; J = f1g ; 
 = R+ � f0g ; W (
; x) = R+ � f0g and WD (
; x) = R+ � f0g :

� @D �ACQ (B1; B2) holds at x:
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� @usD f (x) = f(1;�1) ; (�1; 1)g is a compact directional upper semi-regular convexi�cator of f

at x:

� @uDg (x) = f(0; 1)g ; @uDh (x) = f(0; 0)g ; @uDG (x) = f(1; 0)g and @uDH (x) = f(0; 1)g are direc-

tional upper convexi�cators of g; h; G and H at x:

� For B1 = f1g and B2 = ;; we have

� (x) = f(0; 1) ; (0; 1) ; (0;�1) ; (�1; 0)g :

Consequently,

� (x) = f(0; 1) ; (0;�1) ; (�1; 0)g [
�
f0g � R�

�
:

Then,

� (x)
�
= R+ � f0g :

Since TD (
; x) = R+ � f0g ; we deduce that f(0; 0)g 6= �(x)� � TD (
; x) :

� pos � (x) is closed. Indeed,

pos � (x) = R� � R:

� By taking �g = 2; �G = 2
3 ; �

h = �h = �H = 0; �H = 1
3 and �

G = 1; since
�
0;� 4

3

�
2 ND (02) and�

1
3 ;�

1
3

�
2 conv @usD f (x) ; we get

0 2

26666664
conv @usD f (x) + �

g conv @uDg (x)

+�h conv @uDh (x) + �
h conv @uD (�h) (x)

+�G conv @uD (�G) (x) + �
H conv @uD (�H) (x)

+�G conv @uDG (x) + �
H conv @uDH (x) +ND (02) :

37777775
Remark 21 It is clear that the smaller the directional upper (semi-regular) convexi�cator is, the more

useful the optimality conditions using this directional upper (semi-regular) convexi�cator are. Notice that

our �ndings are established independent of the directional upper (semi-regular) convexi�cators utilized. As a

consequence, the results in this work are valid for each directional upper (semi-regular) convexi�cator.

4 Su¢ cient optimality conditions

In order to get su¢ cient optimality conditions, we need the following notions.

De�nition 22 Let f : Rn �! R and x 2 Rn: We assume that f admits a directional upper (semi-regular)

convexi�cator @uDf (x) � Rn at x:

� f is said to be @uD-convex at x i¤ for all x 2 Rn :

h�; x� xi � f (x)� f (x) ; for all � 2 conv @uDf (x) +ND (0n) :

12



� f is said to be @uD-quasiconvex at x i¤ for all x 2 Rn :

f (x)� f (x) � 0) h�; x� xi � 0; for all � 2 conv @uDf (x) +ND (0n) :

� f is said to be @uD-pseudoconvex at x i¤ for all x 2 Rn :

f (x)� f (x) < 0) h�; x� xi < 0; for all � 2 conv @uDf (x) +ND (0n) :

� f is said to be @uD-quasilinear at x i¤ f and (�f) are both @uD-quasiconvex at x:

Let x 2 
 be a feasible point satisfying the generalized alternatively stationary condition and let

S := B+G [B
+
H [B

+ [A+ [D+

where

B+G :=
�
i 2 B : �Gi = 0 and �Hi > 0

	
; B+H :=

�
i 2 B : �Gi > 0 and �Hi = 0

	
;

B+ :=
�
i 2 B : �Gi > 0 and �Hi > 0

	
; A+ :=

�
i 2 A : �Gi > 0

	
and D+ :=

�
i 2 D : �Hi > 0

	
:

Here, �G and �H are the multipliers associated to the point x which satis�es the generalized alternatively

stationary condition.

Theorem 23 Let x 2 
 be a feasible point for (MPEC) where the generalized alternatively stationary

condition holds. Assume S is empty, f is @uD�pseudoconvex at x; gi; i 2 I (x) ; �Gi; i 2 A [B; �Hi; i 2

D [B; are @uD-quasiconvex at x and hi; i 2 J; is @uD-quasilinear at x: Then x is a global optimal solution of

(MPEC) :

Proof. Suppose that x is not a global optimal solution of (MPEC) : Then, there exists x0 2 
 such that

f (x) > f (x0) : Since f is @uD-pseudoconvex at x; we get

h��; x0 � xi < 0; for all �� 2 conv @uDf (x) +ND (0n) : (8)

Using (3) ; we can �nd � 2 conv @usD f (x) ; �i 2 conv @uDgi (x) ; &i 2 conv @uDhi (x) ; �i 2 conv @uD (�hi) (x) ; 
�i 2

conv @uD (�Gi) (x) ; 
��i 2 conv @uDGi (x) ; �
�
i 2 conv @uD (�Hi) (x) ; �

��
i 2 conv @uDHi (x) and �� 2 ND (0n)

such that

0 = � +
mX
i=1

�gi �i +
X
i2J
�hi &i +

X
i2J
�hi �i +

lX
i=1

�Gi 

�
i +

lX
i=1

�Hi �
�
i +

lX
i=1

�Gi 

��
i +

lX
i=1

�Hi ���i + ��:

Then,

0 = h�; x0 � xi+
mX
i=1

�gi h�i; x0 � xi+
X
i2J
�hi h&i; x0 � xi

+
X
i2J
�hi h�i; x0 � xi+

lX
i=1

�Gi h
�i ; x0 � xi+
lX
i=1

�Hi h��i ; x0 � xi

+
lX
i=1

�Gi h
��i ; x0 � xi+
lX
i=1

�Hi h���i ; x0 � xi+ h��; x0 � xi :
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� Observing that 8>>>>>><>>>>>>:

gi (x0) � g (x) ; i 2 I (x) ;

hi (x0) = hi (x) = 0; i 2 J;

(�Gi) (x0) � (�Gi) (x) ; i 2 A [B;

(�Hi) (x0) � (�Hi) (x) ; i 2 D [B;
we get 8>>>>>><>>>>>>:

gi (x0)� g (x) � 0; i 2 I (x) ;

hi (x0)� hi (x) = 0; i 2 J;

(�Gi) (x0)� (�Gi) (x) � 0; i 2 A [B;

(�Hi) (x0)� (�Hi) (x) � 0; i 2 D [B;

�By the @uD-quasiconvexity of gi; i 2 I (x) ; �Gi; i 2 A[B; �Hi; i 2 D[B; at x; as 0 2 ND (0n) ;

we obtain 8>>><>>>:
h�i; x0 � xi � 0; for all i 2 I (x) ;

h
�i ; x0 � xi � 0; i 2 A [B;

h��i ; x0 � xi � 0; i 2 D [B:

Then, * X
i2I(x)

�i; x0 � x
+
� 0;

* X
i2A[B

�Gi 

�
i ; x0 � x

+
� 0 and

* X
i2D[B

�Hi �
�
i ; x0 � x

+
� 0:

� By (5) ; we have �Gi = 0 for all i 2 D; and �Hi = 0; for all i 2 A: Consequently,*
lX
i=1

�Gi 

�
i ; x0 � x

+
� 0 (9)

and *
lX
i=1

�Hi �
�
i ; x0 � x

+
� 0: (10)

� By (4) ; we have �gi = 0 for all i =2 I (x) : Consequently,*
mX

i=1

�gi �i; x0 � x
+
� 0: (11)

�By the @uD-quasilinearity of hi; i 2 J; at x; as 0 2 ND (0n) ; we get*X
i2J
�gi &i; x0 � x

+
� 0; for all i 2 J (12)

and *X
i2J
�i; x0 � x

+
� 0; for all i 2 J: (13)

�From the emptiness of S; we deduce that �Gi = 0 and �Hi = 0; for all i 2 L: Then,
lX
i=1

�Gi h
��i ; x0 � xi+
lX
i=1

�Hi h���i ; x0 � xi = 0: (14)

14



� Summing (9)� (14) ; we obtain

0 �
�

mP
i=1

�gi �i; x0 � x
�
+

�P
i2J
�hi &i; x0 � x

�
+

�P
i2J
�hi &i�i; x0 � x

�
+

�
lP
i=1

�Gi 

�
i ; x0 � x

�
+

�
lP
i=1

�Hi �
�
i ; x0 � x

�
+

lP
i=1

�Gi h
��i ; x0 � xi+
lP
i=1

�Hi h���i ; x0 � xi ;

which implies

0 � h� + � ; x0 � xi : (15)

Since � 2 conv @usD f (x) and �� 2 ND (0n) ; Inequality (15) contradicts (8) :

5 Conclusion

This work was about a nonsmooth mathematical program with equilibrium constraints (MPEC) in which

the functions are not always locally Lipschitz or continuous. Using directional upper convexi�cators and

directional upper semi-regular convexi�cators, we introduced an alternative stationarity concept. Under an

appropriate Abadie regularity condition, given in terms of directional upper convexi�cators, we established

that alternative stationarity is a �rst-order necessary optimality condition. Unlike Dempe and Pilecka

(Journal of Global Optimization 61: 769-788, 2015), we reach our goal without resorting to convexi�cators;

the reason is that we do not assume that the sets of all continuity directions are convex or closed. The

obtained results are given in terms of directional upper convexi�cators and directional upper semi-regular

convexi�cators. In order to get su¢ cient optimality conditions, we made use of @uD-pseudoconvexity and

@uD-quasiconvexity on the functions.
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