Issue |
RAIRO-Oper. Res.
Volume 35, Number 2, April June 2001
ROADEF'99
|
|
---|---|---|
Page(s) | 143 - 163 | |
DOI | https://doi.org/10.1051/ro:2001109 | |
Published online | 15 August 2002 |
- G. Adamopoulos and C. Pappis, Scheduling jobs with different job-dependent earliness and tardiness penalties using the SLK method. Eur. J. Oper. Res. 88 (1996) 336-344. [CrossRef] [Google Scholar]
- M. Ahmed and P. Sundararaghavan, Minimizing the weighted sum of late and early completion penalties in a single machine. IEEE Trans. 22 (1990) 288-290. [CrossRef] [Google Scholar]
- D. Alcaide, J. Riera and J. Sicilia, An approach to solve bicriterion flow-shop scheduling problems, in Proc. of the 6th International Workshop on Project Management and Scheduling (PMS'98). Istanbul, Turkey (1998) 151-154. [Google Scholar]
- B. Alidaee and A. Ahmadian, Two parallel machine sequencing problems involving controllable job processing times. Eur. J. Oper. Res. 70 (1993) 335-341. [CrossRef] [Google Scholar]
- M. Azizoglu, S.K. Kondakci and M. Koksalan, Bicriteria scheduling: Minimizing flowtime and maximum earliness on a single machine, edited by J. Climaco, Multicriteria Analysis. Springer-Verlag (1997) 279-288. [Google Scholar]
- M. Azizoglu and S. Webster, Scheduling job families about an unrestricted common due date on a single machine. Internat. J. Production Res. 35 (1997) 1321-1330. [CrossRef] [Google Scholar]
- U. Bagchi, Y.-L. Chang and R. Sullivan, Minimizing absolute and squared deviations of completion times with different earliness and tardiness penalties and a common due date. Naval Res. Logist. 34 (1987) 739-751. [CrossRef] [MathSciNet] [Google Scholar]
- U. Bagchi, R. Sullivan and Y.-L. Chang, Minimizing mean absolute deviation of completion times about a common due date. Naval Res. Logist. Quarterly 33 (1986) 227-240. [CrossRef] [Google Scholar]
- U. Bagchi, R. Sullivan and Y.-L. Chang, Minimizing mean squared deviation of completion times about a common due date. Management Sci. 33 (1987) 894-906. [CrossRef] [MathSciNet] [Google Scholar]
- S. Bansal, Single machine scheduling to minimize weighted sum of completion times with secondary criterion - a branch and bound approach. Eur. J. Oper. Res. 5 (1980) 177-181. [CrossRef] [Google Scholar]
- J. Barnes and L. Vanston, Scheduling jobs with linear delay penalties and sequence dependent setup costs. Oper. Res. 29 (1981) 146-160. [CrossRef] [MathSciNet] [Google Scholar]
- C. Bector, Y. Gupta and M. Gupta, Determination of an optimal common due date and optimal sequence in a single machine job shop. Internat. J. Production Res. 26 (1988) 613-628. [CrossRef] [Google Scholar]
- J.-C. Billaut, V. T'kindt, P. Richard and C. Proust, Three exact methods and an efficient heuristic for solving a bicriteria flowshop scheduling problem, in Multiconference on Computational Engineering in Systems Applications (CESA 98), Symposium on Industrial and Manufacturing Systems, IEEE-SMC/IMACS. Nabeul-Hammamet, Tunisia (1998) 371-377. [Google Scholar]
- J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt and J. Weglarz, Scheduling computer and manufacturing processes. Springer-Verlag (1996). [Google Scholar]
- V. Bourgade, L. Aguilera, B. Penz and Z. Binder, Problème industriel d'ordonnancement bicritère sur machine unique : modélisation et aide à la décision. APII 29 (1995) 331-341. [Google Scholar]
- V. Bowman, On the relationship of the tchebycheff norm and the efficient frontier of multiple-criteria objectives, edited by H. Thiriez and S. Zionts, Multiple Criteria Decision Making. Springer-Verlag (1976) 76-85. [Google Scholar]
- R. Burns, Scheduling to minimize the weighted sum of completion times with secondary criteria. Naval Res. Logist. Quarterly 23 (1976) 125-129. [CrossRef] [Google Scholar]
- S. Chand and H. Schneeberger, Single machine scheduling to minimize weighted completion time with maximum allowable tardiness, Research report. University of Purdue (1984). [Google Scholar]
- S. Chand and H. Schneeberger, A note on the single machine scheduling problem with minimum weighted completion time and maximum allowable tardiness. Naval Res. Logist. Quarterly 33 (1986) 551-557. [CrossRef] [Google Scholar]
- S. Chand and H. Schneeberger, Single machine scheduling to minimize weighted earliness subject to no tardy jobs. Eur. J. Oper. Res. 34 (1988) 221-230. [CrossRef] [Google Scholar]
- C.-L. Chen and R. Bulfin, Scheduling unit processing time jobs on a single machine with multiple criteria. Comput. Oper. Res. 17 (1990) 1-7. [CrossRef] [MathSciNet] [Google Scholar]
- C.-L. Chen and R. Bulfin, Complexity of single machine, multi-criteria scheduling problems. Eur. J. Oper. Res. 70 (1993) 115-125. [CrossRef] [Google Scholar]
- C.-L. Chen and R. Bulfin, Complexity of multiple machines, multi-criteria scheduling problems, in 3rd Industrial Engineering Research Conference (IERC'94). Atlanta, USA (1994) 662-665. [Google Scholar]
- Z.-L. Chen, Scheduling and common due date assignment with earliness and tardiness penalties and batch delivery costs. Eur. J. Oper. Res. 93 (1996) 49-60. [CrossRef] [Google Scholar]
- T. Cheng and Z.-L. Chen, Parallel-machine scheduling problems with earliness and tardiness penalties. J. Oper. Res. Soc. 45 (1994) 685-695. [Google Scholar]
- R. Daniels and R. Chambers, Multiobjective flow-shop scheduling. Naval Res. Logist. 37 (1990) 981-995. [CrossRef] [Google Scholar]
- P. Dileepan and T. Sen, Bicriterion static scheduling research for a single machine. Omega 16 (1998) 53-59. [CrossRef] [Google Scholar]
- P. Dileepan and T. Sen, Bicriterion jobshop scheduling with total flowtime and sum of squared lateness. Engrg. Costs and Production Economics 21 (1991) 295-299. [CrossRef] [Google Scholar]
- M. Ehrgott, Multiple Criteria Optimization: Classification and Methodology, Ph.D. Thesis. University of Kaiserslautern, Germany, in English (1997). [Google Scholar]
- H. Emmons, A note on a scheduling problem with dual criteria. Naval Res. Logist. Quarterly 22 (1975) 615-616. [CrossRef] [Google Scholar]
- H. Emmons, One machine sequencing to minimize mean flow time with minimum number tardy. Naval Res. Logist. Quarterly 22 (1975) 585-592. [CrossRef] [Google Scholar]
- H. Emmons, Scheduling to a common due date on parallel uniform processors. Naval Res. Logist. 34 (1987) 803-810. [CrossRef] [MathSciNet] [Google Scholar]
- G. Evans, An overview of techniques for solving multiobjective mathematical programs. Management Sci. 30 (1984) 1268-1282. [CrossRef] [MathSciNet] [Google Scholar]
- T. Fry, R. Armstrong and R. Blackstone, Minimizing weighted absolute deviation in single machine scheduling. IEEE Trans. 19 (1987) 445-450. [CrossRef] [Google Scholar]
- T. Fry, R. Armstrong and H. Lewis, A framework for single machine multiple objective sequencing research. Omega 17 (1989) 595-607. [CrossRef] [Google Scholar]
- T. Fry and R. Blackstone, Planning for idle time: A rationale for underutilization of capacity. Int. J. Prod. Res. 26 (1988) 1853-1859. [CrossRef] [Google Scholar]
- T. Fry and G. Leong, Bi-criterion single-machine scheduling with forbidden early shipments. Engrg. Costs and Production Sci. 10 (1986) 133-137. [Google Scholar]
- T. Fry and G. Leong, A bi-criterion approach to minimizing inventory costs on a single machine when early shipments are forbidden. Comput. Operat. Res. 14 (1987) 363-368. [CrossRef] [Google Scholar]
- T. Fry, G. Leong and T. Rakes, Single machine scheduling: A comparison of two solution procedures. Omega 15 (1987) 277-282. [CrossRef] [Google Scholar]
- R. Gangadharan and C. Rajendran, A simulated annealing heuristic for scheduling in a flowshop with bicriteria. Comput. Industrial Engrg. 27 (1994) 473-476. [CrossRef] [Google Scholar]
- M. Garey, R. Tarjan and G. Wilfong, One-processor scheduling with symmetric earliness and tardiness penalties. Math. Oper. Res. 13 (1988) 330-348. [CrossRef] [MathSciNet] [Google Scholar]
- F. Gembicki, Vector Optimization for Control with Performance and Parameter Sensitivity Indices, Ph.D. Thesis. Case Western Reserve University, Cleveland, USA (1973). [Google Scholar]
- A. Geoffrion, Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22 (1968) 618-630. [Google Scholar]
- J. Gupta, J. Ho and A. VanderVeen, Single machine hierarchical scheduling with customer orders and multiple job classes. Ann. Oper. Res. 70 (1997) 127-143. [CrossRef] [MathSciNet] [Google Scholar]
- J. Gupta, V. Neppalli and F. Werner, Minimizing total flow time in a two-machine flowshop problem with minimum makespan. Internat. J. Production Economics (to appear). [Google Scholar]
- S. Gupta and T. Sen, Minimizing a quadratic function of job lateness on a single machine. Engrg. Costs and Production Economic 7 (1983) 187-194. [CrossRef] [Google Scholar]
- Y. Haimes, L. Ladson and D. Wismer, On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Systems, Man and Cybernetics 1 (1971) 296-297. [Google Scholar]
- H. Heck and S. Roberts, A note on the extension of a result on scheduling with secondary criteria. Naval Res. Logist. Quarterly 19 (1972) 4. [Google Scholar]
- J. Hoogeveen, Single-Machine Bicriteria Scheduling, Ph.D. Thesis. CWI Amsterdam (1992). [Google Scholar]
- J. Hoogeveen and S. VandeVelde, Minimizing total completion time and maximum cost simultaneously is solvable in polynomial time. Oper. Res. Lett. 17 (1995) 205-208. [CrossRef] [MathSciNet] [Google Scholar]
- T. John, Tradeoff solutions in single machine production scheduling for minimizing flow time and maximum penalty. Comput. Oper. Res. 16 (1984) 471-479. [CrossRef] [Google Scholar]
- J. Kanet, Minimizing the average deviation of job completion times about a common due date. Naval Res. Logist. Quarterly 28 (1981) 643-651. [Google Scholar]
- S. Kondakci, E. Emre and M. Koksalan, Scheduling of unit processing time jobs on a single machine, edited by G. Fandel and T. Gal, Multiple Criteria Decision Making. Springer-Verlag, Lecture Notes in Econom. and Math. Systems (1997) 654-660. [Google Scholar]
- C. Koulamas, Single-machine scheduling with time windows and earliness/tardiness penalties. Eur. J. Oper. Res. 91 (1996) 190-202. [CrossRef] [Google Scholar]
- S. Lakshminarayan, R. Lakshmanan, R. Papineau and R. Rochette, Optimal single-machine scheduling with earliness and tardiness penalties. Oper. Res. 26 (1978) 1079-1082. [CrossRef] [MathSciNet] [Google Scholar]
- C.-Y. Lee and G. Vairaktarakis, Complexity of single machine hierarchical scheduling: A survey, edited by P.M. Pardalos, Complexity in Numerical Optimization. World Scientific Publishing Co. (1993) 269-298. [Google Scholar]
- J.-T. Leung and G. Young, Minimizing schedule length subject to minimum flow time. SIAM J. Comput. 18 (1989) 314-326. [CrossRef] [MathSciNet] [Google Scholar]
- C.-L. Li and T. Cheng, The parallel machine min-max weighted absolute lateness scheduling problem. Naval Res. Logist. 41 (1994) 33-46. [CrossRef] [MathSciNet] [Google Scholar]
- C.-J. Liao, W.-C. Yu and C.-B. Joe, Bicriterion scheduling in the two-machine flowshop. J. Oper. Res. Soc. 48 (1997) 929-935. [Google Scholar]
- K. Lin, Hybrid algorithm for sequencing with bicriteria. J. Opt. Theor. Appl. 39 (1983) 105-124. [CrossRef] [Google Scholar]
- S. McCormick and M. Pinedo, Scheduling n independant jobs on m uniform machines with both flowtime and makespan objectives: A parametric analysis. ORSA J. Comput. 7 (1995) 63-77. [Google Scholar]
- K. Miettinen. On the Methodology of Multiobjective Optimization with Applications, Ph.D. Thesis. University of Jyvaskyla, Department of Mathematics (1994). [Google Scholar]
- S. Miyazaki, One machine scheduling problem with dual criteria. J. Oper. Res. Soc. Jpn. 24 (1981) 37-50. [Google Scholar]
- A. Nagar, J. Haddock and S. Heragu, Multiple and bicriteria scheduling: A literature survey. Eur. J. Oper. Res. (1995) 88-104. [Google Scholar]
- A. Nagar, S. Heragu and J. Haddock, A branch-and-bound approach for a two-machine flowshop scheduling problem. J. Oper. Res. Soc. 46 (1995) 721-734. [Google Scholar]
- R. Nelson, R. Sarin and R. Daniels, Scheduling with multiple performance measures: The one-machine case. Management Sci. 32 (1986) 464-479. [CrossRef] [Google Scholar]
- V. Neppalli, C.-L. Chen and J. Gupta, Genetic algorithms for the two-stage bicriteria flowshop problem. Eur. J. Oper. Res. 95 (1996) 356-373. [CrossRef] [Google Scholar]
- P. Ow and T. Morton, Filtered beam search in scheduling. Internat. J. Production Res. 26 (1988) 35-62. [CrossRef] [Google Scholar]
- P. Ow and T. Morton, The single machine early/tardy problem. Management Sci. 35 (1989) 177-190. [CrossRef] [MathSciNet] [Google Scholar]
- S. Panwalker, M. Smith and A. Seidmann, Common due date assignment to minimize total penalty for the one machine scheduling problem. Oper. Res. 30 (1982) 391-399. [CrossRef] [Google Scholar]
- C. Rajendran, Two-stage flowshop scheduling problem with bicriteria. J. Oper. Res. Soc. 43 (1992) 871-884. [Google Scholar]
- C. Rajendran, A heuristic for scheduling in flowshop and flowline-based manufacturing cell with multi-criteria. Internat. J. Production Res. 32 (1994) 2541-2558. [CrossRef] [Google Scholar]
- C. Rajendran, Heuristics for scheduling in flowshop with multiple objectives. Eur. J. Oper. Res. 82 (1995) 540-555. [Google Scholar]
- F. Riane, N. Meskens and A. Artiba, Bicriteria scheduling hybrid flowshop problems, in International Conference on Industrial Engineering and Production Managment (IEPM'97). Lyon, France (1997) 34-43. [Google Scholar]
- B. Roy, Méthodologie multicritère d'aide à la décision. Economica (1985). [Google Scholar]
- S. Sayin and S. Karabati, A bicriteria approach to the two-machine flow shop scheduling problem. Eur. J. Oper. Res. 113 (1999) 435-449. [CrossRef] [Google Scholar]
- A. Seidmann, S. Panwalker and M. Smith, Optimal assignment of due-dates for a single processor scheduling problem. Internat. J. Production Res. 19 (1981) 393-399. [CrossRef] [Google Scholar]
- W. Selen and D. Hott, A mixed integer goal-programming formulation of a flowshop scheduling problem. J. Oper. Res. Soc. 37 (1986) 1121-1128. [Google Scholar]
- T. Sen and S. Gupta, A branch-and-bound procedure to solve a bicriterion scheduling problem. IEEE Trans. 15 (1983) 84-88. [CrossRef] [Google Scholar]
- T. Sen, F. Raiszadeh and P. Dileepan, A branch-and-bound approach to the bicriterion scheduling problem involving total flowtime and range of lateness. Management Sci. 34 (1988) 255-260. [Google Scholar]
- F. Serifoglu and G. Ulusoy, A bicriteria two-machine permutation flowshop problem. Eur. J. Oper. Res. 107 (1998) 414-430. [CrossRef] [Google Scholar]
- J. Shantikumar, Scheduling n jobs on one machine to minimize the maxium tardiness with minimum number tardy. Comput. Oper. Res. 10 (1983) 255-266. [CrossRef] [MathSciNet] [Google Scholar]
- J. Sidney, Optimal single-machine scheduling with earliness and tardiness penalties. Oper. Res. 25 (1977) 62-69. [CrossRef] [Google Scholar]
- W. Smith, Various optimizers for single-stage production. Naval Res. Logist. Quarterly 3 (1956) 59-66. [Google Scholar]
- R. Soland, Multicriteria optimization: A general characterization of efficient solutions. Decision Sci. 10 (1979) 27-38. [Google Scholar]
- R. Steuer, Multiple criteria optimization: Theory, computation and application. Wiley (1986). [Google Scholar]
- P. Sundararaghavan and M. Ahmed, Minimizing the sum of absolute lateness in single-machine and multimachine scheduling. Naval Res. Logist. Quarterly 31 (1984) 325-333. [CrossRef] [Google Scholar]
- W. Szwarc, Single-machine scheduling to minimize absolute deviation of completion times from a common due date. Naval Res. Logist. 36 (1989) 663-673. [CrossRef] [MathSciNet] [Google Scholar]
- V. T'kindt and J.-C. Billaut, L'ordonnancement multicritère. Presses de l'Université de Tours (2000). [Google Scholar]
- V. T'kindt, J.-C. Billaut and H. Houngbossa, A multi-criteria heuristic to solve a 2-stage hybrid flowshop scheduling problem. Eur. J. Automation (JESA) 34 (2000) 1187-1200. [Google Scholar]
- V. T'kindt, J.-C. Billaut, S. Laurin and O. Meslet, Un algorithme optimal polynomial pour résoudre un problème d'ordonnancement bicritère à machines parallèles, in Conference on Automation-Computers Engineering-Image-Signal (AGIS'97). Angers, France (1997) 179-184. [Google Scholar]
- V. T'kindt, J.-C. Billaut and C. Proust, Solving a bicriteria scheduling problem on unrelated parallel machines occuring in the glass bottle industry. Eur. J. Oper. Res. 135 (2001) 42-49. [CrossRef] [Google Scholar]
- V. T'kindt, P. Richard, C. Proust and J.-C. Billaut, Resolution of a 2-machine bicriteria flowshop scheduling problem, in Int. Conference on Methods and Applications of Multicriteria Decision Making (MAMDM'97). Mons, Belgium (1997) 139-143. [Google Scholar]
- M. VandenAkker, H. Hoogeveen and S. VandeVelde, in 6th International Workshop on Project Management and Scheduling (PMS'98). Istanbul, Turkey (1998). [Google Scholar]
- L. VanWassenhove and K. Baker, A bicriterion approach to time/cost trade-offs in sequencing. Eur. J. Oper. Res. 11 (1982) 48-54. [CrossRef] [Google Scholar]
- L. VanWassenhove and L. Gelders, Four solution techniques for a general one machine scheduling problem: A comparative study. Eur. J. Oper. Res. 2 (1978) 281-290. [CrossRef] [Google Scholar]
- L. VanWassenhove and L. Gelders, Solving a bicriterion scheduling problem. Eur. J. Oper. Res. 4 (1980) 42-48. [CrossRef] [Google Scholar]
- R. Vickson, Choosing the job sequence and processing times to minimize total processing plus flow cost on a single machine. Oper. Res. 28 (1980) 115-167. [Google Scholar]
- R. Vickson, Two single machine sequencing problems involving controllable job processing times. IEEE Trans. 12 (1980) 158-162. [Google Scholar]
- A. Vignier, J.-C. Billaut and C. Proust, Solving k-stage hybrid flowshop scheduling problems, in Multiconference on Computational Engineering in Systems Applications (CESA'96), Symposium on Discrete Events and Manufacturing Systems (IEEE-SMC/IMACS). Lille, France (1996) 250-258. [Google Scholar]
- A. Vignier, J.-C. Billaut and C. Proust, Les flowshop hybrides : état de l'art. RAIRO: Oper. Res. 33 (1999) 117-183. [CrossRef] [EDP Sciences] [Google Scholar]
- S. Webster, P. Job and A. Gupta, A genetic algorithm for scheduling job families on a single machine with arbitrary earliness/tardiness penalties and an unrestricted common due date. Internat. J. Production Res. 36 (1998) 2543-2551. [CrossRef] [Google Scholar]
- A. Wierzbicki, The use of reference objectives in multiobjective optimization, edited by G. Fandel and T. Gal, Multiple criteria decision making, theory and application. Springer-Verlag (1990) 468-486. [Google Scholar]
- J. Wilson, Alternative formulations of a flow-shop scheduling problem. J. Oper. Res. Soc. 40 (1989) 395-399. [Google Scholar]
- S. Zegordi, K. Itoh and T. Enkawa, A knowledgeable simulated annealing scheme for the early/tardy flow shop scheduling problem. Internat. J. Production Res. 33 (1995) 1449-1466. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.