RAIRO-Oper. Res.
Volume 38, Number 2, April-June 2004
Advances in modelling of complex systems
Page(s) 121 - 151
Published online 15 April 2004
  • J.R. Artalejo, G-networks: A versatile approach for work removal in queueing networks. Eur. J. Oper. Res. 126 (2000) 233-249. [Google Scholar]
  • D. Bertsekas, Dynamic Programming, Deterministic and Stochastic Models. Prentice-Hall, Englewood Cliffs, New Jersey (1987). [Google Scholar]
  • R.K. Deb, Optimal control of bulk queues with compound Poisson arrivals and batch service. Opsearch 21 (1984) 227-245. [Google Scholar]
  • R.K. Deb and R.F. Serfozo, Optimal control of batch service queues. Adv. Appl. Prob. 5 (1973) 340-361. [CrossRef] [Google Scholar]
  • X. Chao, M. Miyazawa and M. Pinedo, Queueing Networks: Customers, Signals and Product Form Solutions. Wiley, Chichester (1999). [Google Scholar]
  • A. Economou, On the control of a compound immigration process through total catastrophes. Eur. J. Oper. Res. 147 (2003) 522-529. [CrossRef] [Google Scholar]
  • A. Federgruen and H.C. Tijms, Computation of the stationary distribution of the queue size in an M/G/1 queueing system with variable service rate. J. Appl. Prob. 17 (1980) 515-522. [CrossRef] [Google Scholar]
  • E. Gelenbe, Random neural networks with negative and positive signals and product-form solutions. Neural Comput. 1 (1989) 502-510. [CrossRef] [Google Scholar]
  • E. Gelenbe, Product-form queueing networks with negative and positive customers. J. Appl. Prob. 28 (1991) 656-663. [Google Scholar]
  • E. Gelenbe, G-networks with signals and batch removal. Probab. Eng. Inf. Sci. 7 (1993) 335-342. [Google Scholar]
  • E. Gelenbe, P. Glynn and K. Sigman, Queues with negative arrivals. J. Appl. Prob. 28 (1991) 245-250. [Google Scholar]
  • E. Gelenbe and R. Schassberger, Stability of product form G-networks. Probab. Eng. Inf. Sci. 6 (1992) 271-276. [Google Scholar]
  • E. Gelenbe and G. Pujolle, Introduction to Queueing Networks. Wiley, Chichester (1998). [Google Scholar]
  • P.G. Harrison and E. Pitel, The M/G/1 queue with negative customers. Adv. Appl. Prob. 28 (1996) 540-566. [Google Scholar]
  • O. Hernandez-Lerma and J. Lasserre, Discrete-time Markov Control Processes. Springer, New York (1996). [Google Scholar]
  • E.G. Kyriakidis, Optimal control of a truncated general immigration process through total catastrophes. J. Appl. Prob. 36 (1999) 461-472. [CrossRef] [Google Scholar]
  • E.G. Kyriakidis, Characterization of the optimal policy for the control of a simple immigration process through total catastrophes. Oper. Res. Letters 24 (1999) 245-248. [CrossRef] [Google Scholar]
  • T. Nishigaya, K. Mukumoto and A. Fukuda, An M/G/1 system with set-up time for server replacement. Transactions of the Institute of Electronics, Information and Communication Engineers J74-A-10 (1991) 1586-1593. [Google Scholar]
  • S. Nishimura and Y. Jiang, An M/G/1 vacation model with two service modes. Prob. Eng. Inform. Sci. 9 (1994) 355-374. [Google Scholar]
  • R.D. Nobel and H.C. Tijms, Optimal control of an MX/G/1 queue with two service modes. Eur. J. Oper. Res. 113 (1999) 610-619. [CrossRef] [Google Scholar]
  • M. Puterman, Markov Decision Processes. Wiley, New York (1994). [Google Scholar]
  • S.M. Ross, Applied Probability Models with Optimization Applications. Holden-Day Inc., San Francisco (1970). [Google Scholar]
  • S.M. Ross, Introduction to Stochastic Dynamic Programming. Academic Press, New York (1983). [Google Scholar]
  • L.I. Sennott, Stochastic Dynamic Programming and the Control of Queueing Systems. Wiley, New York (1999). [Google Scholar]
  • L.I. Sennott, P.A. Humblet and R.L. Tweedie, Mean drifts and the non-ergodicity of Markov chains. Oper. Res. 31 (1983) 783-789. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Serfozo, An equivalence between continuous and discrete time Markov decision processes. Oper. Res. 27 (1979) 616-620. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Stoyan, Comparison Methods for Queues and Other Stochastic Models. Wiley, Chichester (1983). [Google Scholar]
  • J. Teghem, Control of the service process in a queueing system. Eur. J. Oper. Res. 23 (1986) 141-158. [CrossRef] [Google Scholar]
  • H.C. Tijms, A First Course in Stochastic Models. Wiley, Chichester (2003). [Google Scholar]
  • W.S. Yang, J.D. Kim and K.C. Chae, Analysis of M/G/1 stochastic clearing systems. Stochastic Anal. Appl. 20 (2002) 1083-1100. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.