RAIRO-Oper. Res.
Volume 50, Number 4-5, October-December 2016
Special issue - Advanced Optimization Approaches and Modern OR-Applications
Page(s) 781 - 795
Published online 03 November 2016
  • D. Ahr, J. Békési, G. Galambos, M. Oswald and G. Reinelt, An exact algorithm for scheduling identical coupled-tasks. Math. Methods Oper. Res. 59 (2004) 193–203. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Blażewicz, K. Ecker, T. Kis, C.N. Potts, M. Tanas and J. Whitehead, Scheduling of coupled tasks with unit processing times. Technical report, Poznan University of Technology (2009). [Google Scholar]
  • A. Caprara, H. Kellerer and U. Pferschy, A PTAS for the Multiple Subset Sum Problem with different knapsack capacities. Inf. Process. Lett. (2000). [Google Scholar]
  • A. Caprara, H. Kellerer and U. Pferschy, The Multiple Subset Sum Problem. SIAM J. Optimiz. 11 (2000) 308–319. [CrossRef] [Google Scholar]
  • A. Caprara, H. Kellerer and U. Pferschy, A 3/4-Approximation Algorithm for Multiple Subset Sum. J. Heuristics 9 (2003) 99–111. [CrossRef] [Google Scholar]
  • M. Dawande, J. Kalagnanam, P. Keskinocak, F.S. Salman and R. Ravi, Approximation Algorithms for the Multiple Knapsack Problem with Assignment Restrictions. J. Combin. Optim. 4 (2000) 171–186. [CrossRef] [Google Scholar]
  • J. Edmonds, Maximum matching and a polyhedron with 0,1 vertices. J. Res. Nat. Bur. Stand. 69 (1965) 125–130. [CrossRef] [Google Scholar]
  • M.R. Garey and D.S. Johnson, Computers and Intractability: A guide to the theory of NP-completeness. W. H. Freeman & Co., New York, NY, USA (1979). [Google Scholar]
  • R. Giroudeau, J.-C. König, F.K. Moulaï and J. Palaysi, Complexity and approximation for the precedence constrained scheduling problem with large communication delays. Theoret. Comput. Sci. 401 (2008) 107–119. [CrossRef] [MathSciNet] [Google Scholar]
  • R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey. Ann. Discrete Math. 5 (1979) 287–326. [CrossRef] [MathSciNet] [Google Scholar]
  • O.H. Ibarra and C.E. Kim, Fast approximation algorithms for the Knapsack and Sum of Subset problems. J. ACM 22 (1975) 463–468. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Kellerer, R. Mansini, U. Pferschy and M.G. Speranza, An efficient fully polynomial approximation scheme for the subset-sum problem. J. Comput. Syst. Sci. 66 (2003) 349–370. [CrossRef] [Google Scholar]
  • H.W. Kuhn, The hungarian method for the assignment problem. Naval Res. Logist. Quart. 2 (1955) 83–97. [Google Scholar]
  • A.J. Orman and C.N. Potts, On the complexity of coupled-task scheduling. Discrete Appl. Math. 72 (1997) 141–154. [CrossRef] [MathSciNet] [Google Scholar]
  • R.D. Shapiro, Scheduling coupled tasks. Naval Res. Logist. Quarterly 27 (1980) 477–481. [CrossRef] [Google Scholar]
  • G. Simonin, R. Giroudeau and J.-C. König, Complexity and approximation for scheduling problem for coupled-tasks in presence of compatibility tasks. In Project Management and Scheduling (2010). [Google Scholar]
  • G. Simonin, B. Darties, R. Giroudeau and J.-C. König, Isomorphic coupled-task scheduling problem with compatibility constraints on a single processor. J. Sched. 14 (2011) 501–509. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Simonin, R. Giroudeau, J.-C. König and B. Darties, Theoretical Aspects of Scheduling Coupled-Tasks in the Presence of Compatibility Graph. Algorithm. Oper. Res. 7 (2012) 1–12. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.