Free Access
Issue
RAIRO-Oper. Res.
Volume 51, Number 4, October-December 2017
Page(s) 931 - 944
DOI https://doi.org/10.1051/ro/2017002
Published online 24 November 2017
  • V. Aggarwal, N. Gautam, S.R.T. Kumara and M. Greaves, Stochastic fluid flow models for determining optimal switching thresholds. Perform. Eval. 59 (2005) 19–46. [CrossRef] [Google Scholar]
  • S.I. Ammar, Fluid queue driven by an M/M/1 disasters queue. Int. J. Comput. Math. 91 (2014) 1497–1506. [CrossRef] [Google Scholar]
  • S.I. Ammar, Analysis of an M/M/1 driven fluid queue with multiple exponential vacations. Appl. Math. Comput. 227 (2014) 329–334. [Google Scholar]
  • J.W. Baek, H.W. Lee, S.W. Lee and S. Ahn, A MAP-modulated fluid flow model with multiple vacations. Ann. Oper. Res. 202 (2013) 19–34. [CrossRef] [Google Scholar]
  • J.W. Bosman and R. Numez-Queija, A spectral theory approach for extreme value analysis in a tandem of fluid queues. Queueing Syst. 78 (2014) 121–154. [CrossRef] [Google Scholar]
  • A. Economou and A. Manou, Strategic behavior in an observable fluid queue with an alternating service process. Eur. J. Oper. Res. 254 (2016) 148–160. [CrossRef] [Google Scholar]
  • K. Li, J. Wang and Y. Ren, Equilibrium joining strategies in M/M/1 queues with working vacation and vacation interruptions. RAIRO-Oper. Res. 50 (2016) 451–471. [CrossRef] [EDP Sciences] [Google Scholar]
  • Q. Li and Y. Zhao, Block-structured fluid queues driven by QBD processes. Stoch. Anal. Appl. 23 (2005) 1087–1112. [CrossRef] [Google Scholar]
  • B. Mao, F. Wang and N. Tian, Fluid model driven by an M/G/1 queue with multiple exponential vacations. Appl. Math. Comput. 218 (2011) 4041–4048. [Google Scholar]
  • D. Mitra, Stochastic theory of a fluid model of producers and consumers coupled by a buffer. Adv. Appl. Probab. 20 (1988) 646–676. [CrossRef] [Google Scholar]
  • L. Rozovsky, Remarks on a link between the Laplace transform and distribution function of a non-negative random variable. Stat. Probabil. Lett. 79 (2009) 1501–1508. [CrossRef] [Google Scholar]
  • J. Virtamo and I. Norros, Fluid queue driven by an M/M/1 queue. Queueing Syst. 16 (1994) 373–386. [CrossRef] [Google Scholar]
  • X. Xu, H. Guo, Y. Zhao and J. Geng, The fluid model driven by the M/M/1 queue with working vacations and vacation interruption. J. Comput. Inf. Syst. 18 (2012) 4041–4048. [Google Scholar]
  • K. Yan and V.G. Kularni, Optimal inventory policies under stochastic production and demand rates. Stoch. Models 24 (2008) 173–190. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.