Free Access
Issue
RAIRO-Oper. Res.
Volume 52, Number 2, April–June 2018
Page(s) 391 - 414
DOI https://doi.org/10.1051/ro/2017019
Published online 22 June 2018
  • C. Alves, J. Valério de Carvalho, F. Clautiaux and J. Rietz, Multidimensional dual-feasible functions and fast lower bounds for the vector packing problem. Eur. J. Oper. Res. 233 (2015) 43–63 [CrossRef] [Google Scholar]
  • J.O. Berkey and P.Y. Wang, Two-dimensional finite bin packing algorithms. J. Oper. Res. Soc. 38 (1987) 423–429 [CrossRef] [Google Scholar]
  • A. Bortfeldt and T. Winter, A genetic algorithm for the two-dimensional knapsack problem with rectangular pieces. Inter. Trans. Oper. Res. 16 (2009) 685–713 [CrossRef] [Google Scholar]
  • M.A. Boschetti, New lower bounds for the three-dimensional finite bin packing problem. Discrete Appl. Math. 140 (2004) 241–258 [CrossRef] [Google Scholar]
  • M.A. Boschetti and L. Montaletti, An exact algorithm for the two-dimensional strip-packing problem. Oper. Res. 58 (2010) 1774–1791 [CrossRef] [Google Scholar]
  • M.A. Boschetti and A. Mingozzi, The two-dimensional finite bin packing problem, Part I: New lower bounds for the oriented case. 4OR (2003) 27–42 [Google Scholar]
  • A. Caprara, A. Lodi and M. Monaci, An approximation scheme for the two-stage, two-dimensional knapsack problem. Discrete Optimiz. 7 (2010) 114–124 [CrossRef] [Google Scholar]
  • A. Caprara and M. Monaci, Bidimensional packing by bilinear programming. Math. Progr. 118 (2009) 75–108 [CrossRef] [Google Scholar]
  • J. Carlier, F. Clautiaux and A. Moukrim, New reduction procedures and lower bounds for the two-dimensional bin packing problem with fixed orientation. Comput. Oper. Res. 34 (2007a) 2223–2250 [CrossRef] [Google Scholar]
  • J. Carlier and E. Néron, Computing redundant resources for the resource constrained project scheduling problem. Europ. J. Oper. Res. 176 (2007b) 1452–1463 [CrossRef] [Google Scholar]
  • G.F. Cintra, F.K. Miyazawa, Y. Wakabayashi and E.C. Xavier, Algorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation. Europ. J. Oper. Res. 191 (2008) 61–85 [CrossRef] [Google Scholar]
  • F. Clautiaux, J. Carlier, A. Moukrim, A new exact method for the two-dimensional bin-packing problem with fixed orientation. Oper. Res. Lett. 35 (2007a) 357–364 [CrossRef] [Google Scholar]
  • F. Clautiaux, J. Carlier and A. Moukrim, A new exact method for the two-dimensional orthogonal packing problem. Europ. J. Oper. Res. 183 (2007b) 1196–1211 [CrossRef] [Google Scholar]
  • F. Clautiaux, C. Alves and J. Valerio de Carvalho, A survey of dual-feasible and superadditive functions. Ann. Oper. Res. 179 (2010) 317–342 [CrossRef] [Google Scholar]
  • J.F. Côté, M. Dell’Amico and M. Iori, Combinatorial Benders’ cuts for the strip packing problem. Oper. Res. 62 (2014) 643–661 [CrossRef] [Google Scholar]
  • Y.P. Cui, Y. Cui and T. Tang, Sequential heuristic for the two-dimensional bin-packing problem. Europ. J. Oper. Res. 240 (2015) 43–53 [CrossRef] [Google Scholar]
  • M. Dell’Amico and S. Martello, Optimal scheduling of tasks on identical parallel processors. ORSA J. Comput. 7 (1995) 191–200 [CrossRef] [Google Scholar]
  • J. Egeblad and D. Pisinger, Heuristic approaches for the two- and three-dimensional knapsack packing problem. Comput. Oper. Res. 36 (2009) 1026–1049 [CrossRef] [Google Scholar]
  • S. Fekete and J. Schepers, New classes of fast lower bounds for bin packing problems. Math. Program. 60 (2001) 311–329 [Google Scholar]
  • S. Fekete and J. Schepers, A general framework for bounds for higher-dimensional orthogonal packing problems. Math. Methods Oper. Res. 60 (2004) 311–329 [CrossRef] [Google Scholar]
  • S. Fekete, J. Schepers and J.C. van der Veen, An exact algorithm for higher-dimensional orthogonal packing. Oper. Res. 55 (2007) 569–587 [CrossRef] [Google Scholar]
  • G. Fuellerer, K.F. Doerner, R.F. Hartl and M. Iori, Ant colony optimization for the two-dimensional loading vehicle routing problem. Comput. Oper. Res. 36 (2009) 655–673 [CrossRef] [Google Scholar]
  • M. Gendreau, M. Iori, G. Laporte and S. Martello, A tabu search heuristic for the vehicle routing problem with two-dimensional loading constraints. Networks 51 (2008) 4–18 [CrossRef] [MathSciNet] [Google Scholar]
  • E. Hadjiconstantinou and N. Christofides, An exact algorithm for general, orthogonal, two-dimensional knapsack problem. Europ. J. Oper. Res. 83 (1995) 39–56 [CrossRef] [Google Scholar]
  • S. Hong, D. Zhang, H.C. Lau, X. Zeng and Y. Sic, A hybrid heuristic algorithm for the 2D variable-sized bin packing problem, Europ. J. Operat. Res. 238 (2014) 95–103 [CrossRef] [Google Scholar]
  • M. Kenmochi, T. Imamichi, K. Nonobe, M. Yagiura and H. Nagamochi, Exact algorithms for the two-dimensional strip packing problem with and without rotations. Europ. J. Oper. Res. 198 (2009) 73–83 [CrossRef] [Google Scholar]
  • M. Iori and S. Martello, Routing problems with loading constraints. TOP 18 (2010) 4–27 [CrossRef] [MathSciNet] [Google Scholar]
  • D.S. Johnson, Near-Optimal Bin Packing Algorithms. Ph.D. thesis, Massachusetts Institute of Technology (1973) [Google Scholar]
  • A. Lodi, S. Martello and M. Monaci, Two-dimensional packing problems: A survey. Europ. J. Oper. Res. 141 (2002a) 241–252 [CrossRef] [Google Scholar]
  • A. Lodi, S. Martello and D. Vigo, Recent advances on two-dimensional bin packing problems. Discrete Appl. Math. 123 (2002b) 379–396 [CrossRef] [MathSciNet] [Google Scholar]
  • S. Martello, M. Monaci and D. Vigo, An exact approach to the strip-packing problem. INFORMS J. Comput. 15 (2003) 310–319 [CrossRef] [Google Scholar]
  • S. Martello, M. Monaci, Models and algorithms for packing rectangles into the smallest square. Comput. Oper. Res. 63 (2015) 161–171 [CrossRef] [Google Scholar]
  • S. Martello and P. Toth, Knapsack problems: Algorithms and computer implementations. John Wiley and Sons, Chichester (1990) [Google Scholar]
  • S. Martello and D. Vigo, Exact solution of the two-dimensional finite bin packing problem. Manag. Sci. 44 (1998) 388–399 [CrossRef] [Google Scholar]
  • D. Pisinger and M.M. Sigurd, Using decomposition techniques and constraint programming for solving the two-dimensional bin-packing problem. INFORMS J. Comput. 19 (2007) 36–51 [CrossRef] [MathSciNet] [Google Scholar]
  • L. Wei, T. Tian, W. Zhu and A. Lim, A block-based layer building approach for the 2D guillotine strip packing problem. Europ. J. Operat. Res. 239 (2014) 58–69 [CrossRef] [Google Scholar]
  • L. Wei, Z. Zhang, D. Zhang and A. Lim, A variable neighborhood search for the capacitated vehicle routing problem with two-dimensional loading constraints. Eur. J. Oper. Res. 243 (2015) 798–814 [CrossRef] [Google Scholar]
  • E.E. Zachariadis, C.D. Tarantilis and C.T. Kiranoudis, A guided tabu search for the vehicle routing problem with two-dimensional loading constraints. Europ. J. Oper. Res. 195 (2009) 729–743 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.