Issue
RAIRO-Oper. Res.
Volume 52, Number 4-5, October–December 2018
Fuzzy Data Envelopment Analysis: Recent Developments and Applications
Page(s) 1445 - 1463
DOI https://doi.org/10.1051/ro/2018019
Published online 06 December 2018
  • R.D. Banker, A. Charnes and W.W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 30 (1984) 1078–1092. [CrossRef] [Google Scholar]
  • A. Charnes and W.W. Cooper, Chance-constrained programming. Manag. Sci. 6 (1959) 73–79. [CrossRef] [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • A. Charnes, W.W. Cooper, B. Golany, L. Seiford and J. Stutz, Foundations of data envelopment analysis for Pareto–Koopmans efficient empirical production functions. J. Econ. 30 (1985) 91–107. [CrossRef] [MathSciNet] [Google Scholar]
  • W.W. Cooper, Z. Huang and S.X. Li, Satisficing DEA models under chance constraints. Ann. Oper. Res. 66 (1996) 279–295. [Google Scholar]
  • D. Dubois and H. Prade, Operations on fuzzy numbers. Int. J. Syst. Sci. 9 (1978) 613–626. [Google Scholar]
  • D. Dubois and H. Prade, The mean value of a fuzzy number. Fuzzy Sets Syst. 24 (1987) 279–300. [CrossRef] [Google Scholar]
  • D. Dubois and H. Prade, Possibility Theory. Plenum Press, New York (1988). [CrossRef] [Google Scholar]
  • A. Emrouznejad and M. Tavana, Performance Measurement With Fuzzy Data Envelopment Analysis. Springer, Berlin and Heidelberg (2014). [CrossRef] [Google Scholar]
  • M.J. Farrell, The measurement of productive efficiency. J. R. Stat. Soc. A (Gen.) 120 (1957) 253–290. [CrossRef] [Google Scholar]
  • P.A. Garcia and R. Schirru, A fuzzy data envelopment analysis approach for FMEA. Prog. Nucl. Energy 46 (2005) 359–373. [CrossRef] [Google Scholar]
  • M.R. Ghasemi, J. Ignatius, S. Lozano, A. Emrouznejad and A. Hatami-Marbini, A fuzzy expected value approach under generalized data envelopment analysis. Knowl. Based Syst. 30 (2015) 148–159. [Google Scholar]
  • P. Guo, H. Tanaka and M. Inuiguchi, Self-organizing fuzzy aggregation models to rank the objects with multiple attributes. IEEE Trans. Syst. Man Cybern. A: Syst. Hum. 30 (2000) 573–580. [Google Scholar]
  • A. Hatami-Marbini, A. Emrouznejad and M. Tavana, A taxonomy and review of the fuzzy data envelopment analysis literature: two decades in the making. Eur. J. Oper. Res. 214 (2011) 457–472. [Google Scholar]
  • A. Hatami-Marbini, P.J. Agrell, M. Tavana and A. Emrouznejad, A stepwise fuzzy linear programming model with possibility and necessity relations. J. Intel. Fuzzy Syst. 25 (2013) 81–93. [Google Scholar]
  • S. Heilpern, The expected value of a fuzzy number. Fuzzy Sets Syst. 47 (1992) 81–86. [CrossRef] [Google Scholar]
  • F. Hossainzadeh, G.R. Jahanshahloo, M. Kodabakhshi and F. Moradi, A fuzzy chance constraint multi objective programming method in data envelopment analysis. Afr. J. Bus. Manag. 5 (2011) 12873. [Google Scholar]
  • J. Ignatius, M.R. Ghasemi, F. Zhang, A. Emrouznejad and A. Hatami-Marbini, Carbon efficiency evaluation: an analytical framework using fuzzy DEA. Eur. J. Oper. Res. 253 (2016) 428–440. [Google Scholar]
  • M. Inuiguchi and J. Ram"i"k, Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets Syst. 111 (2000) 3–28. [CrossRef] [Google Scholar]
  • N. Jiang and Y. Yang, A fuzzy chance-constrained DEA model based on Cr measure. Int. J. Bus. Manag. 2 (2007) 17–21. [Google Scholar]
  • M. Khodabakhshi, Y. Gholami and H. Kheirollahi, An additive model approach for estimating returns to scale in imprecise data envelopment analysis. Appl. Math. Model. 34 (2010) 1247–1257. [Google Scholar]
  • S. Lertworasirikul, Fuzzy Data Envelopment Analysis (DEA). Ph. D. Dissertation, Department of Industrial Engineering, North Carolina State University (2002). [Google Scholar]
  • S. Lertworasirikul, S.C. Fang, J.A. Joines and H.L.W. Nuttle, A possibility approach to fuzzy data envelopment analysis, in Vol. 6 of Proceedings of the Joint Conference on Information Sciences, Duke University/Association for Intelligent Machinery, Durham, US (2002) 176–179. [Google Scholar]
  • S. Lertworasirikul, S.C. Fang, J.A. Joines, H.L.W. Nuttle and J.A. Joines, Fuzzy data envelopment analysis, in Proceedings of the 9th Bellman Continuum, Beijing (2002) 342. [Google Scholar]
  • S. Lertworasirikul, S.C. Fang, J.A. Joines and H.L.W. Nuttle, Fuzzy data envelopment analysis (DEA): a possibility approach. Fuzzy Sets Syst. 139 (2003) 379–394. [CrossRef] [Google Scholar]
  • S. Lertworasirikul, S.C. Fang, J.A. Joines and H.L.W. Nuttle, Fuzzy data envelopment analysis: a credibility approach. Fuzzy Sets Based Heuristics for Optimization. Springer, Berlin, Heidelberg (2003) 141–158. [CrossRef] [Google Scholar]
  • S. Lertworasirikul, S.C. Fang, J.A. Joines, H.L.W. Nuttle and J.A. Joines, Fuzzy BCC model for data envelopment analysis. Fuzzy Optim. Decis. Mak. 2 (2003) 337–358. [CrossRef] [Google Scholar]
  • H.T. Lin, Personnel selection using analytic network process and fuzzy data envelopment analysis approaches. Comput. Ind. Eng. 59 (2010) 937–944. [Google Scholar]
  • B. Liu, Dependent-chance programming with fuzzy decisions. IEEE Trans. Fuzzy Syst. 7 (1999) 354–360. [Google Scholar]
  • B. Liu and K. Iwamura, Chance constrained programming with fuzzy parameters. Fuzzy Sets Syst. 94 (1998) 227–237. [CrossRef] [Google Scholar]
  • B. Liu and Y.K. Liu, Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans. Fuzzy Syst. 10 (2002) 445–450. [Google Scholar]
  • G.P. McCormick, Computability of global solutions to factorable nonconvex programs: Part I—Convex underestimating problems. Math. Program. 10 (1976) 147–175. [Google Scholar]
  • M.J. Naderi, M.S. Pishvaee and S.A. Torabi, Applications of fuzzy mathematical programming approaches in supply chain planning problems. Fuzzy Logic in its 50th Year. Springer International Publishing (2016) 369–402. [Google Scholar]
  • R. Nedeljković and D. Drenovac, Efficiency measurement of delivery post offices using fuzzy data envelopment analysis (possibility approach). Int. J. Traffic Transp. Eng. 2 (2012) 22–29. [Google Scholar]
  • A. Payan and M. Shariff, Scrutiny Malmquist productivity index on fuzzy data by credibility theory with an application to social security organizations. J. Uncertain. Syst. 7 (2013) 36–49. [Google Scholar]
  • M.S. Pishvaee, J. Razmi and S.A. Torabi, Robust possibilistic programming for socially responsible supply chain network design: a new approach. Fuzzy Sets Syst. 206 (2012) 1–20. [CrossRef] [Google Scholar]
  • M.S. Pishvaee, S.A. Torabi and J. Razmi, Credibility-based fuzzy mathematical programming model for green logistics design under uncertainty. Comput. Ind. Eng. 62 (2012) 624–632. [Google Scholar]
  • S. Ramezanzadeh, A. Memariani and S. Saati, Data envelopment analysis with fuzzy random inputs and outputs: a chance-constrained programming approach. Iran. J. Fuzzy Syst. 2 (2005) 21–29. [Google Scholar]
  • J.L. Ruiz and I. Sirvent, Fuzzy cross-efficiency evaluation: a possibility approach. Fuzzy Optim. Decis. Mak. 16 (2017) 111-126. [Google Scholar]
  • Y.M. Wang and K.S. Chin, Fuzzy data envelopment analysis: a fuzzy expected value approach. Expert Syst. Appl. 38 (2011) 11678–11685. [Google Scholar]
  • M. Wen and H. Li, Fuzzy data envelopment analysis (DEA): model and ranking method. J. Comput. Appl. Math. 223 (2009) 872–878. [Google Scholar]
  • M. Wen and C. You, A Fuzzy Data Envelopment Analysis (DEA) Model With Credibility Measure. Technical report (2007). [Google Scholar]
  • M. Wen, C. You and R. Kang, A new ranking method to fuzzy data envelopment analysis. Comput. Math. Appl. 59 (2010) 3398–3404. [Google Scholar]
  • M. Wen, Z. Qin and R. Kang, Sensitivity and stability analysis in fuzzy data envelopment analysis. Fuzzy Optim. Decis. Mak. 10 (2011) 1–10. [CrossRef] [Google Scholar]
  • D.D. Wu, Z. Yang and L. Liang, Efficiency analysis of cross-region bank branches using fuzzy data envelopment analysis. Appl. Math. Comput. 181 (2006) 271–281. [Google Scholar]
  • R.R. Yager, A procedure for ordering fuzzy subsets of the unit interval. Inf. Sci. 24 (1981) 143–161. [Google Scholar]
  • L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1 (1978) 3–28. [CrossRef] [MathSciNet] [Google Scholar]
  • M.L. Zerafat-Angiz, A. Emrouznejad and A. Mustafa, Fuzzy assessment of performance of a decision making units using DEA: a non-radial approach. Expert Syst. Appl. 37 (2010) 5153–5157. [Google Scholar]
  • M.L. Zerafat-Angiz, A. Emrouznejad and A. Mustafa, Fuzzy data envelopment analysis: a discrete approach. Expert Syst. Appl. 39 (2012) 2263–2269. [Google Scholar]
  • M.L. Zerafat-Angiz, M.K.M. Nawawi, R. Khalid, A. Mustafa, A. Emrouznejad, R. John and G. Kendall, Evaluating decision-making units under uncertainty using fuzzy multi-objective nonlinear programming. Inf. Syst. Oper. Res. 55 (2017) 1–15. [Google Scholar]
  • X. Zhao and W. Yue, A multi-subsystem fuzzy DEA model with its application in mutual funds management companies’ competence evaluation. Proc. Comput. Sci. 1 (2010) 2469–2478. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.