Free Access
RAIRO-Oper. Res.
Volume 53, Number 1, January–March 2019
Page(s) 1 - 28
Published online 15 January 2019
  • A. Bary, Target-date funds take over Barron’s. July 5 issue (2014). [Google Scholar]
  • A. Ben-Tal, T. Margalit and A. Nemirovski, Robust modeling of multi-stage portfolio problems, in: High Performance Optimiza. Springer, New York, NY (2000) 303–328. [CrossRef] [Google Scholar]
  • A. Ben-Tal and A. Nemirovski, Robust convex optimization. Math. Oper. Res. 23 (1998) 769–805. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Bertsimas and A. Thiele, A robust optimization approach to inventory theory. Oper. Res. 54 (2006a) 150–168. [Google Scholar]
  • D. Bertsimas, D. Iancu and P. Parrilo, A hierarchy of near-optimal policies for multistage adaptive optimization. IEEE Trans. Automatic Control 56 (2011) 2809–2824. [CrossRef] [Google Scholar]
  • D. Bertsimas, G. Lauprete and A. Samarov, Shortfall as a risk measure: properties, optimization and applications. J. Econ. Dynamics Control 28 (2000) 1353–1381. [CrossRef] [Google Scholar]
  • D. Bertsimas and D. Pachamanova, Robust multiperiod portfolio management in the presence of transaction costs. Comput. Oper. Res. 35 (2008) 3–17. [Google Scholar]
  • D. Bertsimas and M. Sim, Price of Robustness. Oper. Res. 52 (2004) 35–53. [Google Scholar]
  • J. Birge and F. Louveaux, Introduction to Stochastic Programming, 2nd edition. Springer, New York, NY (2011). [CrossRef] [Google Scholar]
  • E. Bogentoft, H.E. Romeijn and S. Uryasev, Asset/liability management for pension funds using CVaR constraints. J. Risk Finance 3 (1999) 57–71. [CrossRef] [Google Scholar]
  • D.R. Cariño, T. Kent, D.H. Myers, C. Stacy, M. Sylvanus, A.L. Turner, K. Watanabe and W.T. Ziemba, The Russel-Yasuda Kasai model: An asset-liability model for a Japanese insurance company using multistage stochastic programming. Interfaces 24 (1994) 29–49. [Google Scholar]
  • G. Consigli and M.A.H. Dempster, Dynamic stochastic programming for asset-liability management. Ann. Oper. Res. 81 (1998) 131–162. [Google Scholar]
  • G. Deelstra, M. Grasselli and P.F. Koehl, Optimal investment strategies in the presence of a minimum guarantee. Insurance: Math. Econom. 33 (2003) 189–207. [CrossRef] [Google Scholar]
  • M. Dziecichowicz, D. Caro and A. Thiele, Robust timing of markdowns. Ann. Oper. Res. 235 (2015) 203–231. [Google Scholar]
  • H. Evensky, S.M. Horan and T.R. Robinson, The new wealth management: The Financial Advisor’s Guide to Managing and Investing Client Assets. Wiley, New York, NY (2011). [Google Scholar]
  • F.J. Fabozzi, P.N. Kolm, D. Pachamanova and S. Focardi, Robust Portfolio Optimization and Management. Wiley, New York, NY (2007). [Google Scholar]
  • E.F. Fama and K.R. French, The cross-section of expected stock returns. J. Finance 47 (1992) 427–465. [Google Scholar]
  • E.F. Fama and K.R. French, Common risk factors in the returns on stocks and bonds. J. Financial Econom. 33 (1993) 3–56. [CrossRef] [Google Scholar]
  • V. Gabrel, C. Murat and A. Thiele, Recent advances in robust optimization: an overview. Eur. J. Oper. Res. 235 (2014) 471–483. [Google Scholar]
  • A. Geyer, W. Herold, K. Kontriner and W. Ziemba, The Innovest Austrian Pension Fund Financial Planning Model InnoALM. Oper. Res. 56 (2008) 797–810. [Google Scholar]
  • J. Gondzio and R. Kouwenberg, High-Performance Computing for Asset-Liability Management. Oper. Res. 49 (2011) 879–891. [Google Scholar]
  • N. Gúlpinar and D. Pachamanova, A robust optimization approach to asset-liability management under time-varying investment opportunities. J. Bank. Finance 37 (2013) 2031–2041. [CrossRef] [Google Scholar]
  • S. Haberman and E. Vigna, Optimal investment strategies and risk measures in defined contribution pension schemes. Insurance: Math. Econom. 31 (2002) 35–69. [CrossRef] [Google Scholar]
  • J. Hull, Options, Futures and Other Derivatives, 9th ed. Pearson, London (2014). [Google Scholar]
  • G. Iyengar and A.K.C. Ma, A robust optimization approach to pension fund management. J. Asset Manag. 11 (2010) 163–177. [CrossRef] [Google Scholar]
  • P. Kall and S. Wallace, Stochastic Program. Wiley, New York (1994). [Google Scholar]
  • S. Kilianova and G. Pug, Optimal pension fund management under multi-period risk minimization. Ann. Oper. Res. 166 (2009) 261–270. [Google Scholar]
  • R. Kouwenberg, Scenario generation and stochastic programming models for asset liability management. Eur. J. Oper. Res. 134 (2001) 279–292. [Google Scholar]
  • J. Mulvey, G. Gould and C. Morgan, An asset and liability management system for Towers Perrin – Tillinghast. Interfaces 30 (2000) 96–114. [Google Scholar]
  • A. Muralidhar, Innovations in pension fund management. Stanford University Press. Stanford, CA (2001). [Google Scholar]
  • D. Pachamanova, A robust optimization approach to finance. Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA (2002). [Google Scholar]
  • D. Pachamanova, N. Gúlpinar and E. Çanakoğlu, Robust approaches to pension fund asset liability management under uncertainty, in Optimal financial decision making under uncertainty. Springer, New York, NY (2017). [Google Scholar]
  • S. Pandit and S. Wu, Time series and system analysis, with applications. John Wiley and Sons Inc., New York, NY (1983). [Google Scholar]
  • W. Sharpe, Budgeting and monitoring pension fund risk. Financial Anal. J. 58 (2002) 74–86. [CrossRef] [Google Scholar]
  • A. Soyster, Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21 (1973) 1153–1157. [Google Scholar]
  • E. Vigna and S. Haberman, Optimal investment strategy for defined contribution pension schemes. Insurance: Mathe. Econom. 28 (2001) 233–262. [CrossRef] [Google Scholar]
  • J. von Neumann and O. Morgenstern, Theory of games and economic behavior. Princeton University Press, Princeton, NJ (1953). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.