Free Access
RAIRO-Oper. Res.
Volume 53, Number 1, January–March 2019
Page(s) 129 - 156
Published online 31 January 2019
  • A.A. Alamri, Theory and methodology on the global optimal solution to a General Reverse Logistics Inventory Model for deteriorating items and time-varying rates. Comput. Ind. Engg. 60 (2011) 236–247 [CrossRef] [Google Scholar]
  • M. Besiou, P. Georgiadis and L.N. Van Wassenhove, Official recycling and scavengers: Symbiotic or conflicting? Eur. J. Oper. Res. 218 (2012) 563–576 [Google Scholar]
  • J. Barry, G. Girard and C. Perras, Logistics planning shifts into reverse. J. Eur. Business 5 (1993) 34 [Google Scholar]
  • N. Bhanot, P.V. Rao and S. Deshmukh, Enablers and barriers of sustainable manufacturing: results from a survey of researchers and industry professionals. Proc. CIRP 29 (2015) 562–567 [CrossRef] [Google Scholar]
  • A. Bouras and L. Tadj, Production planning in a three-stock reverse-logistics system with deteriorating items under a continuous review policy. J. Ind. Manag. Optimi. 11 (2015) 1041–1058 [CrossRef] [Google Scholar]
  • C.J. Chung and H.M. Wee, Short life-cycle deteriorating product remanufacturing in a green supply chain inventory control system. Int. J. Prod. Econ. 129 (2011) 195–203 [Google Scholar]
  • H. J. Chang and C.Y. Dye, An EOQ model for deteriorating items with time varying demand and partial backlogging. J. Oper. Res. Soc. 50 (1999) 1176–1182 [Google Scholar]
  • T. Chakrabarty, B.C. Giri and K. Chaudhuri, An EOQ model for items with Weibull distribution deterioration, shortages and trended demand: an extension of Philip’s model. Comput. Oper. Res. 25 (1998) 649–657 [Google Scholar]
  • S.C. Chen and J.T. Teng, Retailer’s optimal ordering policy for deteriorating items with maximum lifetime under supplier’s trade credit financing. Appl. Math. Modell. 38 (2014) 4049–4061 [CrossRef] [MathSciNet] [Google Scholar]
  • D.A. Dornfeld, Moving towards green and sustainable manufacturing. Int. J. Prec. Engg. Manuf.-Green Tech. 1 (2014) 63–66 [CrossRef] [Google Scholar]
  • K. Devika, A. Jafarian and V. Nourbakhsh, Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques. Eur. J. Oper. Res. 235 (2014) 594–615 [Google Scholar]
  • C.Y. Dye, The effect of preservation technology investment on a non-instantaneous deteriorating inventory model. Omega 41 (2013) 872–880 [Google Scholar]
  • M. Fleischmann, J.M. Bloemhof−Ruwaard, R. Dekker, E. Van der Laan, J.A. Van Nunen and L.N. Van Wassenhove, Quantitative models for reverse logistics: a review. Eur. J. Oper. Res. 103 (1997) 1–17 [Google Scholar]
  • P. Jawla and S. Singh, A reverse logistic inventory model for imperfect production process with preservation technology investment under learning and inflationary environment. Uncertain SCM 4 (2016) 107–122 [Google Scholar]
  • R. Hedjar, A.K. Garg and L. Tadj, Model predictive production planning in a three-stock reverse-logistics system with deteriorating items. Int. J. Sys. Sci.: Oper. Log. 2 (2015) 187–198 [Google Scholar]
  • R. Goel, A.P. Singh and R. Sharma, Supply chain model with stock dependent demand, quadratic rate of deterioration with allowableshortage. Int. J. Math. Oper. Res. 7 (2015) 156–177 [CrossRef] [Google Scholar]
  • P. Ghare and G. Schrader, A model for exponentially decaying inventory. J. Ind. Engg. 14 (1963) 238–243 [Google Scholar]
  • J. Gustavsson, C. Cederberg, U. Sonesson, R. Van Otterdijk and A. Meybeck, Global food losses and food waste. Food and Agriculture Organization of the United Nations, Rom (2011) [Google Scholar]
  • B. Giri and S. Sharma, Optimizing a closed-loop supply chain with manufacturing defects and quality dependent return rate. J. Manuf. Sys. 35 (2015) 92–111 [CrossRef] [Google Scholar]
  • K. Garg, D. Kannan, A. Diabat and P. Jha, A multi-criteria optimization approach to manage environmental issues in closed loop supply chain network design. J. Cleaner Prod. 100 (2015) 297–314 [CrossRef] [Google Scholar]
  • T. Kim, C.H. Glock and Y. Kwon, A closed-loop supply chain for deteriorating products under stochastic container return times. Omega 43 (2014) 30–40 [Google Scholar]
  • V. Kumar, P. Shirodkar, J. Camelio and J. Sutherland, Value flow characterization during product lifecycle to assist in recovery decisions. Int. J. Prod. Res. 45 (2007) 4555–4572 [Google Scholar]
  • B. Mota, M.I. Gomes, A. Carvalho and A.P. Barbosa−Povoa, Towards supply chain sustainability: economic, environmental and social design and planning. J. Cleaner Prod. 105 (2015) 14–27 [CrossRef] [Google Scholar]
  • A. Nagurney and L.S. Nagurney, Sustainable supply chain network design: A multicriteria perspective. Int. J. Sustainable Engg. 3 (2010) 189–197 [CrossRef] [Google Scholar]
  • B. Pal and K. Chaudhuri, A stochastic production inventory model for deteriorating items with products’ finite life-cycle. RAIRO: OR 51 (2017) 669–684 [CrossRef] [Google Scholar]
  • K. Skouri, I. Konstantaras, S. Papachristos and I. Ganas, Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate. Eur. J. Oper. Res. 192 (2009) 79–92 [Google Scholar]
  • B.K. Sett, B. Sarkar and A. Goswami, A two-warehouse inventory model with increasing demand and time varying deterioration. Sci. Iran. 19 (2012) 1969–1977 [CrossRef] [Google Scholar]
  • B. Sarkar, A production-inventory model with probabilistic deterioration in two-echelon supply chain management. Appl. Math. Modell. 37 (2013) 3138–3151 [CrossRef] [Google Scholar]
  • B. Sarkar, S.S. Sana and K. Chaudhuri, An inventory model with finite replenishment rate, trade credit policy and price-discount offer. J. Ind. Engg. 2013 (2013) Article ID 672504, 18 [Google Scholar]
  • B. Sarkar, P. Mandal and S. Sarkar, An EMQ model with price and time dependent demand under the effect of reliability and inflation. Appl. Math. Comput. 231 (2014) 414–421 [Google Scholar]
  • B. Sarkar and S. Saren, Product inspection policy for an imperfect production system with inspection errors and warranty cost. Eur. J. Oper. Res. 248 (2016) 263–271 [Google Scholar]
  • B. Sarkar, An EOQ model with delay in payments and time varying deterioration rate. Math. Comput. Modell. 55 (2012) 367–377 [CrossRef] [Google Scholar]
  • B. Sarkar and S. Sarkar, An improved inventory model with partial backlogging, time varying deterioration and stock-dependent demand. Econ. Modell. 30 (2013) 924–932 [CrossRef] [Google Scholar]
  • M. Sarkar and B. Sarkar, An economic manufacturing quantity model with probabilistic deterioration in a production system. Econ. Modell. 31 (2013) 245–252 [CrossRef] [Google Scholar]
  • R. Sachan, On (T, S i) policy inventory model for deteriorating items with time proportional demand. J. Oper. Res. society 35 (1984) 1013–1019 [Google Scholar]
  • J. Tang, Y. Liu, R.Y. Fung and X. Luo, Industrial waste recycling strategies optimization problem: mixed integer programming model and heuristics. Engg. Optim. 40 (2008) 1085–1100 [CrossRef] [Google Scholar]
  • H.F. Wang and H.W. Hsu, A closed-loop logistic model with a spanning-tree based genetic algorithm. Comput. Oper. Res. 37 (2010) 376–389 [Google Scholar]
  • F. Wang, X. Lai and N. Shi, A multi-objective optimization for green supply chain network design. Dec. Supp. Sys. 51 (2011) 262–269 [CrossRef] [Google Scholar]
  • W.C. Wang, J.T. Teng and K.R. Lou, Seller’s optimal credit period and cycle time in a supply chain for deteriorating items with maximum lifetime. Eur. J. Oper. Res. 232 (2014) 315–321 [Google Scholar]
  • B. Sarkar, S. Saren and L.E. Cárdenas−Barrón, An inventory model with trade-credit policy and variable deterioration for fixed lifetime products. Ann. Oper. Res. 229 (2015) 677–702 [Google Scholar]
  • B. Sarkar, B.K. Sett, G. Roy and A. Goswami, Flexible setup cost and deterioration of products in a supply chain model. Int. J. Appl. Comput. Math. 2 (2015) 1–16 [CrossRef] [Google Scholar]
  • C. Wang and L. Jiang, Inventory policy for deteriorating seasonal products with price and ramp-type time dependent demand. RAIRO: OR 49 (2015) 865–878 [CrossRef] [EDP Sciences] [Google Scholar]
  • B. Sarkar and S. Saren, Partial trade-credit policy of retailer with exponentially deteriorating items. Int. J. Appl. Comput. Math. 1 (2015) 343–368 [CrossRef] [Google Scholar]
  • F. Lin, Z.C. Yang and T. Jia, Optimal pricing and ordering policies for non instantaneous deteriorating items with price dependent demand and maximum lifetime, in Proc. of the 6th Inter. Asia Confer. Industrial Eng. Manag. Innovation, Springer (2016) 411–421 [CrossRef] [Google Scholar]
  • B. Sarkar, Supply chain coordination with variable backorder, inspections, and discount policy for fixed lifetime products. Math. Prob. in Engg. 2016 (2016) 6318737, 14 [Google Scholar]
  • D. Shin, R. Guchhait, B. Sarkar and M. Mittal, Controllable lead time, service level constraint, and transportation discounts in a continuous review inventory model. RAIRO: OR 50 (2016) 921–934 [CrossRef] [Google Scholar]
  • B. Sarkar, S.S. Sana and K. Chaudhuri, Optimal reliability, production lotsize and safety stock: an economic manufacturing quantity model. Int. J. Manag. Sci. and Engg. Manag. 5 (2010) 192–202 [Google Scholar]
  • S. Singh and H. Rathore, Reverse logistic model for deteriorating items with non-instantaneous deterioration and learning effect. Info. Sys. Des. Intell. Appl. Springer (2015) 435–445 [Google Scholar]
  • X. Shi, Environmental efficiency analysis based on relational two-stage DEA model. RAIRO: OR 50 (2016) 965–977 [CrossRef] [Google Scholar]
  • T.C. Weng and C.K. Chen, Competitive analysis of collection behavior between retailer and third-party in the reverse channel. RAIRO: OR 50 (2016) 175–188 [CrossRef] [Google Scholar]
  • P. Yang, H.-M. Wee, S. Chung and P. Ho, Sequential and global optimization for a closed-loop deteriorating inventory supply chain. Math. Comput. Modell. 52 (2010) 161–176 [CrossRef] [Google Scholar]
  • P. Yang, S. Chung, H. Wee, E. Zahara and C. Peng, Collaboration for a closed-loop deteriorating inventory supply chain with multi-retailer and price-sensitive demand. Int. J. Prod. Econ. 143 (2013) 557–566 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.