Free Access
RAIRO-Oper. Res.
Volume 53, Number 1, January–March 2019
Page(s) 323 - 338
Published online 15 February 2019
  • H. Badri, S. Fatemi Ghomi and T. Hejazi, A two-stage stochastic programming approach for value-based closed-loop supply chain network design. Transp. Res. Part E: Logist. Transp. Rev. 105 (2017) 1–17. [CrossRef] [Google Scholar]
  • M. Bender and S. Simonovic, A fuzzy compromise approach to water resource systems planning under uncertainty. Fuzzy Sets Syst. 115 (2000) 35–44. [CrossRef] [Google Scholar]
  • A. Ben-Tal and A. Nemirovski, Selected topics in robust convex optimization. Math. Program. 112 (2007) 125–158. [Google Scholar]
  • K. Castillo-Villar, S. Eksioglu and M. Taherkhorsandi, Integrating biomass quality variability in stochastic supply chain modeling and optimization for large-scale biofuel production. J. Clean. Prod. 149 (2017) 904–918. [Google Scholar]
  • J. Chandapillai, K. Sudheer and S. Saseendran, Design of water distribution network for equitable supply. Water Resour. Manage. 26 (2011) 391–406. [CrossRef] [Google Scholar]
  • G. Chung, K. Lansey and G. Bayraksan, Reliable water supply system design under uncertainty. Environ. Model. Softw. 24 (2009) 449–462. [Google Scholar]
  • Z. Dai and X. Zheng, Design of close-loop supply chain network under uncertainty using hybrid genetic algorithm: a fuzzy and chance-constrained programming model. Comput. Ind. Eng. 88 (2015) 444–457. [Google Scholar]
  • L. El Ghaoui, F. Oustry and H. Lebret, Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9 (1998) 33–52. [Google Scholar]
  • M. Farrokh, A. Azar, G. Jandaghi and E. Ahmadi, A novel robust fuzzy stochastic programming for closed loop supply chain network design under hybrid uncertainty. Fuzzy Sets Syst. 341 (2018) 69–91. [CrossRef] [Google Scholar]
  • P. Fattahi and S. Fayyaz, A compromise programming model to integrated urban water management. Water Resour. Manage. 24 (2009) 1211–1227. [CrossRef] [Google Scholar]
  • H. Felfel, O. Ayadi and F. Masmoudi, Multi-objective stochastic multi-site supply chain planning under demand uncertainty considering downside risk. Comput. Ind. Eng. 102 (2016) 268–279. [Google Scholar]
  • I. Goulter, Closure to “Probabilistic model for water distribution reliability” by Ian C. Goulter. J. Water Resour. Planning Manage. 125 (1999) 384. [CrossRef] [Google Scholar]
  • O. Guerra, A. Calderón, L. Papageorgiou, J. Siirola and G. Reklaitis, An optimization framework for the integration of water management and shale gas supply chain design. Comput. Chem. Eng. 92 (2016) 230–255. [Google Scholar]
  • A. Hamidieh, B. Naderi, M. Mohammadi and M. Fazli-Khalaf, A robust possibilistic programming model for a responsive closed loop supply chain network design. Cogent Math. 4 (2017) 1329886. [CrossRef] [Google Scholar]
  • M. Housh, A. Ostfeld and U. Shamir, Limited multi-stage stochastic programming for managing water supply systems. Environ. Model. Softw. 41 (2013) 53–64. [Google Scholar]
  • P.G. Jairaj and S. Vedula, Multireservoir system optimization using fuzzy mathematical programming. Water Resour. Manage. J. 14 (2000) 457–472. [CrossRef] [Google Scholar]
  • Ö. Kabak and F. Ülengin, Possibilistic linear-programming approach for supply chain networking decisions. Eur. J. Oper. Res. 209 (2011) 253–264. [Google Scholar]
  • Z. Kapelan, D. Savic and G. Walters, Multiobjective design of water distribution systems under uncertainty. Water Resour. Res. 41 (2005) 1–15. [Google Scholar]
  • A. Kasperski and M. Kulej, Choosing robust solutions in discrete optimization problems with fuzzy costs. Fuzzy Sets Syst. 160 (2009) 667–682. [CrossRef] [Google Scholar]
  • S. Leung, S. Tsang, W. Ng and Y. Wu, A robust optimization model for multi-site production planning problem in an uncertain environment. Eur. J. Oper. Res. 181 (2007) 224–238. [Google Scholar]
  • M. Li and P. Guo, A multi-objective optimal allocation model for irrigation water resources under multiple uncertainties. Appl. Math. Model. 38 (2014) 4897–4911. [Google Scholar]
  • Y. Li, G. Huang and S. Nie, An interval-parameter multi-stage stochastic programming model for water resources management under uncertainty. Adv. Water Res. 29 (2006) 776–789. [CrossRef] [Google Scholar]
  • Y. Li, G. Huang, Y. Huang and H. Zhou, A multistage fuzzy-stochastic programming model for supporting sustainable water-resources allocation and management. Environ. Model. Softw. 24 (2009) 786–797. [Google Scholar]
  • Y. Li, G. Huang and S. Nie, Planning water resources management systems using a fuzzy-boundary interval-stochastic programming method. Adv. Water Res. 33 (2010) 1105–1117. [CrossRef] [Google Scholar]
  • H. Lu, G. Huang and L. He, Development of an interval-valued fuzzy linear-programming method based on infinite α-cuts for water resources management. Environ. Model. Softw. 25 (2010) 354–361. [Google Scholar]
  • H. Lu, G. Huang and L. He, An inexact rough-interval fuzzy linear programming method for generating conjunctive water-allocation strategies to agricultural irrigation systems. Appl. Math. Model. 35 (2011) 4330–4340. [Google Scholar]
  • R. Ma, L. Yao, M. Jin, P. Ren and Z. Lv, Robust environmental closed-loop supply chain design under uncertainty. Chaos Solitons Fractals 89 (2016) 195–202. [Google Scholar]
  • M. Naderi and M. Pishvaee, A stochastic programming approach to integrated water supply and wastewater collection network design problem. Comput. Chem. Eng. 104 (2017) 107–127. [Google Scholar]
  • M. Naderi and M. Pishvaee, Robust bi-objective macroscopic municipal water supply network redesign and rehabilitation. Water Resour. Manage. 31 (2017) 2689–2711. [CrossRef] [Google Scholar]
  • X. Nie, G. Huang, Y. Li and L. Liu, IFRP: a hybrid interval-parameter fuzzy robust programming approach for waste management planning under uncertainty. J. Environ. Manage. 84 (2007) 1–11. [Google Scholar]
  • F. Pan and R. Nagi, Robust supply chain design under uncertain demand in agile manufacturing. Comput. Oper. Res. 37 (2010) 668–683. [Google Scholar]
  • D. Peidro, J. Mula, R. Poler and J. Verdegay, Fuzzy optimization for supply chain planning under supply, demand and process uncertainties. Fuzzy Sets Syst. 160 (2009) 2640–2657. [CrossRef] [Google Scholar]
  • P. Phuc, V. Yu and Y. Tsao, Optimizing fuzzy reverse supply chain for end-of-life vehicles. Comput. Ind. Eng. 113 (2017) 757–765. [Google Scholar]
  • M. Pishvaee and M. Fazli Khalaf, Novel robust fuzzy mathematical programming methods. Appl. Math. Model. 40 (2016) 407–418. [Google Scholar]
  • M. Pishvaee and J. Razmi, Environmental supply chain network design using multi-objective fuzzy mathematical programming. Appl. Math. Model. 36 (2012) 3433–3446. [Google Scholar]
  • M. Pishvaee and S. Torabi, A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy Sets Syst. 161 (2010) 2668–2683. [CrossRef] [Google Scholar]
  • M. Pishvaee, J. Razmi and S. Torabi, Robust possibilistic programming for socially responsible supply chain network design: a new approach. Fuzzy Sets Syst. 206 (2012) 1–20. [CrossRef] [Google Scholar]
  • R. Ramezanian and Z. Behboodi, Blood supply chain network design under uncertainties in supply and demand considering social aspects. Transp. Res. Part E: Logist. Transp. Rev. 104 (2017) 69–82. [CrossRef] [Google Scholar]
  • M. Ramezani, A. Kimiagari, B. Karimi and T. Hejazi, Closed-loop supply chain network design under a fuzzy environment. Knowl.-Based Syst. 59 (2014) 108–120. [CrossRef] [Google Scholar]
  • Y. Saif and A. Almansoori, Design and operation of water desalination supply chain using mathematical modelling approach. Desalination 351 (2014) 184–201. [CrossRef] [Google Scholar]
  • B. Shi, H. Lu, L. Ren and L. He, A fuzzy inexact two-phase programming approach to solving optimal allocation problems in water resources management. Appl. Math. Model. 38 (2014) 5502–5514. [Google Scholar]
  • A. Shibu and M. Reddy, Optimal design of water distribution networks considering fuzzy randomness of demands using cross entropy optimization. Water Resour. Manage. 28 (2014) 4075–4094. [CrossRef] [Google Scholar]
  • H. Soleimani, K. Govindan, H. Saghafi and H. Jafari, Fuzzy multi-objective sustainable and green closed-loop supply chain network design. Comput. Ind. Eng. 109 (2017) 191–203. [Google Scholar]
  • S. Torabi and E. Hassini, An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets Syst. 159 (2008) 193–214. [CrossRef] [Google Scholar]
  • G. Tsakiris, Rational design of urban water supply and distribution systems. Water Util. J. 8 (2014) 5–16. [Google Scholar]
  • B. Vahdani, R. Tavakkoli-Moghaddam, F. Jolai and A. Baboli, Reliable design of a closed loop supply chain network under uncertainty: an interval fuzzy possibilistic chance-constrained model. Eng. Optim. 45 (2013) 745–765. [CrossRef] [Google Scholar]
  • D. Watkins, D. McKinney, L. Lasdon, S. Nielsen and Q. Martin, A scenario-based stochastic programming model for water supplies from the highland lakes. Int. Trans. Oper. Res. 7 (2000) 211–230. [Google Scholar]
  • Y. Xu, G. Huang and L. Xu, A fuzzy robust optimization model for waste allocation planning under uncertainty. Environ. Eng. Sci. 31 (2014) 556–569. [Google Scholar]
  • D. Yang and T. Xiao, Pricing and green level decisions of a green supply chain with governmental interventions under fuzzy uncertainties. J. Clean. Prod. 149 (2017) 1174–1187. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.