Free Access
Issue
RAIRO-Oper. Res.
Volume 53, Number 2, April-June 2019
Page(s) 487 - 504
DOI https://doi.org/10.1051/ro/2018082
Published online 01 May 2019
  • E. Altantsetseg, Y. Muraki, F. Chiba and K. Konno, 3D surface reconstruction of stone tools by using four-directional measurement machine. Int. J. Virtual Reality (IJVR) 10 (2011) 37–43. [Google Scholar]
  • E. Altantsetseg, Y. Muraki, K. Matsuyama and K. Konno, Feature line extraction from unorganized noisy point clouds using truncated fourier series. Visual Comput. 29 (2013) 617–626. [CrossRef] [Google Scholar]
  • J.L. Bentley, Multidimensional binary search trees used for associative searching. Commun. ACM 18 (1975) 509–517. [Google Scholar]
  • D. Brodsky and B. Watson, Model simplification through refinement. Proc. Int. Conf. Graphics Interface, Quebec, Canada (2000), 221–228. [Google Scholar]
  • A. Chida, K. Matsuyama, F. Chiba and K. Konno, A rapid searching method of adjacent flake surfaces in stone implements by using sets of measured points for generating a joining material. J. Soc. Art Sci. 13 (2014) 107–115. [Google Scholar]
  • P. Cignoni, C. Montani and R. Scopigno, A comparison of mesh simplification algorithms. Comput. Graphics 22 (1998) 37–54. [CrossRef] [Google Scholar]
  • P. Cignoni, C. Rocchini and R. Scopigno, Metro: measuring error on simplified surfaces. Comput. Graphics Forum 17 (1998) 167–174. [CrossRef] [Google Scholar]
  • Concave Hull, available at: http://ubicomp.algoritmi.uminho.pt/local/concavehull.html [Google Scholar]
  • A. El Chakik, A. Elmoataz and X. Desquesnes, Mean curvature flow on graphs for image and manifold restoration and enhancement. Signal Process. 105 (2014) 449–463. [CrossRef] [Google Scholar]
  • R. Gal and D. Cohen-Or, Salient geometric features for partial shape matching and similarity. ACM Trans. Graphics 25 (2006) 130–150. [CrossRef] [Google Scholar]
  • K.H. Lee, H. Woo and T. Suk, Point data reduction using 3D grids. Int. J. Adv. Manuf. Technol. 18 (2001) 201–210. [Google Scholar]
  • K.H. Lee, H. Woo and T. Suk, Data reduction methods for reverse engineering. Int. J. Adv. Manuf. Technol. 17 (2001) 735–743. [Google Scholar]
  • P.F. Lee and B.S. Jong, Point-based simplification algorithm. J. WSEAS Trans. Comput. Res. 3 (2008) 61–66. [Google Scholar]
  • M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg and J. Shade, The digital Michelangelo project: 3D scanning of large statues. In: Proceedings of ACM SIGGRAPH, 1 July 2000 (2000) 131–144. [Google Scholar]
  • C. Liao, X. Niu and M. Wang, Simplification of 3D point cloud data based on ray theory. Comput. Model. New Technol. 18 (2014) 273–278. [Google Scholar]
  • F. Lozes, A. Elmoataz and O. Lézoray, Nonlocal processing of 3D colored point clouds. In: 21st International Conference on Pattern Recognition (2012) 1968–1971. [Google Scholar]
  • D.P. Luebke, A developer’s survey of polygonal simplification algorithms. IEEE Comput. Graphics Appl. 21 (2001) 24–35. [CrossRef] [Google Scholar]
  • Y. Miao, R. Pajarolac and J. Feng, Curvature-aware adaptive re-sampling for point-sampled geometry. Comput. Aided Des. 41 (2009) 395–403. [Google Scholar]
  • C. Moenning and N.A. Dodgson, A new point cloud Simplification algorithm. In: Proceedings of 3rd IASTED Conference on Visualization, Imaging and Image Processing (2003) 1027–1033. [Google Scholar]
  • C. Moenning and N.A. Dodgson, Intrinsic point cloud Simplification. In: . Proceedings of the 14th International Conference on Computer Graphic and Vision (GraphiCon), Moscow, Russia (2004). [Google Scholar]
  • G. Mullineux and S.T. Robinson, Fairing point sets using curvature. Comput. Aided Des. 39 (2007) 27–34. [Google Scholar]
  • A. Nouri, C. Charrier and O. Lézoray, Multi-scale mesh saliency with local adaptive patches for viewpoint selection. Signal Process. Image Commun. 38 (2015) 151–166. [Google Scholar]
  • M. Pauly, M. Gross and L.P. Kobbelt, Efficient simplification of point-sampled surfaces. In: Proceedings of the Conference on Visualization’02, IEEE Computer Society (2002) 163–170. [Google Scholar]
  • X. Peng, W. Huang, P. Wen and X. Wu, Simplification of scattered point cloud based on feature extraction. In: WGEC’09 Proceedings of the 2009 third International Conference Genetic and Evolutionary Computing, October 14–17 (2009) 335–338. [Google Scholar]
  • H. Pfister, M. Zwicker, J. Van Baar and M. Gross, Surfels: surface elements as rendering primitives. In: SIGGRAPH’00 Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000) 335–342. [Google Scholar]
  • Y. Qiu, X. Zhou, P. Yang and X. Qian, Curvature estimation of point set data based on the moving-least square surface. J. Shanghai Jiaotong Univ. (Science) 16 (2011) 402–411. [CrossRef] [Google Scholar]
  • E. Shaffer and M. GarlandEfficient adaptive simplification of massive meshes. In: VIS’01: IEEE Transactions on Visualization’01, 21–26 October (2001) 127–134. [Google Scholar]
  • B.Q. Shi, J. Liang and Q. Liu, Adaptive simplification of point cloud using #-means clustering. Comput. Aided Des. 43 (2011) 910–922. [Google Scholar]
  • P. Shilane and T. Funkhouser, Distinctive regions of 3D surfaces. ACM Trans. Graphics 26 (2007) 7. [CrossRef] [Google Scholar]
  • H. Song and H.Y. Feng, A global clustering approach to point cloud simplification with a specified data reduction ratio. Comput. Aided Des. 40 (2007) 281–292. [Google Scholar]
  • H. Song and H.-Y. Feng, A progressive point cloud simplification algorithm with preserved sharp edge data. Int. J. Adv. Manuf. Technol. 45 (2009) 583–592. [Google Scholar]
  • R.D. Toledo, B. Levy and J. Paul, Reverse engineering for industrial-environment cad models. In: Proceedings of TMCE 2008, April 21–25, Kusadasi, Turkey (2008). [Google Scholar]
  • T. Varady, R. Martin and J. Cox, Reverse engineering of geometric models – an introduction. Comput. Aided Des. 29 (1997) 255–268. [Google Scholar]
  • J. Wu, X. Shen, W. Zhu and L. Liu, Mesh saliency with global rarity. Graphical Models 75 (2013) 255–264. [Google Scholar]
  • K. Yamahara, K. Konno, F. Chiba and M. Sato, A method of detecting adjacent flakes in stone tool restoration by extracting peeling surfaces. Jpn. Soc. Archaeological Inf. 17 (2011) 23–32. [Google Scholar]
  • X. Yang, K. Matsuyama, K. Konno and Y. Tokuyama, Feature-preserving simplification of point cloud by using clustering approach based on mean curvature. J. Soc. Art Sci. 14 (2014) 117–128. [Google Scholar]
  • Y. Yoshida, K. Konno and Y. Tokuyama, A distributed simplification method with PC cluster. J. Soc. Art Sci. 7 (2008) 113–123. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.