Free Access
Issue
RAIRO-Oper. Res.
Volume 53, Number 3, July-September 2019
Page(s) 807 - 827
DOI https://doi.org/10.1051/ro/2017065
Published online 25 June 2019
  • B. Addis, G. Carello and A. Ceselli, Exactly solving a two-level location problem with modular node capacities. Networks 59 (2012) 161–180. [CrossRef] [Google Scholar]
  • A. Alumur Sibel, Y. Kara Bahar and E. Karasan Oya, Multimodal hub location and hub network design. Omega 40 (2012) 927–939. [Google Scholar]
  • S. Alumur and B.Y. Kara, Network hub location problems: The state of the art. Eur. J. Oper. Res. 190 (2008) 1–21. [Google Scholar]
  • A. Balma, A.B. Hadj–Alouane and N. Ben Hadj-Alouane, Optimizing voice processing resources of the Trunk Gateways in NGN networks. In: Proc. of International Multi-Conference on Complexity, Informatics and Cybernetics: IMCIC 2014 (2014) 152–155. [Google Scholar]
  • I. Contreras, J.F. Cordeau and G. Laporte, Benders Decomposition for Large-Scale Uncapacitated Hub Location. Oper. Res. 59 (2011) 1477–1490. [Google Scholar]
  • A.M. Campbell, T.J. Lowe and L. Zhang, The p-hub center allocation problem. Eur. J. Operat. Res. 176 (2007) 819–835, ISSN 0377–2217. [CrossRef] [Google Scholar]
  • J.F. Campbell and M.E. OKelly, Twenty-Five Years of Hub Location Research. Trans. Sci. 46 (2012) 153–169. [CrossRef] [Google Scholar]
  • Ch. Jeng–Fung, A hybrid heuristic for the uncapacitated single allocation hub location problem. Omega 35 (2007) 211–220. [Google Scholar]
  • I. Contreras and E. Fernandez, General network design: A unified view of combined location and network design problem. Eur. J. Operat. Res. 219 (2012) 680–697. [CrossRef] [Google Scholar]
  • I. Correia, S. Nickel and F. Saldanha-da-Gama, The capacitated single-allocation hub location problem revisited: A note on a classical formulation. Eur. J. Oper. Res. 207 (2010) 92–96. [Google Scholar]
  • I. Correia, S. Nickel and F. Saldanha-da-Gama, Single-assignment hub location problems with multiple capacity levels. Transp. Res. Part B 44 (2010) 1047–1066. [CrossRef] [Google Scholar]
  • M.G. Costa, M.E. Captivo and J. Climaco, Capacitated single allocation hub location problem: a bi-criteria approach. Comput. Oper. Res. 35 (2008) 3671–3695. [Google Scholar]
  • A.T. Ernst and M. Krishnamoorthy, Solution algorithms for the capacitated single allocation hub location problem. Ann. Oper. Res. 86 (1999) 141–159. [Google Scholar]
  • A.T. Ernst, H. Hamacher, H. Jiang, M. Krishnamoorthy and G. Woeginger, Uncapacitated single and multiple allocation p-hub center problems. Comput. Oper. Res. 36 (2009) 2230–2241. [Google Scholar]
  • M. Haouari, N. Maculan and M. Mrad, Enhanced compact models for the connected subgraph problem and for the shortest path problem in digraphs with negative cycles. Comput. Oper. Res. 40 (2013) 2485–2492. [Google Scholar]
  • B. Haouari, S. Bhar Layeb and H.D. Sherali, Tight compact models and comparative analysis for the prize collecting Steiner tree problem. Discrete Appl. Math. 161 (2013) 618–632. [Google Scholar]
  • J.Q. Hu and B. Leida, Traffic Grooming, Routing, and Wavelength Assignment in Optical WDM Mesh Networks. Proceedings of the IEEE INFOCOM 2004 (2004) 495–501; Available at: DOI: https://doi.org/10.1109/INFCOM.2004.1354521. [Google Scholar]
  • B.Y. Kara and B. Tansel, On the single-assignment p-hub center problem. Eur. J. Oper. Res. 125 (2000) 648–655. [Google Scholar]
  • F. Larumbe and B. Sanso, Optimal Location of Data Centers and Software Components in Cloud Computing Network Design. Proceedings of the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) (2012) 841–844. [Google Scholar]
  • I. Rodríguez–Martín and J.J. Salazar–González, Solving a capacitated hub location problem. Eur. J. Oper. Res. 184 (2008) 468–479. [Google Scholar]
  • S. Gelareh and S. Nickel, Hub location problems in transportation networks. Trans. Res. Part E: Logistics and Trans. Rev. 47 (2011) 1092–1111. [CrossRef] [Google Scholar]
  • H.D. Sherali, Y. Lee and T. Park, New modeling approaches for the design of local access transport area networks. Eur. J. Oper. Res. 127 (2000) 94–108. [Google Scholar]
  • H.D. Sherali and W.P. Adams, A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3 (1990) 411–30. [CrossRef] [MathSciNet] [Google Scholar]
  • H.D. Sherali and W.P. Adams, A hierarchy of relaxations and convex hull characteristics for mixed-integer zero-one programming problems. Discrete Appl. Math. 52 (1994) 83–106. [Google Scholar]
  • H.D. Sherali, S.C. Sarin and P. Tsai, A class of lifted path and flow-based formulations for the asymmetric traveling salesman problem with and without precedence constraints. Discrete Optimiz. 3 (2006) 20–32. [CrossRef] [Google Scholar]
  • H. Yaman and G. Carello, Solving the hub location problem with modular link capacities. Comput. Oper. Res. 32 (2005) 3227–3245. [Google Scholar]
  • Y. He, T. Wu, C. Zhang and Z. Liang, An improved MIP heuristic for the intermodal hub location problem. Omega 57 (2015) 203–211. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.