Free Access
RAIRO-Oper. Res.
Volume 53, Number 3, July-September 2019
Page(s) 867 - 886
Published online 28 June 2019
  • Q.H. Ansari and J.C. Yao, Recent Developments in Vector Optimiz. Springer, Berlin (2012). [CrossRef] [Google Scholar]
  • M.A.T. Ansary and G. Pandaa, A modified quasi-Newton method for vector optimization problem. Optimiz. 64 (2015) 2289–2306. [CrossRef] [Google Scholar]
  • F. Arikan and Z. Gungor, A two-phase approach for multi-objective programming problems with fuzzy coefficients. Inform. Sci. 177 (2007) 5191–5202. [CrossRef] [Google Scholar]
  • C.R. Bector and S. Chandra, Fuzzy Mathematical Programming and Fuzzy Matrix Games. Springer-Verlag, Berlin (2005). [Google Scholar]
  • B. Bede and L. Stefani, Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Syst. 230 (2013) 119–141. [CrossRef] [Google Scholar]
  • R.E. Bellman and L.A. Zadeh, Decision making in a fuzzy environment. Manag. Sci. 17 (1970) 141–164. [CrossRef] [Google Scholar]
  • Y. Chalco-Cano, G.N. Silva and A. Rufian-Lizana, On the Newton method for solving fuzzy optimization problems. Fuzzy Sets Syst. 272 (2015) 60–69. [CrossRef] [Google Scholar]
  • M. Ehrgott, Multicriteria Optimization. Springer, Berlin (2005). [Google Scholar]
  • J. Fliege, L.M. Grana Drummond and B.F. Svaiter, Newton’s method for multiobjective optimization. SIAM J. Optimiz. 20 (2009) 602–626. [CrossRef] [Google Scholar]
  • B.A. Ghaznavi-ghosoni and E. Khorram, On approximating weakly/properly efficient solutions in multiobjective programming. Math. Comput. Model. 54 (2011) 3172–3181. [CrossRef] [Google Scholar]
  • M. Ghaznavi, Optimality conditions via scalarization for approximate quasi-efficiency in multiobjective optimization. Filomat 31 (2017) 671–680. [CrossRef] [Google Scholar]
  • M. Ghaznavi and N. Hoseinpoor, A quasi-Newton method for solving fuzzy optimization problems. J. Uncertain Syst. 11 (2016) 3–17. [Google Scholar]
  • M. Ghaznavi, F. Soleimani and N. Hoseinpoor, Parametric analysis in fuzzy number linear programming problems. Int. J. Fuzzy Syst. 18 (2016) 463–477. [CrossRef] [Google Scholar]
  • D. Ghosh, A Newton method for capturing efficient solutions of interval optimization problems. OPSEARCH 53 (2016) 648–665. [CrossRef] [Google Scholar]
  • D. Ghosh, Newton method to obtain efficient solutions of the optimization problems with interval-valued objective functions. J. Appl. Math. Comput. 53 (2017) 709–731. [CrossRef] [Google Scholar]
  • E. Hosseinzadeh and H. Hassanpour, The Karush-Kuhn-Tucker optimality conditions in interval-valued multiobjective programming problems. J. Appl. Math. Inform. 29 (2001) 1157–1165. [Google Scholar]
  • M. Hukuhara, Integration des applications mesurables dont la valeur est un compact convexe. Funkcial. Ekvac 10 (1967) 205–223. [Google Scholar]
  • M. Jimenez and A. Bilbao, Pareto-optimal solutions in fuzzy multi-objective linear programming. Fuzzy Sets Syst. 160 (2009) 2714–2721. [CrossRef] [Google Scholar]
  • E. Khorram and V. Nozari, Multi-objective optimization with preemptive priority subject to fuzzy relation equation constraints. Iranian J. Fuzzy Syst. 9 (2012) 27–45. [Google Scholar]
  • S. Kumar-das and T. Mandal, A new approach for solving fully fuzzy linear fractional programming problems using the Multi objective linear programming problem. RAIRO: OR 51 (2017) 285–297. [CrossRef] [Google Scholar]
  • Y.J. Lai and C.L. Hwang, Fuzzy Multiple Objective Decision Making: Methods and applications. Springer-Verlag (1994). [CrossRef] [Google Scholar]
  • E.S. Lee and R.J. Li, Fuzzy multiple objective programming and compromise programming with Pareto optimum. Fuzzy Sets Syst. 53 (1993) 275–288. [CrossRef] [Google Scholar]
  • W.A. Lodwick and J. Kacprzyk, Fuzzy Optimization: Recent Advances and Applications. Springer-Verlag, Berlin (2010). [CrossRef] [Google Scholar]
  • F. Lu and C.R. Chen, Newton-like methods for solving vector optimization problems. Appl. Anal. Int. J. 93 (2014) 1567–1586. [CrossRef] [Google Scholar]
  • K.M. Miettinen, Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1998). [CrossRef] [Google Scholar]
  • U.M. Pirzada and V.D. Pathak, Newton method for solving the multi-variable fuzzy optimization problem. J. Optimiz. Theory Appl. 156 (2013) 867–881. [CrossRef] [Google Scholar]
  • S. Qu, M. Goh and F.T.S. Chan, Quasi-Newton methods for solving multiobjective optimization. Oper. Res. Lett. 39 (2011) 397–399. [CrossRef] [Google Scholar]
  • M. Sakawa, Fuzzy Sets and Interactive Multiobjective Optimization. Plenum Press (1993). [CrossRef] [Google Scholar]
  • R. Slowinski, Fuzzy Sets in Decision Analysis. Kluwer Academic Publishers, Operations Research and Statistics (1998). [Google Scholar]
  • L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets Syst. 161 (2010) 1564–1584. [CrossRef] [Google Scholar]
  • L. Stefanini and B. Barnabas, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonl. Anal.: Theory, Methods Appl. 71 (2009) 1311–1328. [CrossRef] [Google Scholar]
  • M. Upmanyu and R.R. Saxena, On solving multi objective Set Covering Problem with imprecise linear fractional objectives. RAIRO: OR 49 (2015) 495–510. [CrossRef] [Google Scholar]
  • C. Veeramani and M. Sumathi, Fuzzy mathematical programming approach for solving fuzzy linear fractional programming problem. RAIRO: OR 48 (2014) 109–122. [CrossRef] [Google Scholar]
  • X. Wang, J. Wang and X. Chen, Fuzzy multi-criteria decision making method based on fuzzy structured element with incomplete weight information. Iranian J. Fuzzy Syst. 13 (2016) 1–17. [Google Scholar]
  • H.C. Wu, Solutions of fuzzy multiobjective programming problems based on the concept of scalarization. J. Optimiz. Theory Appl. 139 (2008) 361–378. [CrossRef] [Google Scholar]
  • H.C. Wu, Using the technique of scalarization to solve the multiobjective programming problems with fuzzy coefficients. Math. Comput. Model. 48 (2008) 232–248. [CrossRef] [Google Scholar]
  • H.C. Wu, The Karush-Kuhn-Tucker optimality conditions for multi-objective programming problems with fuzzy-valued objective functions. Fuzzy Optimiz. Decis. Making 8 (2009) 1–28. [CrossRef] [Google Scholar]
  • H.C. Wu, The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions. Eur. J. Oper. Res. 196 (2009) 49–60. [CrossRef] [Google Scholar]
  • Y.K. Wu, C.C. Liu and Y.Y. Lur, Pareto optimal solution for multiobjective linear programming problems with fuzzy goals. Fuzzy Optimiz. Decis. Making 14 (2015) 43–55. [CrossRef] [Google Scholar]
  • H.J. Zimmermann, Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1 (1978) 45–55. [CrossRef] [Google Scholar]
  • H.J. Zimmermann, Fuzzy Set Theory and its Applications, 3rd ed. Kluwer Academic Publishers (1996). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.