Free Access
RAIRO-Oper. Res.
Volume 53, Number 3, July-September 2019
Page(s) 1083 - 1095
Published online 29 July 2019
  • S.G. de Amorim, J.-P. Barthélemy and C.C. Ribeiro, Clustering and clique partitioning: simulated annealing and tabu search approaches. J. Classif. 9 (1992) 17–42. [Google Scholar]
  • P. Arabie, L.J. Hubert and G. de Soete, Clustering and Classification. World Scientific Publishers, Singapore and River Edge, NJ (1996). [CrossRef] [Google Scholar]
  • J.-P. Barthélemy and B. Leclerc, The median procedure for partitions. DIMACS Ser. Discrete Math. Theor. Comput. Sci. 19 (1995) 3–34. [CrossRef] [Google Scholar]
  • J.-P. Barthélemy and B. Monjardet, The median procedure in cluster analysis and social choice theory. Math. Soc. Sci. 1 (1981) 235–267. [Google Scholar]
  • G. Brossier, Les éléments fondamentaux de la classification. In: Analyse des données, edited by G. Govaert. Hermès Lavoisier, Paris (2003). [Google Scholar]
  • F. Brucker and J.-P. Barthélemy, Éléments de classification. Hermès, Paris (2007). [Google Scholar]
  • I. Charon and O. Hudry, The noising method: a new combinatorial optimization method. Oper. Res. Lett. 14 (1993) 133–137. [CrossRef] [MathSciNet] [Google Scholar]
  • I. Charon and O. Hudry, Mixing different components of metaheuristics. In: Metaheuristics: Theory and Applications, edited by I.H. Osman and J.P. Kelly. Kluwer Academic Publishers, Boston (1996) 589–603. [Google Scholar]
  • I. Charon and O. Hudry, Lamarckian genetic algorithms applied to the aggregation of preferences. Ann. Oper. Res. 80 (1998) 281–297. [Google Scholar]
  • I. Charon and O. Hudry, Application of the noising methods to the Travelling Salesman Problem. Eur. J. Oper. Res. 125 (2000) 266–277. [Google Scholar]
  • I. Charon and O. Hudry, Self-tuning of the noising methods. Optimization 58 (2009) 1–21. [Google Scholar]
  • I. Charon and O. Hudry, The noising methods. In: Heuristics: Theory and Applications, edited by P. Siarry. Nova Publishers, New York, NY (2013) 1–30. [Google Scholar]
  • K.A. Dowsland, Simulated annealing. In: Modern Heuristic Techniques for Combinatorial Problems, edited by C. Reeves. McGraw-Hill, London (1995) 20–69. [Google Scholar]
  • B.S. Everitt, S. Landau, M. Leese and D. Stahl, Cluster Analysis. Wiley, Hoboken, NJ (2011). [CrossRef] [Google Scholar]
  • M. Gendreau and J.-Y. Potvin, Handbook of Metaheuristics. Springer, Berlin (2010). [CrossRef] [Google Scholar]
  • O. Hudry, NP-hardness of the computation of a median equivalence relation in classification (Régnier’s problem). Math. Soc. Sci. 197 (2012) 83–97. [Google Scholar]
  • O. Hudry, Descent with mutations applied to the linear order problem. In: Book of Abstracts of the 5th International Symposium on Combinatorial Optimization, ISCO 2018 (2018) 86–87. [Google Scholar]
  • M. Krivanek and J. Moravek, NP-hard problems in hierarchical-tree clustering. Acta Inf. 23 (1986) 311–323. [CrossRef] [Google Scholar]
  • S. Luke, Essentials of Metaheuristics. 2nd edition. Available at: Lulu Press (2013). [Google Scholar]
  • S. Régnier, Sur quelques aspects mathématiques des problèmes de classification automatique. ICC Bull. 4 (1965) 175. [Google Scholar]
  • C. Romesburg, Cluster Analysis for Researchers. Lulu Press, Morrisville, NC (2004). [Google Scholar]
  • P. Siarry (ed.), Metaheuristics. Springer, Berlin (2016). [Google Scholar]
  • E.-G. Talbi, Metaheuristics: From Design to Implementation. Wiley, Hoboken, NJ, 2009. [Google Scholar]
  • Y. Wakabayashi, Aggregation of binary relations: algorithmic and polyhedral investigations. Ph.D. thesis, Augsbourg (1986). [Google Scholar]
  • Y. Wakabayashi, The complexity of computing medians of relations. Resenhas 3 (1998) 323–349. [Google Scholar]
  • C.T. Zahn, Approximating symmetric relations by equivalence relations. SIAM J. Appl. Math. 12 (1964) 840–847. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.