Free Access
RAIRO-Oper. Res.
Volume 53, Number 4, October 2019
Page(s) 1109 - 1127
Published online 29 July 2019
  • R.H. Ballou Business Logistics/Supply Chain Management: Planning, Organizing, and Controlling the Supply Chain. Pearson Education India (2007). [Google Scholar]
  • L.M.C. Bataglin and D. Alem, The location-distribution problem in the megadisaster of the Mountain region in Rio de Janeiro. Gest. Prod. 21 (2014) 865–881. [CrossRef] [Google Scholar]
  • S. Bera and K.V. Rao, Estimation of origin-destination matrix from traffic counts: the state of the art. Euro. Transp. (Trasporti Europei) 49 (2011) 2–23. [Google Scholar]
  • C. Berge, Two theorems in graph theory. Proc. Natl. Acad. Sci. USA 43 (1957) 842–844. [CrossRef] [Google Scholar]
  • R. Bhatnagar, J. Jayram and Y.C. Phua, Relative importance of plant location factors: a cross national comparison between Singapore and Malaysia. J. Business Logistics (2003) 147–170. [CrossRef] [Google Scholar]
  • L. Bianco, G. Confessore and P. Reverberi, A network based model for traffic sensor location with implications on O/D matrix estimates. Transp. Sci. 35 (2001) 50–60. [CrossRef] [Google Scholar]
  • M.A.F. Caldas, J.C.C.B.S. Mello, L.A. Meza and F. Azevedo, Uso do Método de Copeland Hierárquico para Localização de Terminal Multimodal de Cargas (Use of the Copeland method for the location of the multimodal cargo terminal), in XXIII Congresso de Pesquisa e Ensino em Transportes – ANPET, Vitória/ES (2009). [Google Scholar]
  • Caliper, TransCAD Transportation GIS Software – Routing and Logistics with TransCAD 5.0. Caliper Corporation, Newton, EUA (2008). [Google Scholar]
  • A. Chen, S. Pravinvongvuth, P. Chootinan, M. Lee and W. Recker, Strategies for selecting additional traffic counts for improving OD trip table estimation. Transportmetrica 3 (2007) 191–211. [CrossRef] [Google Scholar]
  • P. Chootinan, A. Chen and H. Yang, A bi-objective traffic counting location problem for origin-destination trip table estimation. Transportmetrica 1 (2005) 65–80. [CrossRef] [Google Scholar]
  • P.T. Chuang, Combining the analytic hierarchy process and quality function deployment for location decision from a requirement perspective. Int. J. Adv. Manuf. Technol. 18 (2001) 842–849. [Google Scholar]
  • CNT – Confederação Nacional do Transporte, 2005, Preços da Gasolina e do Diesel (Prices of Gasoline and Diesel). 2015Available at: [Google Scholar]
  • M.B.B. Costa, Utilização De Modelo De Localização-Alocação Para Identificação De Zoneamento Logstico Integrado Ao Planejamento Estratégico De Transportes (A location-allocation model for integrated logistic zoning identification to strategic transportation planning). Ph.D. in Dissertation in Transportation Engineering, Federal University of Rio de Janeiro, Rio de Janeiro, Brasil (2014) [Google Scholar]
  • DNIT – Departamento Nacional de Infraestrutura de Transportes, Plano Nacional de Contagem de Tráfego (National Traffic Counting Plan). Available at: (2015). [Google Scholar]
  • A. Ehlert, M.G.H. Bell and S. Grosso, The optimisation of traffic count locations in road networks. Transp. Res. Part B: Methodol. 40 (2006) 460–479. [CrossRef] [Google Scholar]
  • F.A. Galvão, N.D.F. Gualda and C.B. Cunha, An application of the Analytic Hierarchy Process (AHP) for locating a distribution center. In: International Symposium on the Analytic Hierarchy Process, Bali, Indonésia (2003). [Google Scholar]
  • L. Gan, H. Yang and S.C. Wong, Traffic counting location and error bound in origin-destination matrix estimation problems. J. Transp. Eng. 131 (2005) 524–534. [Google Scholar]
  • M. Gastaldi, G. Gecchele and R. Rossi, Estimation of annual average daily traffic from one-week traffic counts. A combined ANN-Fuzzy approach. Transp. Res. Part C: Emerg. Technol. 47 (2014) 86–99. [CrossRef] [Google Scholar]
  • Q. Ge and D. Fukuda, Updating origin–destination matrices with aggregated data of GPS traces. Transp. Res. Part C Emerg. Technol. 69 (2016) 291–312. [Google Scholar]
  • M. Gentili and P.B. Mirchandani, Locating sensors on traffic networks: Models, challenges and research opportunities. Transp. Res. Part C: Emerg. Technol. 24 (2012) 227–255. [CrossRef] [Google Scholar]
  • S.L. Hakimi, Optimum locations of switching centers and the absolute centers and medians of a graph. Oper. Res. 12 (1964) 450–459. [Google Scholar]
  • S.L. Hakimi, Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Oper. Res. 13 (1965) 462–475. [Google Scholar]
  • S.R. Hu and H.T. Liou, A generalized sensor location model for the estimation of network origin–destination matrices. Transp. Res. Part C: Emerg. Technol. 40 (2014) 93–110. [CrossRef] [Google Scholar]
  • S.R. Hu, S. Peeta and C.H. Chu, Identification of vehicle sensor locations for segmento-based network traffic applications. Transp. Res. Part B: Methodol. 43 (2009) 873–894. [CrossRef] [Google Scholar]
  • IBM, IBM ILOG CPLEX versão 12.6 (2015). [Google Scholar]
  • M. Kayhanian, A. Singh, C. Suverkropp and S. Borroum, Impact of annual average daily traffic on highway runoff pollutant concentrations. J. Environ. Eng. 129 (2003) 975–990. [CrossRef] [Google Scholar]
  • H.J. Kim, H.I. Chung and S.Y. Chung, Selection of the optimal traffic counting locations for estimating origin-destination trip matrix. J. East Asia Soc. Transp. Stud. 5 (2003) 1353–1365. [Google Scholar]
  • R.A. Lopez and N.R. Henderson, The determinants of location choices for food processing plants. Agrobusiness 5 (1989) 619–632. [CrossRef] [Google Scholar]
  • L.A.N. Lorena and E.L.F. Senne, A column generation approach to capacitated p-median problems. Comput. Oper. Res. 31 (2004) 863–876. [Google Scholar]
  • M.T. Melo, S. Nickel and F. Saldanha-da-Gama, Facility location and supply chain management – a review. Eur. J. Oper. Res. 2 (2009) 401–412. [Google Scholar]
  • Ministério dos Transportes, Rodovias: Contagem de tráfego nas rodovias terá maior precisão (Highways: Traffic counts on highways will have better precision). Available at: (2015). [Google Scholar]
  • Ministério dos Transportes, DNIT, Pesquisa Nacional de Tráfego – PNT (National Traffic Survey – PNT). Braslia: Secretaria de Poltica Nacional de Transportes, DF (2011). [Google Scholar]
  • B. Moya-Gómez and J.C. Garca-Palomares, Working with the daily variation in infrastructure performance on territorial accessibility. The cases of Madrid and Barcelona. Eur. Transp. Res. Rev. 7 (2015) 20. [CrossRef] [Google Scholar]
  • P. Rebreyend, L. Lemarchand, R. Euler, A computational comparison of different algorithms for very large p-median problems. In: Evolutionary Computation in Combinatorial Optimization. Springer International Publishing (2015) 13–24. [Google Scholar]
  • B.C. Romero, Análise de Localização de Plataformas Logsticas: Aplicação ao Caso do ETSP – Entreposto Terminal São Paulo da CEAGESP (Logistics Platform Location Analysis: Application to the Case of ETSP – Terminal Warehouse São Paulo of CEAGESP), Dissertação de Mestrado, Engenharia de Sistemas Logsticos, Escola Politécnica da Universidade de São Paulo – POLI/USP, São Paulo/SP (2006). [Google Scholar]
  • H. Shao, W.H.K. Lam, A. Sumalee and M.L. Hazelton, Estimation of mean and covariance of stochastic multi-class OD demands from classified traffic counts. Transp. Res. Part C: Emerg. Technol. 59 (2015) 92–110. [CrossRef] [Google Scholar]
  • J. Short and A. Kopp, Transport infrastructure: Investment and planning. Policy and research aspects. Transp. Policy 12 (2005) 360–367. [CrossRef] [Google Scholar]
  • D.J. Sun, Y. Chang and L. Zhang, An ant colony optimisation model for traffic counting location problem. Proc. Inst. Civ. Eng. Transp. 165 (2012) 175–185. [Google Scholar]
  • A. Suzuki and Z. Drezner, The p-center location problem in an area. Location Sci. 4 (1996) 69–82. [CrossRef] [Google Scholar]
  • B.C. Tansel, R.L. Francis and T.J. Lowe, State of the art–location on networks: a survey. Part I: the p-center and p-median problems. Manage. Sci. 29 (1983) 482–497. [Google Scholar]
  • C. Toregas, R. Swain, C. Revelle and L. Bergman, The location of emergency service facilities. Oper. Res. 19 (1971) 1363–1373. [Google Scholar]
  • I. Tsapakis and W.H. Schneider IV, Determining the optimal number of seasonal adjustment factor groupings when estimating annual average daily traffic and investigating their characteristics. Transp. Plan. Technol. 38 (2015) 181–199. [CrossRef] [Google Scholar]
  • P. Waddell, Integrated land use and transportation planning and modelling: addressing challenges in research and practice. Transp. Rev. 31 (2011) 209–229. [Google Scholar]
  • M. Yaghini, M. Karimi and M. Rahbar, A hybrid metaheuristic approach for the capacitated p-median problem. Appl. Soft Comput. 13 (2013) 3922–3930. [Google Scholar]
  • H. Yang, Y. Lida and T. Sasaki, An analysis of the reliability of an origin–destination trip matrix estimated from traffic counts. Transp. Res. Part B: Methodol. 25 (1991) 351–363. [CrossRef] [Google Scholar]
  • H. Yang, C. Yang and L. Gan, Models and algorithms for the screen line-based traffic-counting location problems. Comput. Oper. Res. 33 (2006) 836–858. [Google Scholar]
  • H. Yang and J. Zhou, Optimal traffic counting locations for origin–destination matrix estimation. Transp. Res. Part B: Methodol. 32 (1998) 109–126. [CrossRef] [Google Scholar]
  • J. Yang and H. Lee, A ahp decision model for facility location selection. Facilities 15 (1997) 241–254. [CrossRef] [Google Scholar]
  • P.K.N. Yim and W.H.K. Lam, Evaluation of count location selection methods for estimation of O-D matrices. J. Transp. Eng. 124 (1998) 376–383. [Google Scholar]
  • F. Zhao and S. Chung, Contributing factors of annual average daily traffic in a Florida county: exploration with geographic information system and regression models. Transp. Res. Rec. J. Transp. Res. Board 1769 (2001) 113–122. [CrossRef] [Google Scholar]
  • X. Zhou and G.F. List, An information-theoretic sensor location model for traffic origin-destination demand estimation applications. Transp. Sci. 44 (2010) 254–273. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.