Free Access
RAIRO-Oper. Res.
Volume 53, Number 4, October 2019
Page(s) 1229 - 1244
Published online 29 July 2019
  • R. Caballero and M. Hernández, The controlled estimation method in the multiobjective linear fractional problem. Comput. Oper. Res. 31 (2004) 1821–1832. [Google Scholar]
  • E. Choo, Multicriteria linear fractional programming. Ph.D. thesis. University of British Columbia (1980). [Google Scholar]
  • E. Choo and D. Atkins, Bicriteria linear fractional programming. J. Optim. Theory App. 36 (1982) 203–220. [CrossRef] [Google Scholar]
  • J.P. Costa, Computing non-dominated solutions in MOLFP. Eur. J. Oper. Res. 181 (2007) 1464–1475. [Google Scholar]
  • J.P. Costa and M.J. Alves, A reference point technique to compute non-dominated solutions in MOLFP. J. Math. Sci. 161 (2009) 820–830. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Ehrgott, A. Löhne and L. Shao, A dual variant of Benson’s “outer approximation algorithm’’ for multiple objective linear programming. J. Global Optim. 57 (2012) 757–778. [CrossRef] [Google Scholar]
  • H. Hamacher, C. Pedersen and S. Ruzika, Finding representative systems for discrete bicriterion optimization problems. Oper. Res. Lett. 35 (2007) 336–344. [CrossRef] [Google Scholar]
  • M. Hartikainen, K. Miettinen and M. Wiecek, Constructing a pareto front approximation for decision making. Math. Methods Oper. Res. 73 (2011) 209–234. [CrossRef] [Google Scholar]
  • G. Kirlik and S. Sayin, A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems. Eur. J. Oper. Res. 232 (2014) 479–488. [Google Scholar]
  • J.S.H. Kornbluth and R.E. Steuer, Multiple objective linear fractional programming. Manage. Sci. 27 (1981) 1024–1039. [Google Scholar]
  • F.H. Lotfi, A.A. Noora, G.R. Jahanshahloo, M. Khodabakhshi and A. Payan, A linear programming approach to test efficiency in multi-objective linear fractional programming problems. App. Math. Model. 34 (2010) 4179–4183. [CrossRef] [MathSciNet] [Google Scholar]
  • V. Pereyra, M. Saunders and J. Castillo, Equispaced pareto front construction for constrained bi-objective optimization. Math. Comput. Model. 57 (2013) 2122–2131. [Google Scholar]
  • N. Ruan and D. Gao, Global solutions to fractional programming problem with ratio of nonconvex functions. Appl. Math. Comput. 255 (2015) 66–72. [Google Scholar]
  • S. Ruzika and M.M. Wiecek, Approximation methods in multiobjective programming. J. Optim. Theory App. 126 (2005) 473–501. [CrossRef] [Google Scholar]
  • P. Shen, W. Li and X. Bai, Maximizing for the sum of ratios of two convex functions over a convex set. Comput. Oper. Res. 40 (2013) 2301–2307. [Google Scholar]
  • I.M. Stancu-Minasian, Fractional Programming: Theory, Methods and Applications. Kluwer Academic Publishers, Alphen aan den Rijn (1997). [CrossRef] [Google Scholar]
  • B. Stanojević and M. Stanojević, On the efficiency test in multi-objective linear fractional programming problems by Lotfi et al. 2010. Appl. Math. Model. 37 (2013) 7086–7093. [Google Scholar]
  • E. Valipour, M.A. Yaghoobi and M. Mashinchi, An iterative approach to solve multiobjective linear fractional programming problems. Appl. Math. Model. 38 (2014) 38–49. [Google Scholar]
  • E. Valipour, M.A. Yaghoobi and M. Mashinchi, An approximation to the nondominated set of a multiobjective linear fractional programming problem. Optimization 65 (2016) 1539–1552. [Google Scholar]
  • J. Wu and S. Azarm, Metrics for quality assessment of a multiobjective design optimization solution set. J. Mech. Des. 123 (2001) 18–25. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.