Free Access
Issue
RAIRO-Oper. Res.
Volume 53, Number 4, October 2019
Page(s) 1279 - 1295
DOI https://doi.org/10.1051/ro/2019017
Published online 05 August 2019
  • D. Aloise and C.C. Ribeiro, Adaptive memory in multistart heuristics for multicommodity network design. J. Heurist. 17 (2011) 153–179. [CrossRef] [Google Scholar]
  • Y.K. Agarwal, Design of capacitated multicommodity networks with multiple facilities. Oper. Res. 50 (2002) 333–344. [Google Scholar]
  • P. Avella, S. Mattia and A. Sassano, Metric inequalities and the network loading problem. Discret. Opt. 4 (2007) 103–114. [CrossRef] [Google Scholar]
  • A. Balakrishnan, T.L. Magnanti and P. Mirchandani, Network design, edited by M. Dell Amico, F. Maffioli and S. Martello. In: Annotated Bibliographies in Combinatorial Optimization. Wiley, New York, USA (1997) 311–334. [Google Scholar]
  • D. Bienstock, S. Chopra, O. Günlük and C.Y. Tsai, Minimum cost capacity installation for multicommodity network flows. Math. Progr. 81 (1998) 177–199. [Google Scholar]
  • D. Bienstock and O. Günlük, Capacitated network design—polyhedral structure and computation. Inf. J Comput. 8 (1996) 243–259. [CrossRef] [Google Scholar]
  • M. Chouman, T.G. Crainic and B. Gendron, Commodity representations and cut-set-based inequalities for multicommodity capacitated fixed-charge network design. Transp. Sci. 51 (2016) 650–667. [CrossRef] [Google Scholar]
  • K.L. Croxton, B. Gendron and T.L. Magnanti, A comparison of mixed-integer programming models for nonconvex piecewise linear cost minimization problems. Manage. Sci. 49 (2003) 1268–1273. [Google Scholar]
  • A.M. Costa, A survey on Benders decomposition applied to fixed-charge network design problems. Comput. Oper. Res. 32 (2005) 1429–1450. [Google Scholar]
  • V. Gabrel, A. Knippel and M. Minoux, Exact solution of multicommodity network optimization problems with general step cost functions. Oper. Res. Lett. 25 (1999) 15–23. [CrossRef] [Google Scholar]
  • V. Gabrel, A. Knippel and M. Minoux, A comparison of heuristic for the discrete cost multicommodity network optimization problem. J. Heurist. 9 (2003) 429–445. [CrossRef] [Google Scholar]
  • V. Gabrel and M. Minoux, LP relaxations better than convexification for multicommodity network optimization problems with step increasing cost functions. Acta Math. Vietnam. 22 (1997) 123–145. [Google Scholar]
  • B. Gendron, J.Y. Potvin and P. Soriano, Diversification strategies in local search for a nonbifurcated network loading problem, Eur. J. Oper. Res. 142 (2002) 231–241. [Google Scholar]
  • B. Gendron, J.Y. Potvin and P. Soriano, A tabu search with slope scaling for the multicommodity capacitated location problem with balancing requirements, Ann. Oper. Res. 122 (2003) 193–217. [Google Scholar]
  • O. Günlük, A branch-and-cut algorithm for capacitated network design problems, Math. Progr. 86 (1999) 17–39. [CrossRef] [Google Scholar]
  • D.S. Johnson, J.K. Lenstra and A.H.G. Rinnooy Kan, The complexity of the network design problem. Networks 8 (1978) 279–285. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Onaga and O. Kakusho, On feasibility conditions of multicommodity flows in networks. IEEE Trans. Circ. Theory 18 (1971) 425–429. [CrossRef] [Google Scholar]
  • S.B. Layeb, MNOP-SCF Instances. Available at: https://www.researchgate.net/publication/330162116_MNOP-SCF_Instances (2019) [Google Scholar]
  • C. Lee, K. Lee and S. Park, Benders decomposition approach for the robust network design problem with flow bifurcations. Networks 62 (2013) 1–16. [CrossRef] [Google Scholar]
  • I. Ljubić, P. Putz and J.J. Salazar-González, Exact approaches to the single-source network loading problem. Networks 59 (2012) 89–106. [CrossRef] [Google Scholar]
  • S. Mattia, Separating tight metric inequalities by bilevel programming. Oper. Res. Lett. 40 (2012) 568–572. [CrossRef] [Google Scholar]
  • M. Minoux, Network synthesis and optimum network design problems: Models, solution methods and application. Networks 19 (1989) 313–360. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Minoux, Discrete cost multicommodity network optimization problems and exact solution methods. Ann. Oper. Res. 106 (2001) 19–46. [Google Scholar]
  • M. Mrad and M. Haouari, Optimal solution of the discrete cost multicommodity network design problem. Appl. Math. Comput. 204 (2008) 745–753. [Google Scholar]
  • S. Orlowski, R. Wessäly, M. Pióro and A. Tomaszewski, SNDlib 1.0—survivable network design library. Networks 55 (2010) 276–286. [Google Scholar]
  • C. Raack, A.M. Koster, S. Orlowski and R. Wessäly, On cut-based inequalities for capacitated network design polyhedra. Networks 57 (2011) 141–156. [Google Scholar]
  • M. Stoer and G. Dahl, A polyhedral approach to multicommodity survivable network design. Numer. Math. 68 (1994) 149–167. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.