Free Access
Issue
RAIRO-Oper. Res.
Volume 53, Number 4, October 2019
Page(s) 1245 - 1260
DOI https://doi.org/10.1051/ro/2018080
Published online 29 July 2019
  • N.L.H. Anh, Higher-order optimality conditions in set-valued optimization using Studniarski derivatives and applications to duality. Positivity 18 (2014) 449–473. [Google Scholar]
  • N.L.H. Anh, Higher-order optimality conditions for strict and weak efficient solutions in set-valued optimization. Positivity 20 (2016) 499–514. [Google Scholar]
  • N.L.H. Anh and P.Q. Khanh, Variational sets of perturbation maps and applications to sensitivity analysis for constrained vector optimization. J. Optim. Theory Appl. 158 (2013) 363–384. [Google Scholar]
  • N.L.H. Anh and P.Q. Khanh, Calculus and applications of Studniarski’s derivatives to sensitivity and implicit function theorems. Control Cybern. 43 (2014) 33–57. [Google Scholar]
  • J.P. Aubin and H. Frankowska, Set-Valued Analysis. Birkhauser, Boston (1990). [Google Scholar]
  • C.R. Chen, S.J. Li and K.L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems. J. Global Optim. 45 (2009) 309–318. [CrossRef] [Google Scholar]
  • T.D. Chuong, Derivatives of the efficient point multifunction in parametric vector optimization problems. J. Optim. Theory Appl. 156 (2013) 247–265. [Google Scholar]
  • T.D. Chuong and J.-C. Yao, Generalized Clarke epiderivatives of parametric vector optimization problems. J. Optim. Theory Appl. 146 (2010) 77–94. [Google Scholar]
  • R. Cominetti, Metric regularity, tangent sets, and second-order optimality conditions. Appl. Math. Optim. 21 (1990) 265–287. [Google Scholar]
  • H.T.H. Diem, P.Q. Khanh and L.T. Tung, On higher-order sensitivity analysis in nonsmooth vector optimization. J. Optim. Theory Appl. 162 (2014) 463–488. [Google Scholar]
  • X.P. Ding and J.Y. Park, Generalized vector equilibrium problems in generalized convex spaces. J. Optim. Theory Appl. 120 (2004) 327–353. [Google Scholar]
  • A.V. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Academic Press, New York, NY (1983). [Google Scholar]
  • H. Gfrerer, On directional metric regularity, subregularity and optimality conditions for nonsmooth mathematical programs. Set-Valued Var. Anal. 21 (2013) 151–176. [CrossRef] [Google Scholar]
  • X.H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems. J. Optim. Theory Appl. 139 (2008) 35–46. [Google Scholar]
  • A.D. Ioffe, Metric regularity – A survey. Part I. Theory. J. Aust. Math. Soc. 101 (2016) 188–243. [CrossRef] [Google Scholar]
  • A.D. Ioffe, Metric regularity – A survey. Part II. Application. J. Aust. Math. Soc. 101 (2016) 376–417. [CrossRef] [Google Scholar]
  • K. Kimura and J.C. Yao, Semicontinuity of solution mappings of parametric generalized vector equilibrium problems. J. Optim. Theory Appl. 138 (2008) 429–443. [Google Scholar]
  • P.Q. Khanh and N.M. Tung, Optimality conditions and duality for nonsmooth vector equilibrium problems with constraints. Optimization 64 (2015) 1547–1575. [Google Scholar]
  • S.J. Li and M.H. Li, Sensitivity analysis of parametric weak vecctor equilibrium problems. J. Math. Anal. Appl. 380 (2011) 354–362. [Google Scholar]
  • S.J. Li, K.L. Teo, X.Q. Yang and S.Y. Wu, Gap functions and existence of solutions to generalized vector quasi-equilibrium problems. J. Global Optim. 34 (2006) 427–440. [CrossRef] [Google Scholar]
  • D.T. Luc, Theory of vector optimization. In Vol. 319 of Lecture Notes in Econom. and Math. Systems. Springer, Berlin (1989). [CrossRef] [Google Scholar]
  • D.T. Luc, M. Soleimani-Damaneh and M. Zamani, Semi-differentiability of the marginal mapping in vector optimization. SIAM J. Optim. 28 (2018) 1255–1281. [Google Scholar]
  • H. Mirzaee and M. Soleimani-Damaneh, Derivatives of set-valued maps and gap functions for vector equilibrium problems. Set-Valued Var. Anal. 22 (2014) 673–689. [CrossRef] [Google Scholar]
  • B.S. Mordukhovich, Variational analysis and generalized differentiation. In: Basic Theory. Springer, Berlin I (2006). [Google Scholar]
  • B.S. Mordukhovich, Variational analysis and generalized differentiation. In: Applications. Springer, Berlin II (2006). [Google Scholar]
  • J.P. Penot, Differentiability of relations and differential stability of perturbed optimization problems. SIAM J. Control Optim. 22 (1984) 529–551. [CrossRef] [Google Scholar]
  • S.M. Robinson, Stability theory for systems of inequalities, Part II. Differentiable nonlinear systems. SIAM J. Numer. Anal. 13 (1976) 497–513. [Google Scholar]
  • R.T. Rockafellar, Proto-differentiability of set-valued mapping and its applications in optimization. Ann. Inst. Henri Poincaré 6 (1989) 449–482. [CrossRef] [Google Scholar]
  • R.T. Rockafellar and R.J.B. Wets, Variational Analysis, 3rd edition. Springer, Berlin (2009). [Google Scholar]
  • P.H. Sach, L.A. Tuan and G.M. Lee, Sensitivity results for a general class of generalized vector quasi-equilibrium problems with set-valued maps. Nonlinear Anal. 71 (2009) 571–586. [CrossRef] [Google Scholar]
  • D.S. Shi, Contingent derivative of the perturbation map in multiobjective optimization. J. Optim. Theory Appl. 70 (1991) 385–396. [Google Scholar]
  • D.S. Shi, Sensitivity analysis in convex vector optimization. J. Optim. Theory Appl. 77 (1993) 145–159. [Google Scholar]
  • M. Studniarski, Necessary and sufficient conditions for isolated local minima of nonsmooth functions. SIAM J. Control Optim. 5 (1986) 1044–1049. [CrossRef] [Google Scholar]
  • X.K. Sun and S.J. Li, Lower Studniarski derivative of the perturbation map in parametrized vector optimization. Optim. Lett. 5 (2011) 601–614. [CrossRef] [Google Scholar]
  • T. Tanino, Sensitivity analysis in multiobjective optimization. J. Optim. Theory Appl. 56 (1988) 479–499. [Google Scholar]
  • T. Tanino, Stability and sensitivity analysis in convex vector optimization. SIAM J. Control Optim. 26 (1988) 521–536. [CrossRef] [Google Scholar]
  • Q.L. Wang and S.J. Li, Sensitivity and stability for the second-order contingent derivative of the proper perturbation map in vector optimization. Optim. Lett. 6 (2012) 731–748. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.