Free Access
RAIRO-Oper. Res.
Volume 53, Number 4, October 2019
Page(s) 1357 - 1384
Published online 13 August 2019
  • A. Banerjee, Economic-lot-size model for purchaser and vendor. Decis. Sci. 17 (1986) 292–311. [CrossRef] [Google Scholar]
  • M. Ben-Daya and M. Hariga, Lead-time reduction in a stochastic inventory system with learning consideration. Int. J. Prod. Res. 41 (2003) 571–579. [Google Scholar]
  • M. Ben-Daya and M. Hariga, Integrated single vendor single buyer model with stochastic demand and variable lead time. Int. J. Prod. Econ. 92 (2004) 75–80. [Google Scholar]
  • H. Bierman and J. Thomas, Inventory decisions under inflationary conditions. Decis. Sci. 8 (1977) 151–155. [CrossRef] [Google Scholar]
  • J.A. Buzacott, Economic Order Quantities with Inflation. J. Oper. Res. Soc. 26 (1975) 553–558. [Google Scholar]
  • H.C. Chang, L.Y. Ouyang, K.S. Wu and C.H. Ho, Integrated vendor–buyer cooperative inventory models with a controllable lead time and ordering cost reduction. Eur. J. Oper. Res. 170 (2006) 481–495. [Google Scholar]
  • A. Charnes and W.W. Cooper, Chance-constrained programming. Manage. Sci. 6 (1959) 73–79. [Google Scholar]
  • B.K. Dey, B. Sarkar, M. Sarkar and S. Pareek, An integrated inventory model involving discrete setup cost reduction, variable safety factor, selling price dependent demand, and investment. RAIRO: OR 53 (2018) 39–57. [CrossRef] [EDP Sciences] [Google Scholar]
  • B.S. Everitt and D.J. Hand, Finite Mixture Distributions. 1st edition. Springer (1981). [CrossRef] [Google Scholar]
  • A. Gholami-Qadikolaei, A. Mirzazadeh and R. Tavakkoli-Moghaddam, Lead time and ordering cost reductions in budget and storage space restricted prbabilistic inventory models with imperfect items. RAIRO: OR 49 (2014) 215–242. [CrossRef] [Google Scholar]
  • C. Glock, Lead time reduction strategies in a single-vendor–single-buyer integrated inventory model with lot size-dependent lead times and stochastic demand. Int. J. Prod. Econ. 166 (2012) 37–44. [Google Scholar]
  • S.K. Goyal, An integrated inventory model for a single supplier-single customer problem. Int. J. Prod. Res. 15 (1977) 107–111. [Google Scholar]
  • S.K. Goyal, “A joint economic-lot-size model for purchaser and vendor”: a Comment. Decis. Sci. 19 (1988) 236–241. [CrossRef] [Google Scholar]
  • G. Hadley, A comparison of order quantities computed using the average annual cost and the discounted cost. Manage. Sci. 10 (2008) 472–476. [Google Scholar]
  • C. Haksever and J. Moussourakis, A model for optimizing multi-product inventory systems with multiple constraints. Int. J. Prod. Econ. 97 (2005) 18–30. [Google Scholar]
  • M.A. Hariga, A single-item continuous review inventory problem with space restriction. Int. J. Prod. Econ. 128 (2010) 153–158. [Google Scholar]
  • M.A. Hariga and P.L. Jackson, Time-variant lot sizing models for the warehouse scheduling problem. IIE Trans. (Institute Ind. Eng.) 27 (1995) 162–170. [Google Scholar]
  • Y.C. Hsiao, A note on integrated single vendor single buyer model with stochastic demand and variable lead time. Int. J. Prod. Econ. 114 (2008) 294–297. [Google Scholar]
  • S.J. Kim and B. Sarkar, Supply Chain model with stochastic lead time, trade-credit financing, and transportation discounts. Math. Probl. Eng. 2017 (2017) 1–14. [Google Scholar]
  • R. Landeros and D.M. Lyth, Economic-lot-size models for cooperative inter-organization. J. Bus. Logist. 10 (1989) 146–158. [Google Scholar]
  • W.C. Lee, J.W. Wu and W. Bin Hou, A note on inventory model involving variable lead time with defective units for mixtures of distribution. Int. J. Prod. Econ. 89 (2004) 31–44. [Google Scholar]
  • H.J. Lin, Reducing lost-sales rate on the stochastic inventory model with defective goods for the mixtures of distributions. Appl. Math. Model. 37 (2013) 3296–3306. [Google Scholar]
  • L. Lu, A one-vendor multi-buyer integrated inventory model. Eur. J. Oper. Res. 81 (1995) 312–323. [Google Scholar]
  • A. Majumder, R. Guchhait and B. Sarkar, Manufacturing quality improvement and setup cost reduction in a vendor–buyer supply chain model. Eur. J. Ind. Eng. 11 (2017) 588. [CrossRef] [Google Scholar]
  • A. Majumder, C.K. Jaggi and B. Sarkar, A multi-retailer supply chain model with backorder and variable production cost. RAIRO: OR 52 (2017) 943–954. [CrossRef] [Google Scholar]
  • R.B. Misra, Note on optimal inventory management under inflation. Nav. Res. Logist. Q 26 (1979) 161–165. [CrossRef] [Google Scholar]
  • A. Mirzazadeh, A comparison of the mathematical modeling methods in the inventory systems under uncertain conditions. Int. J. Eng. Sci. Technol. 3 (2011) 6131–6142. [Google Scholar]
  • A. Mirzazadeh, M.M. Seyyed Esfahani and S.M.T. Fatemi Ghomi, An inventory model under uncertain inflationary conditions, finite production rate and inflation-dependent demand rate for deteriorating items with shortages. Int. J. Syst. Sci. 40 (2009) 21–31. [Google Scholar]
  • I. Moon and B.-H. Ha, Inventory systems with variable capacity. Eur. J. Ind. Eng. 6 (2012) 68–86. [CrossRef] [Google Scholar]
  • I. Moon, B.C. Giri and B. Ko, Economic order quantity models for ameliorating/deteriorating items under inflation and time discounting. Eur. J. Oper. Res. 162 (2005) 773–785. [Google Scholar]
  • I. Moon, E. Shin and B. Sarkar, Min-max distribution free continuous-review model with a service level constraint and variable lead time. Appl. Math. Comput. 229 (2014) 310–315. [MathSciNet] [Google Scholar]
  • L.Y. Ouyang, K.S. Wu and C.H. Ho, Integrated vendor–buyer cooperative models with stochastic demand in controllable lead time. Int. J. Prod. Econ. 92 (2004) 255–266. [Google Scholar]
  • J.C.-H. Pan and J.-S. Yang, A study of an integrated inventory with controllable lead time. Int. J. Prod. Res. 40 (2002) 1263–1273. [Google Scholar]
  • B. Sarkar and A.S. Mahapatra, Periodic review fuzzy inventory model with variable lead time and fuzzy demand. Int. Trans. Oper. Res. 24 (2017) 1197–1227. [Google Scholar]
  • B. Sarkar and A. Majumder, Integrated vendor–buyer supply chain model with vendor’s setup cost reduction. Appl. Math. Comput. 224 (2013) 362–371. [MathSciNet] [Google Scholar]
  • B. Sarkar and I. Moon, Improved quality, setup cost reduction, and variable backorder costs in an imperfect production process. Int. J. Prod. Econ. 155 (2014) 204–213. [Google Scholar]
  • B. Sarkar, K. Chaudhuri and I. Moon, Manufacturing setup cost reduction and quality improvement for the distribution free continuous-review inventory model with a service level constraint. J. Manuf. Syst. 34 (2015) 74–82. [Google Scholar]
  • B. Sarkar, B. Mandal and S. Sarkar, Quality improvement and backorder price discount under controllable lead time in an inventory model. J. Manuf. Syst. 35 (2015) 26–36. [Google Scholar]
  • B. Sarkar, A. Majumder, M. Sarkar, B. Koli Dey and G. Roy, Two-echelon supply chain model with manufacturing quality improvement and setup cost reduction. J. Ind. Manag. Optim. 13 (2016) 1085–1104. [Google Scholar]
  • B. Sarkar, S. Saren, M. Sarkar and Y.W. Seo, A Stackelberg game approach in an integrated inventory model with carbon-emission and setup cost reduction. Sustainability 8 (2016) 1–23. [Google Scholar]
  • B. Sarkar, R. Guchhait, M. Sarkar, S. Pareek and N. Kim, Impact of safety factors and setup time reduction in a two-echelon supply chain management. Robot. Comput. Integr. Manuf. 55 (2019) 250–258. [Google Scholar]
  • D. Shin, R. Guchhait, B. Sarkar and M. Mittal, Controllable lead time, service level constraint, and transportation discounts in a continuous review inventory model. RAIRO: OR 50 (2015) 921–934. [CrossRef] [Google Scholar]
  • H.N. Soni, B. Sarkar and M. Joshi, Demand uncertainty and learning in fuzziness in a continuous review inventory model. J. Intell. Fuzzy Syst. 33 (2017) 2595–2608. [CrossRef] [Google Scholar]
  • H.N. Soni, B. Sarkar, A.S. Mahapatra and S.K. Mazumder, Lost sales reduction and quality improvement with variable lead time and fuzzy costs in an imperfect production system. RAIRO: OR 52 (2018) 819–837. [CrossRef] [Google Scholar]
  • H. Tahami, A. Mirzazadeh, A. Arshadi-Khamseh and A. Gholami-Qadikolaei, A periodic review integrated inventory model for buyer’s unidentified protection interval demand distribution. Cogent Eng. 3 (2016). [Google Scholar]
  • A. Veinott, Optimal policy for a multi-product, dynamic, nonstationary inventory problem. Manage. Sci. 12 (1965) 206–222. [Google Scholar]
  • J.W. Wu and H.Y. Tsai, Mixture inventory model with back orders and lost sales for variable lead time demand with the mixtures of normal distribution. Int. J. Syst. Sci. 32 (2001) 259–268. [Google Scholar]
  • K. Xu and M.T. Leung, Stocking policy in a two-party vendor managed channel with space restrictions. Int. J. Prod. Econ. 117 (2009) 271–285. [Google Scholar]
  • H. Yang, J. Teng and M. Chern, Deterministic inventory lot-size models under inflation with shortages and deterioration for fluctuating demand. Nav. Res. Logist. 48 (2001) 144–158. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.