Free Access
RAIRO-Oper. Res.
Volume 53, Number 5, November-December 2019
Page(s) 1915 - 1927
Published online 28 October 2019
  • V. Anisimov and R. Artalejo, Analysis of Markov multi-server retrial queues with negative arrivals. Queueing Syst. 39 (2001) 157–182. [Google Scholar]
  • I. Atencia and P. Moreno, The discrete time Geo/Geo/1 queue with negative customers and disasters. Comput. Oper. Res. 31 (2004) 1537–1548. [Google Scholar]
  • I. Atencia and P. Moreno, A single-server G-queue in discrete-time with geometrical arrival and service process. Perform. Eval. 59 (2005) 85–97. [CrossRef] [Google Scholar]
  • H. Baumann and W. Sandmann, Steady state analysis of level dependent quasi-birth-and-death processes with catastrophes. Comput. Oper. Res. 39 (2012) 413–423. [Google Scholar]
  • P.P. Bocharov, C. d’Apice, R. Manzo and A.V. Pechinkin, Analysis of the multi-server Markov queuing system with unlimited buffer and negative customers. Queueing Syst. 68 (2007) 85–94. [Google Scholar]
  • O. Boudali and A.G. Economou, Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes. Eur. J. Oper. Res. 218 (2012) 708–715. [Google Scholar]
  • O. Boudali and A. Economou, The effect of catastrophes on the strategic customer behavior in queueing systems. Nav. Res. Log. 60 (2013) 571–587. [CrossRef] [MathSciNet] [Google Scholar]
  • P.J. Brockwell, The extinction time of a general birth and death process with catastrophes. J. Appl. Probab. 23 (1986) 851–858. [Google Scholar]
  • A. Chen and E. Renshaw, The M/M/1 queue with mass exodus and mass arrivals when empty. J. Appl. Probab. 34 (1997) 192–207. [Google Scholar]
  • A. Di Crescenzo, V. Giorno, A.G. Nobile and L.M. Ricciardi, A note on birth death processes with catastrophes. Stat. Probab. Lett. 78 (2008) 2248–2257. [Google Scholar]
  • A. Di Crescenzo, A.V. Giorno, B.K. Kumar and A.G. Nobile, A double-ended queue with catastrophes and repairs and a jump-diffusion approximation. Method. Comput. Appl. Probab. 14 (2012) 937–954. [CrossRef] [Google Scholar]
  • A. Di Crescenzo, V. Giorno and A.G. Nobile, Constructing transient birth-death processes by means of suitable transformations. Appl. Math. Comput. 281 (2016) 152–171. [Google Scholar]
  • A. Economou and D. Fakinos, Alternative approaches for the transient analysis of Markov chains with catastrophes. J. Stat. Theory Pract. 2 (2008) 183–197. [Google Scholar]
  • E. Gelenbe, G-networks: a unifying model for neural and queueing networks. Ann. Oper. Res. 48 (1994) 433–461. [Google Scholar]
  • I.M. Gessel and R.P. Stanley, Algebraic enumeration, handbook of combinatorics, edited by R.L. Graham, M. Grotschel and L. Lovasz, Wiley, New York (1996) 1021–1069. [Google Scholar]
  • V. Giorno, A.G. Nobile and S. Spina, On some time non-homogeneous queueing systems with catastrophes. Appl. Math. Comput. 245 (2014) 220–234. [Google Scholar]
  • J.J. Hunter, Mathematical Techniques of Applied Probability – Discrete Time Models: Techniques and Applications 2, Academic Press, New York (1983). [Google Scholar]
  • T. Jiang, L. Liu and L. Jianjun, Analysis of the M/G/1 queue in multi-phase random environment with disasters. J. Math. Anal. App. 430 (2015) 857–873. [CrossRef] [MathSciNet] [Google Scholar]
  • C.S. Kim, V.I. Klimenok and D.S. Orlovskii, Multi-server queueing system with a batch Markovian arrival process and negative customers. Queueing Syst. 12 (2006) 106–122. [Google Scholar]
  • B.K. Kumar and D. Arivudainambi, Transient solution of an M/M/1 queue with catastrophes. Comput. Math. Appl. 40 (2000) 1233–1240. [Google Scholar]
  • E.G. Kyriakidis, Stationary probabilities for a simple immigration – birth-death process under the influence of total catastrophes. Stat. Probab. Lett. 20 (1994) 239–240. [Google Scholar]
  • E.G. Kyriakidis, Transient solution for a simple immigration birth–death catastrophe process. Probab. Eng. Inf. Sci. 18 (2004) 233–236. [Google Scholar]
  • D. Lee and W. Yang, The N-policy of a discrete time Geo/G/1 queue with disasters and its application to wireless sensor networks. Appl. Math. Model. 37 (2013) 9722–9731. [Google Scholar]
  • P.R. Parthasarathy and R. Sudhesh, Exact transient solution of a discrete time queue with state dependent rates. Am. J. Math. Manag. Sci. 26 (2006) 253–276. [Google Scholar]
  • R. Sudhesh, Transient analysis of a queue with system disasters and customer impatience. Queueing Syst. 66 (2010) 95–105. [Google Scholar]
  • R. Sudhesh, R. Sebasthi Priya and R.B. Lenin, Transient analysis of a single server discrete – time queue with system disaster. RAIRO: OR 51 (2017) 123–134. [CrossRef] [Google Scholar]
  • H. Takagi, Queueing analysis: a foundation of performance evaluation. In: Discrete-time Systems 3. Amsterdam, North-Holland (1993). [Google Scholar]
  • D. Towsley and S.K. Tripathi, A single server priority queue with server failures and queue flushing. Oper. Res. Lett. 10 (1991) 353–362. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Walraevens, D. Claeys and H. Bruneel, Analysis of steady-state and transient delay in discrete-time single-arrival and batch-arrival systems. Appl. Math. Comput. 240 (2014) 62–71. [Google Scholar]
  • J. Wang, Y. Huang and D. Zhangmin, A discrete-time on-off source queueing system with negative customers. Comput. Ind. Eng. 61 (2011) 1226–1232. [Google Scholar]
  • J. Wang, Y. Huang and T. Van Do, A single-server discrete-time queue with correlated positive and negative customer arrivals Appl. Math. Model. 37 (2013) 6212–6224. [Google Scholar]
  • W.S. Yang, J.D. Kim and K.C. Chae, Analysis of M/G/1 stochastic clearing systems. Stoch. Anal. App. 20 (2002) 1083–1100. [CrossRef] [MathSciNet] [Google Scholar]
  • U. Yechiali, Queues with system disasters and impatient customers when system is down. Queueing Syst. 56 (2007) 195–202. [Google Scholar]
  • U. Yechiali and N. Paz, An M/M/1 Queue in random environment with disasters. Asia-Pac. J. Oper. Res. 31 (2014) 1450016. [CrossRef] [Google Scholar]
  • Y.W. Shin, Multi-server retrial queue with negative customers and disasters. Queueing Syst. 55 (2007) 223–237. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.