Free Access
Issue
RAIRO-Oper. Res.
Volume 53, Number 5, November-December 2019
Page(s) 1633 - 1648
DOI https://doi.org/10.1051/ro/2018108
Published online 09 October 2019
  • M. Ariff and L. Luc CAN, Cost and profit efficiency of Chinese banks: a non-parametric analysis. Chin. Econ. Rev. 19 (2008) 260–273. [CrossRef] [Google Scholar]
  • A. Arjomandi, A. Valadkhani and M. O’Brien, Analysing banks’ intermediation and operational performance using the Hicks-Moorsteen TFP index: the case of Iran. Res. Int. Bus. Finance 30 (2014) 111–125. [CrossRef] [Google Scholar]
  • A.S. Camanho and R.G. Dyson, Efficiency, size, benchmarks and targets for bank branches: an application of data envelopment analysis. J. Oper. Res. Soc. 50 (1999) 903–915. [CrossRef] [Google Scholar]
  • B. Casu, C. Girardone and P. Molyneux, Productivity change in European banking: a comparison of parametric and non-parametric approaches. J. Bank. Finance 28 (2004) 2521–2540. [CrossRef] [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • W.D. Cook and M. Hababou, Sales performance measurement in bank branches. Omega 29 (2001) 299–307. [CrossRef] [Google Scholar]
  • M. Duygun Fethi and F. Pasiouras, Assessing bank efficiency and performance with operational research and artificial intelligence techniques: a survey. Eur. J. Oper. Res. 204 (2010) 189–198. [CrossRef] [Google Scholar]
  • A. Emrouznejad, M. Tavana and A. Hatami-Marbini, The state of the art in fuzzy data envelopment analysis. In: Performance Measurement with Fuzzy Data Envelopment Analysis, in Vol. 309 of Studies in Fuzziness and Soft Computing. Springer-Verlag, Berlin, Heidelberg (2014) 1–45. [CrossRef] [Google Scholar]
  • A. Emrouznejad and G.L. Yang, A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Econ. Plann. Sci. 61 (2018) 4–8. [CrossRef] [Google Scholar]
  • M.R. Ghasemi, J. Ignatius and A. Emrouznejad, A bi-objective weighted model for improving the discrimination power in MCDEA. Eur. J. Oper. Res. 233 (2014) 640–650. [CrossRef] [Google Scholar]
  • D.I. Giokas, Assessing the efficiency in operations of a large Greek bank branch network adopting different economic behaviors. Econ. Model. 25 (2008) 559–574. [CrossRef] [Google Scholar]
  • G.R. Jahanshahloo, A.R. Amirteimoori and S. Kordrostami, Multi-component performance, progress and regress measurement and shared inputs and outputs in DEA for panel data: an application in commercial bank branches. Appl. Math. Comput. 151 (2004) 1–16. [Google Scholar]
  • K. Lachhwani, Modified FGP approach for multi-level multi objective linear fractional programming problem. Appl. Math. Comput. 266 (2015) 1038–1049. [Google Scholar]
  • T.T. Lin, C.-C. Lee and T.-F. Chiu, Application of DEA in analyzing a bank’s operating performance. Exp. Syst. App. 36 (2009) 8883–8891. [CrossRef] [Google Scholar]
  • R. Manandhar and J.C.S. Tang, The evaluation of bank branch performance using data envelopment analysis: a framework. J. High Technol. Manage. Res. 13 (2002) 1–17. [CrossRef] [Google Scholar]
  • M. Oral, O. Kettani and R. Yolalan, An empirical study on analyzing the productivity of bank branches. IIE Trans. 24 (1992) 166–176. [CrossRef] [Google Scholar]
  • M. Oral and R. Yolalan, An empirical study on measuring operating efficiency and profitability of bank branches. Eur. J. Oper. Res. 45 (1990) 282–294. [CrossRef] [Google Scholar]
  • J.C. Paradi, S. Rouatt and H. Zhu, Two-stage evaluation of bank branch efficiency using data envelopment analysis. Omega 39 (2011) 99–109. [CrossRef] [Google Scholar]
  • J.C. Paradi and H. Zhu, A survey on bank branch efficiency and performance research with data envelopment analysis. Omega 41 (2012) 61–79. [CrossRef] [Google Scholar]
  • C. Parkan, Measuring the efficiency of service operations: an application to bank branches. Eng. Costs Prod. Econ. 12 (1987) 237–242. [CrossRef] [Google Scholar]
  • M.C.A.S. Portela and E. Thanassoulis, Profitability of a sample of Portuguese bank branches and its decomposition into technical and allocative components. Eur. J. Oper. Res. 162 (2005) 850–866. [CrossRef] [Google Scholar]
  • M.C.A.S. Portela and E. Thanassoulis, Comparative efficiency analysis of Portuguese bank branches. Eur. J. Oper. Res. 177 (2007) 1275–1288. [CrossRef] [Google Scholar]
  • S. Ray, Cost efficiency in an Indian bank branch network: a centralized resource allocation model. Omega 65 (2016) 69–81. [CrossRef] [Google Scholar]
  • H.D. Sherman and F. Gold, Bank branch operating efficiency: evaluation with data envelopment analysis. J. Bank. Finance 9 (1985) 297–315. [CrossRef] [Google Scholar]
  • P. Wanke, C. Barros and A. Emrouznejad, A comparison between stochastic DEA and fuzzy DEA approaches: revisiting efficiency in Angolan banks. RAIRO: OR 52 (2018) 285–303. [CrossRef] [Google Scholar]
  • Z. Yang, Bank branch operating efficiency: a DEA approach. In: Proc. of the International Multi Conference of Engineers and Computer Scientists 2009 Vol II IMECS 2009, March 18–20, Hong Kong (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.