Free Access
RAIRO-Oper. Res.
Volume 53, Number 5, November-December 2019
Page(s) 1877 - 1898
Published online 23 October 2019
  • B. Afshar-Nadjafi, M. Majlesi, Resource constrained project scheduling problem with setup times after preemptive processes. Comput. Chem. Eng. 69 (2014) 16–25. [Google Scholar]
  • B. Afshar-Nadjafi and S. Shadrokh, An algorithm for the weighted earliness-tardiness unconstrained project scheduling problem. J. Appl. Sci. 8 (2008) 1651–1659. [CrossRef] [Google Scholar]
  • F.S. Al-Anzi, K. Al-Zame and A. Allahverdi, Weighted multi-skill resources project scheduling. J. Softw. Eng. Appl. 3 (2010) 1125–1130. [CrossRef] [Google Scholar]
  • C. Artigues, R. Leus and F.T. Nobibon, Robust optimization for resource-constrained project scheduling with uncertain activity durations. Flex. Serv. Manuf. J. 25 (2013) 175–205. [CrossRef] [Google Scholar]
  • F. Ballestn, A. Barrios and V. Valls, An evolutionary algorithm for the resource-constrained project scheduling problem with minimum and maximum time lags. J. Sched. 14 (2011) 391–406. [CrossRef] [Google Scholar]
  • F. Ballestn, V. Valls and S. Quintanilla, Preemption in resource-constrained project scheduling. Eur. J. Oper. Res. 189 (2008) 1136–1152. [Google Scholar]
  • O. Bellenguez-Morineau, Methods to solve the multi-skill project scheduling problem, 4OR 6 (2008) 85–88. [CrossRef] [Google Scholar]
  • O. Bellenguez-Morineau and E. Neron, Lower Bounds for the multi-skill project scheduling problem with hierarchical levels of skills. In practice and theory of automated timetabling. Lectures Notes Comput. Sci. 3616 (2005) 229–243. [CrossRef] [Google Scholar]
  • O. Bellenguez-Morineau and E. Neron, A branch-and-bound method for solving multi-skill project scheduling problems. RAIRO: OR 41 (2007) 155–170. [CrossRef] [Google Scholar]
  • D.G. Cabrero and D.N. Ranasinghe, Fine-tuning the Ant Colony System Algorithm Through Particle Swarm Optimization. Technical Report-University of Valencia, Spain (2005). [Google Scholar]
  • W.N. Chen and J. Zhang, Scheduling multi-mode projects under uncertainty to optimize cash flows: a Monte Carlo ant colony system approach. J. Comput. Sci. Technol. 27 (2012) 950–965. [Google Scholar]
  • W.N. Chen, J. Zhang, H.S.H. Chung, R.Z. Huang and O. Liu, Optimizing discounted cash flows in project scheduling – an ant colony optimization approach. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 40 (2010) 64–77. [CrossRef] [Google Scholar]
  • H. Cheng and X. Chu, Task assignment with multi-skilled employees and multiple modes for product development projects. Int. J. Adv. Manuf. Technol. 61 (2012) 391–403. [Google Scholar]
  • C.W. Chiang, Y.Q. Huang and W.Y. Wang, Ant colony optimization with parameter adaptation for multi-mode resource-constrained project scheduling. J. Intell. Fuzzy Syst. 19 (2008) 345–358. [Google Scholar]
  • S. Christodoulou, Scheduling resource-constrained projects with ant colony optimization artificial agents. J. Comput. Civ. Eng. 24 (2009) 45–55. [CrossRef] [Google Scholar]
  • I. Correia, L. Lourenco and F. Saldanha-da-Gama, Project scheduling with flexible resources: formulation and inequalities. OR Spectr. 34 (2012) 635–663. [Google Scholar]
  • I. Correia and F. Saldanha-da-Gama, The impact of fixed and variable costs in a multi-skill project scheduling problem: An empirical study. Comput. Ind. Eng. 72 (2014) 230–238. [Google Scholar]
  • C. Dhib, A. Soukhal and E. Neron, Mixed-integer linear programming formulation and priority-rule methods for a preemptive project staffing and scheduling problem, edited byC. Schwindt and J. Zimmermann. In: Handbook on Project Management and Scheduling. Springer (2015) 603–617. [CrossRef] [Google Scholar]
  • M. Dorigo, Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano, Milano, Italy, 1992. [Google Scholar]
  • A. Drexl, R. Nissen, J.H. Patterson and F. Salewski, ProGen/πx – An instance generator for resource constrained project scheduling problems with partially renewable resources and further extensions. Eur. J. Oper. Res. 125 (2000) 59–72. [Google Scholar]
  • M. Frat and C.A.J. Hurkens, An improved MIP-based approach for a multi-skill workforce scheduling problem. J. Sched. 15 (2012) 363–380. [CrossRef] [Google Scholar]
  • C. Heimerl and R. Kolisch, Scheduling and staffing multiple projects with a multi-skilled workforce. OR Spectr. 32 (2010) 343–368. [Google Scholar]
  • C.A. Hurkens, Incorporating the strength of MIP modeling in schedule construction. RAIRO: OR 43 (2009) 409–420. [CrossRef] [Google Scholar]
  • Y. Kadrou and N.M. Najid, A new heuristic to solve RCPSP with multiple execution modes and multi-skilled labor. Comput. Eng. Syst. Appl. IMACS Multi Conf. 2 (2006) 1302–1309. [Google Scholar]
  • H. Kazemipoor, R. Tavakkoli-Moghaddam, P. Shahnazari-Shahrezaei and A. Azaron, A differential evolution algorithm to solve multi-skilled project portfolio scheduling problems. Int. J. Adv. Manuf. Technol. 64 (2013) 1099–1111. [Google Scholar]
  • C. Kellenbrink and S. Helber, Scheduling resource-constrained projects with a flexible project structure. Eur. J. Oper. Res. 246 (2015) 379–391. [Google Scholar]
  • Y. Khoshjahan, A.A. Najafi and B. Afshar-Nadjafi, Resource constrained project scheduling problem with discounted earliness–tardiness penalties: mathematical modeling and solving procedure. Comput. Ind. Eng. 66 (2013) 293–300. [Google Scholar]
  • O. Koné, C. Artigues, P. Lopez and M. Mongeau, Comparison of mixed integer linear programming models for the resource-constrained project scheduling problem with consumption and production of resources. Flex. Serv. Manuf. J. 25 (2013) 25–47. [CrossRef] [Google Scholar]
  • H. Li and K. Womer, Scheduling projects with multi-skilled personnel by a hybrid MILP/CP benders decomposition algorithm. J. Sched. 12 (2009) 281–298. [CrossRef] [Google Scholar]
  • H. Li and H. Zhang, Ant colony optimization-based multi-mode scheduling under renewable and nonrenewable resource constraints. Autom. Constr. 35 (2013) 431–438. [CrossRef] [Google Scholar]
  • S.S. Liu and C.J. Wang, Optimizing linear project scheduling with multi-skilled crews. Autom. Constr. 24 (2012) 16–23. [CrossRef] [Google Scholar]
  • H. Maghsoudlou, B. Afshar-Nadjafi and S.T.A. Niaki, A multi-objective invasive weeds optimization algorithm for solving multi-skill multi-mode resource constrained project scheduling problem. Comput. Chem. Eng. 88 (2016) 157–169. [Google Scholar]
  • D. Merkle, M. Middendorf and H. Schmeck, Ant colony optimization for resource-constrained project scheduling. IEEE Trans. Evol. Comput. 6 (2002) 333–346. [Google Scholar]
  • C. Montoya, O. Bellenguez-Morineau, E. Pinson and D. Rivreau, Branch-and-price approach for the multi-skill project scheduling problem. Optim. Lett. 8 (2013) 1721–1734. [CrossRef] [Google Scholar]
  • A. Moukrim, A. Quilliot and H. Toussaint, An effective branch-and-price algorithm for the preemptive resource constrained project scheduling problem based on minimal Interval order enumeration. Eur. J. Oper. Res. 244 (2015) 360–368. [Google Scholar]
  • E. Néron and D. Baptista, Heuristics for multi-skill project scheduling problem. Int. Symp. Comb. Optim. (CO’2002) (2002). [Google Scholar]
  • H. Okubo, T. Miyamoto, S. Yoshida, K. Mori, S. Kitamura and Y. Izui, Project scheduling under partially renewable resources and resource consumption during setup operations. Comput. Ind. Eng. 83 (2015) 91–99. [Google Scholar]
  • M. Ranjbar, M. Khalilzadeh, F. Kianfar and K. Etminani, An optimal procedure for minimizing total weighted resource tardiness penalty costs in the resource-constrained project scheduling problem. Comput. Ind. Eng. 62 (2012) 264–270. [Google Scholar]
  • H. Rolfe, Qualifications and international mobility: a case study of the European chemicals industry. Nat. Inst. Econ. Rev. 175 (2001) 85–94. [CrossRef] [Google Scholar]
  • G. Taguchi, Introduction to Quality Engineering. Asian Productivity Organization, Tokyo (1986). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.