Free Access
RAIRO-Oper. Res.
Volume 53, Number 5, November-December 2019
Page(s) 1601 - 1616
Published online 08 October 2019
  • M.A. Abo-Sinna and I.A. Baky, Interactive balance space approach for solving multi-level multi-objective programming problems. Inform. Sci. 177 (2007) 3397–3410. [CrossRef] [Google Scholar]
  • M.A. Abo-Sinna and I.A. Baky, Fuzzy goal programming procedure to bilevel multiobjective linear fractional programming problems. Int. J. Math. Math. Sci. 2010 (2010) 148975. [Google Scholar]
  • M. Ahlatcioglu and F. Tiryaki, Interactive fuzzy programming for decentralized two-level linear fractional programming (dtllfp) problems. Omega 35 (2007) 432–450. [Google Scholar]
  • I.A. Baky, Fuzzy goal programming algorithm for solving decentralized bi-level multi-objective programming problems. Fuzzy Sets Syst. 160 (2009) 2701–2713. [CrossRef] [Google Scholar]
  • I.A. Baky, Solving multi-level multi-objective linear programming problems through fuzzy goal programming approach. Appl. Math. Modell. 34 (2010) 2377–2387. [CrossRef] [MathSciNet] [Google Scholar]
  • I.A. Baky, Interactive topsis algorithms for solving multi-level non-linear multi-objective decision-making problems. Appl. Math. Model. 38 (2014) 1417–1433. [Google Scholar]
  • R.E. Bellman and L.A. Zadeh, Decision-making in a fuzzy environment. Manag. Sci. 17 (1970) B–141. [CrossRef] [Google Scholar]
  • G.R. Bitran and A.G. Novaes, Linear programming with a fractional objective function. Oper. Res. 21 (1973) 22–29. [Google Scholar]
  • A. Charnes and W.W. Cooper, Management models and industrial applications of linear programming. Manag. Sci. 4 (1957) 38–91. [CrossRef] [Google Scholar]
  • V. Chinnadurai, S. Muthukumar, Solving the linear fractional programming problem in a fuzzy environment: Numerical approach. Appl. Math. Model. 40 (2016) 6148–6164. [Google Scholar]
  • B.D. Craven, Fractional Programming. Heldermann Verlag, Berlin (1988). [Google Scholar]
  • G. Crawford and C. Williams, A note on the analysis of subjective judgment matrices. J. Math. Psycho. 29 (1985) 387–405. [CrossRef] [Google Scholar]
  • W. Dinkelbach, On nonlinear fractional programming. Manag. Sci. 13 (1967) 492–498. [CrossRef] [MathSciNet] [Google Scholar]
  • B.L. Golden, E.A. Wasil and P.T. Harker, The Analytic Hierarchy Process. Springier-Verlag, New York (1989). [CrossRef] [Google Scholar]
  • J.R. Isbell and W.H. Marlow, Attrition games, Naval Res. Logist. Quart. 3 (1956) 71–94. [CrossRef] [MathSciNet] [Google Scholar]
  • R.E. Jensen, An alternative scaling method for priorities in hierarchical structures. J. Math. Psycho. 28 (1984) 317–332. [CrossRef] [Google Scholar]
  • K. Lachhwani, On solving multi-level multi objective linear programming problems through fuzzy goal programming approach. Opsearch 51 (2014) 624–637. [CrossRef] [Google Scholar]
  • K. Lachhwani, Modified fgp approach for multi-level multi objective linear fractional programming problems. Appl. Math. Comput. 266 (2015) 1038–1049. [Google Scholar]
  • S.-T. Liu, Geometric programming with fuzzy parameters in engineering optimization. Int. J. Approx. Reason. 46 (2007) 484–498. [Google Scholar]
  • K. Miettinen, Nonlinear Multiobjective Optimization. Springer Science & Business Media. Vol. 12 (2012). [Google Scholar]
  • S. Mishra, Weighting method for bi-level linear fractional programming problems. Eur. J. Oper. Res. 183 (2007) 296–302. [Google Scholar]
  • R.H. Mohamed, The relationship between goal programming and fuzzy programming. Fuzzy Sets Syst. 89 (1997) 215–222. [CrossRef] [Google Scholar]
  • R.E. Moore, Interval Analysis. Prince-Hall, Englewood Cliffs, NJ (1966). [Google Scholar]
  • M.S. Osman, M.A. Abo-Sinna, A.H. Amer and O.E. Emam, A multi-level non-linear multi-objective decision-making under fuzziness. Appl. Math. Comput. 153 (2004) 239–252. [Google Scholar]
  • S. Pramanik and T.K. Roy, Fuzzy goal programming approach to multilevel programming problems. Euro. J. Oper. Res. 176 (2007) 1151–1166. [CrossRef] [Google Scholar]
  • M. Sakawa, I. Nishizaki and Y. Uemura, Interactive fuzzy programming for two-level linear fractional programming problems with fuzzy parameters. Fuzzy Sets Syst. 115 (2000) 93–103. [CrossRef] [Google Scholar]
  • H.-S. Shih, Y.-J. Lai and E.S. Lee, Fuzzy approach for multi-level programming problems. Comp. & Oper. Res. 23 (1996) 73–91. [CrossRef] [Google Scholar]
  • I.M. Stancu-Minasian, Fractional Programming: Theory, Methods and Applications. Kluwer Academic Publishers, South Holland (1997). [CrossRef] [Google Scholar]
  • M.D. Toksari, Taylor series approach to fuzzy multiobjective linear fractional programming. Inform. Sci. 178 (2008) 1189–1204. [CrossRef] [Google Scholar]
  • M.D. Toksari, Taylor series approach for bi-level linear fractional programming problem. Selcuk University Research Center of Applied Mathematics, Konya (2010). [Google Scholar]
  • M.D. Toksari and Y. Bilim, Interactive fuzzy goal programming based on jacobian matrix to solve decentralized bi-level multi-objective fractional programming problems. Int. J. Fuzzy Syst. 17 (2015) 499–508. [CrossRef] [Google Scholar]
  • H.-C. Wu, On interval-valued nonlinear programming problems. J. Math. Anal. Appl. 338 (2008) 299–316. [Google Scholar]
  • H.-J. Zimmermann, Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1 (1978) 45–55. [CrossRef] [Google Scholar]
  • H.-J. Zimmermann, Fuzzy Set Theory and its Applications. Kluwer Academic Publishers, Boston (1985). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.