Free Access
Issue
RAIRO-Oper. Res.
Volume 53, Number 5, November-December 2019
Page(s) 1775 - 1789
DOI https://doi.org/10.1051/ro/2018105
Published online 11 October 2019
  • J. Alikhani-Koopaei and A. Hadi-vencheh, Using DEA to compute most favourable and least favourable sets of weights in ABC inventory classification. Int. J. Ind. Math. 2 (2010) 329–337. [Google Scholar]
  • G.R. Amin, M. Toloo and B. Sohrabi, An improved MCDM DEA model for technology selection. Int. J. Prod. Res. 44 (2006) 2681–2686. [Google Scholar]
  • G.R. Amin, A note on “an improved MCDM DEA model for technology selection”. Int. J. Prod. Res. 46 (2008) 7073–7075. [Google Scholar]
  • G.R. Amin, Comments on finding the most efficient DMUs in DEA: an improved integrated model. Compt. Ind. Eng. 56 (2009) 1701–1702. [CrossRef] [Google Scholar]
  • G.R. Amin and A. Emrouznejad, A new DEA model for technology selection in the presence of ordinal data. Int. J. Adv. Manuf. Tech. 65 (2013) 1567–1572. [CrossRef] [Google Scholar]
  • Q. An, H. Chen, B. Xiong, J. Wu and L. Liang, Target intermediate products setting in a two-stage system with fairness concern. Omega 73 (2017) 49–59. [Google Scholar]
  • Q. An, Y. Wen, T. Ding and Y. Li, Resource sharing and payoff allocation in a three-stage system: Integrating network DEA with the Shapley value method. Omega 85 (2019) 16–25. [Google Scholar]
  • F. Arikan and S. Citak, Multiple criteria inventory classification in an electronics firm. Int. J. Inf. Tech. Decis. 16 (2017) 315–331. [CrossRef] [Google Scholar]
  • K. Balaji and V.S. Kumar, Multicriteria inventory ABC classification in an automobile rubber components manufacturing industry. Procedia CIRP 17 (2014) 463–468. [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • J.X. Chen, Peer-estimation for multiple criteria ABC inventory classification. Comput. Oper. Res. 38 (2011) 1784–1791. [Google Scholar]
  • W.D. Cook, M. Kress and L.M. Seiford, Data envelopment analysis in the presence of both quantitative and qualitative factors. J. Oper. Res. Soc. 47 (1996) 945–953. [Google Scholar]
  • N.F. Cui and J.J. Lu, ABC classification model for spare parts based on DEA. Logist. Technol. 26 (2007) 55–58. [Google Scholar]
  • M.R. Douissa and K. Jabeur, A new model for multi-criteria ABC inventory classification: PROAFTN method. Proc. Comput. Sci. 96 (2016) 550–559. [CrossRef] [Google Scholar]
  • L. Fang and H. Li, Multi-criteria decision analysis for efficient location-allocation problem combining DEA and goal programming. RAIRO: OR 49 (2015) 753–772. [CrossRef] [Google Scholar]
  • B.E. Flores and D.C. Whybark, Multiple criteria ABC analysis. Int. J. Oper. Prod. Manage. 6 (1986) 38–46. [CrossRef] [Google Scholar]
  • B.E. Flores and D.C. Whybark, Implementing multiple criteria ABC analysis. J. Oper. Manage. 7 (1987) 79–85. [CrossRef] [Google Scholar]
  • B.E. Flores, D.L. Olson and V.K. Dorai, Management of multicriteria inventory classification. Math. Comp. Model. Dyn. 16 (1992) 71–82. [CrossRef] [Google Scholar]
  • Y. Fu, K.K. Lai, Y. Miao and J.W. Leung, A distance-based decision-making method to improve multiple criteria ABC inventory classification. Int. T. Oper. Res. 23 (2015) 1–10. [CrossRef] [Google Scholar]
  • V.A. Hadi-Vencheh, An improvement to multiple criteria ABC inventory classification. Analysis of a two-class continuous-time queueing model with two tandem dedicated servers. Eur. J. Oper. Res. 201 (2010) 962–965. [Google Scholar]
  • V.A. Hadi-Vencheh and A. Mohamadghasemi, A fuzzy AHP–DEA approach for multiple criteria ABC inventory classification. Expert. Syst. Appl. 38 (2011) 3346–3352. [Google Scholar]
  • S.M. Hatefi and S.A. Torabi, A common weight MCDA–DEA approach to construct composite indicators. Ecol. Econ. 70 (2010) 114–120. [Google Scholar]
  • S.M. Hatefi, S.A. Torabi and P. Bagheri, Multi-criteria ABC inventory classification with mixed quantitative and qualitative criteria. Int. J. Prod. Res. 52 (2013) 776–786. [Google Scholar]
  • S.M. Hatefi and S.A. Torabi, A common weight linear optimization approach for multicriteria ABC inventory classification. Adv. Decis. Sci. 2015 (2015) 1–11. [CrossRef] [Google Scholar]
  • A. Hatami-Marbini, M. Toloo, An extended multiple criteria data envelopment analysis model. Expert. Syst. Appl. 73 (2017) 201–219. [Google Scholar]
  • Q. Iqbal and D. Malzahn, Evaluating discriminating power of single-criteria and multi-criteria models towards inventory classification. Comput. Ind. Eng. 104 (2017) 219–223. [Google Scholar]
  • H. Kaabi and K. Jabeur, TOPSIS using a mixed subjective-objective criteria weights for ABC inventory classification. In: 2015 15th International Conference on Intelligent Systems Design and Applications (ISDA), IEEE (2015) 473–478. [Google Scholar]
  • H. Kaabi and K. Jabeur, A new hybrid weighted optimization model for multi criteria ABC inventory classification. In: Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015, Springer, Cham (2016) 261–270. [Google Scholar]
  • E.E. Karsak and S.S. Ahiska, Practical common weight multi-criteria decision-making approach with an improved discriminating power for technology selection. Int. J. Prod. Res. 43 (2005) 1537–1554. [Google Scholar]
  • E.E. Karsak and S.S. Ahiska, A common-weight MCDM framework for decision problems with multiple inputs and outputs. International Conference on Computational Science and Its Applications. In: Vol. 4705 of Lecture Notes in Computer Science. Springer, Berlin, Heidelberg (2007) 779–790. [Google Scholar]
  • E.E. Karsak and S.S. Ahiska, Improved common weight MCDM model for technology selection. Int. J. Prod. Res. 46 (2008) 6933–6944. [Google Scholar]
  • M. Ketkar and S.V. Omkarprasad, Developing ordering policy based on multiple inventory classification schemes. Proc. Stat. Soc. Behav. Sci. 133 (2014) 180–188. [CrossRef] [Google Scholar]
  • K.F. Lam, In the determination of the most efficient decision making unit in data envelopment analysis. Compt. Ind. Eng. 79 (2015) 76–84. [CrossRef] [Google Scholar]
  • J. Liu, X. Liao, W. Zhao and N. Yang, A classification approach based on the outranking model for multiple criteria ABC analysis. Omega 61 (2016) 19–34. [Google Scholar]
  • W.L. Ng, A simple classifier for multiple criteria ABC analysis. Eur. J. Oper. Res. 177 (2007) 344–353. [Google Scholar]
  • F.Y. Partovi and J. Burton, Using the analytic hierarchy process for ABC analysis. Int. J. Oper. Prod. Manage. 13 (1993) 29–44. [CrossRef] [Google Scholar]
  • F.Y. Partovi and M. Anandarajan, Classifying inventory using an artificial neural network approach. Comput. Ind. Eng. 41 (2002) 389–404. [Google Scholar]
  • J.H. Park, H.R. Bae and S.M. Lim, Multi-criteria ABC inventory classification using the cross-efficiency method in DEA. J. Korean Inst. Ind. Eng. 37 (2011) 358–366. [Google Scholar]
  • Y. Ping and T.C. Du, The application of CI-based DEA model in ABC inventory classification and management. J. Beijing Inst. Petro-Chem. Technol. 22 (2014) 49–53. [Google Scholar]
  • R. Ramanathan, ABC inventory classification with multiple-criteria using weighted linear optimization. Comput. Oper. Res. 33 (2006) 695–700. [Google Scholar]
  • S. Ramezani-Tarkhorani, M. Khodabakhshi, S. Mehrabian and F. Nuri-Bahmani, Ranking decision-making units using common weights in DEA. Appl. Math. Model. 38 (2014) 3890–3896. [Google Scholar]
  • M. Salahi and M. Toloo, In the determination of the most efficient decision making unit in data envelopment analysis: a comment. Compt. Ind. Eng. 104 (2017) 216–218. [CrossRef] [Google Scholar]
  • S.A. Torabi, S.M. Hatefi and B.S. Pay, ABC inventory classification in the presence of both quantitative and qualitative criteria. Comput. Ind. Eng. 63 (2012) 530–537. [Google Scholar]
  • M. Toloo, The role of non-Archimedean epsilon in finding the most efficient unit: with an application of professional tennis players. Appl. Math. Model. 38 (2014) 5334–5346. [Google Scholar]
  • M. Toloo, Selecting and full ranking suppliers with imprecise data: A new DEA method. Int. J. Adv. Manuf. Technol. 74 (2014) 1141–1148. [Google Scholar]
  • M. Toloo, An epsilon-free approach for finding the most efficient unit in DEA. Appl. Math. Model. 38 (2014) 3182–3192. [Google Scholar]
  • M. Toloo, A technical note on Erratum to “Finding the most efficient DMUs in DEA: An improved integrated model” [Comput. Ind. Eng. 52 (2007) 71–77]. Comput. Ind. Eng. 83 (2015) 261–263. [Google Scholar]
  • M. Toloo, Alternative minimax model for finding the most efficient unit in data envelopment analysis. Comput. Ind. Eng. 81 (2015) 186–194. [Google Scholar]
  • M. Toloo, M. Tavana and F.J. Santos-Arteaga, An integrated data envelopment analysis and mixed integer non-linear programming model for linearizing the common set of weights. Cent. Eur. J. Oper. Res. 4 (2017) 1–18. [Google Scholar]
  • M. Toloo and M. Tavana, A novel method for selecting a single efficient unit in data envelopment analysis without explicit inputs/outputs. Ann. Oper. Res. 253 (2017) 657–681. [Google Scholar]
  • M. Toloo and M. Salahi, A powerful discriminative approach for selecting the most efficient unit in DEA. Compt. Ind. Eng. 115 (2018) 269–277. [CrossRef] [Google Scholar]
  • M. Toloo, S. Nalchigar and B. Sohrabi, Selecting most efficient information system projects in presence of user subjective opinions: a DEA approach. Cent. Eur. J. Oper. Res. 26 (2018) 1027–1051. [Google Scholar]
  • C.Y. Tsai, S.W. Yeh, A multiple objective particle swarm optimization approach for inventory classification. Int. J. Prod. Econ. 114 (2008) 656–666. [Google Scholar]
  • J. Wu, Y. Yu, Q. Zhu, Q. An and L. Liang, Closest target for the orientation-free context-dependent DEA under variable returns to scale. J. Oper. Res. Soc. 69 (2018) 1819–1833. [Google Scholar]
  • M.C. Yu, Multi-criteria ABC analysis using artificial-intelligence-based classification techniques. Expert. Syst. Appl. 38 (2011) 3416–3421. [Google Scholar]
  • J. Zhu, Imprecise data envelopment analysis (IDEA): a review and improvement with an application. Eur. J. Oper. Res. 144 (2003) 513–529. [Google Scholar]
  • P. Zhou and L. Fan, A note on multi-criteria ABC inventory classification using weighted linear optimization. Eur. J. Oper. Res. 182 (2007) 1488–1491. [Google Scholar]
  • P. Zhou, B.W. Ang and K.L. Poh, A mathematical programming approach to constructing composite indicators. Ecol. Econ. 62 (2007) 291–297. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.