Free Access
RAIRO-Oper. Res.
Volume 53, Number 5, November-December 2019
Page(s) 1791 - 1805
Published online 15 October 2019
  • G.R. Amin and S. Al-Muharrami, A new inverse data envelopment analysis model for mergers with negative data. IMA J. Manage. Math. 29 (2016) 137–149. [Google Scholar]
  • G.R. Amin, A. Emrouznejad and S. Gattoufi, Minor and major consolidations in inverse DEA: definition and determination. Comput. Ind. Eng. 103 (2017) 193–200. [Google Scholar]
  • G.R. Amin, A. Emrouznejad and S. Gattoufi, Modelling generalized firms’ restructuring using inverse DEA. J. Prod. Anal. 48 (2017) 51–61. [CrossRef] [Google Scholar]
  • L. Dong Joon, Inverse DEA with frontier changes for new target setting. Eur. J. Oper. Res. 254 (2016) 510–516. [Google Scholar]
  • M. Ehrgott, Multicriteria Optimization. Springer Berlin, Berlin (2005). [Google Scholar]
  • A. Emrouznejad, An alternative DEA measure: a case of oecd countries. Appl. Econ. Lett. 10 (2003) 779–782. [Google Scholar]
  • A. Emrouznejad and E. Thanassoulis, A mathematical model for dynamic efficiency using data envelopment analysis. Appl. Math. Comput. 160 (2005) 363–378. [Google Scholar]
  • A. Emrouznejad and E. Thanassoulis, Measurement of productivity index with dynamic DEA. Int. J. Oper. Res. 8 (2010) 247–260. [CrossRef] [Google Scholar]
  • A. Emrouznejad, G.-L. Yang and G.R. Amin, A novel inverse DEA model with application to allocate the CO2 emissions quota to different regions in chinese manufacturing industries. J. Oper. Res. Soc. 70 (2019) 1079–1090. [Google Scholar]
  • S. Fallah-Fini, K. Triantis and A.L. Johnson, Reviewing the literature on non-parametric dynamic efficiency measurement: state-of-the-art. J. Prod. Anal. 41 (2014) 51–67. [CrossRef] [Google Scholar]
  • R. Färe and S. Grosskopf, Intertemporal production Frontiers: With Dynamic DEA. Kluwer Academic Publishers, Dordrecht (1996). [CrossRef] [Google Scholar]
  • S. Gattoufi, G.R. Amin and A. Emrouznejad, A new inverse DEA method for merging banks. IMA J. Manage. Math. 25 (2014) 73–87. [CrossRef] [Google Scholar]
  • S. Ghobadi, Inputs and outputs estimation in inverse DEA, Iran. J. Optim. 9 (2017) 119–129. [Google Scholar]
  • S. Ghobadi and S. Jahangiri, Inverse DEA: review, extension and application. Int. J. Technol. Decis. Making 14 (2015) 805–824. [CrossRef] [Google Scholar]
  • S. Ghobadi, G.R. Jahanshahloo, F. Hoseinzadeh Lotfi and M. Rostami-malkhalifeh, Dynamic inverse DEA in the presence of fuzzy data. Adv. Environ. Biol. 8 (2014) 139–151. [Google Scholar]
  • S. Ghobadi, G.R. Jahanshahloo, F. Hoseinzadeh Lotfi and M. Rostami-malkhalifeh, Efficiency measure under inter-temporal dependence. Int. J. Technol. Decis. Making 17 (2018) 657–675. [CrossRef] [Google Scholar]
  • A. Hadi-Vencheh and A.A. Foroughi, A generalized DEA model for inputs/outputs estimation. Math. Comput. Model. 43 (2006) 447–457. [Google Scholar]
  • A. Hadi-Vencheh, A.A. Foroughi and M. Soleimani-Damaneh, A DEA model for resource allocation. Econ. Model. 25 (2008) 983–993. [Google Scholar]
  • A. Hadi-vencheh, A. Hatami-marbini, Z. Ghelej Beigi and K. Gholami, An inverse optimization model for imprecise data envelopment analysis. Optimization 64 (2015) 2441–2452. [Google Scholar]
  • G.R. Jahanshahloo, F. Hoseinzadeh Lotfi, M. Rostami-malkhalifeh and S. Ghobadi, Using enhanced russell model to solve inverse data envelopment analysis problems. Sci. World J. 2014 (2014) 1–10. [CrossRef] [Google Scholar]
  • G.R. Jahanshahloo, F.H. Lotfi, N. Shoja, G. Tohidi and S. Razavyan, Input estimation and identification of extra inputs in inverse DEA models. Appl. Math. Comput. 156 (2004) 427–437. [Google Scholar]
  • G.R. Jahanshahloo, F.H. Lotfi, N. Shoja, G. Tohidi and S. Razavyan, The outputs estimation of a dmu according to improvement of its efficiency. Appl. Math. Comput. 147 (2004) 409–413. [Google Scholar]
  • G.R. Jahanshahloo, F.H. Lotfi, N. Shoja, G. Tohidi and S. Razavyan, Sensitivity of efficiency classifications in the inverse DEA models. Appl. Math. Comput. 169 (2005) 905–916. [Google Scholar]
  • G.R. Jahanshahloo, M. Soleimani-damaneh and S. Ghobadi, Inverse DEA under inter-temporal dependence using multiple-objective programming. Eur. J. Oper. Res. 240 (2015) 447–456. [Google Scholar]
  • G.R. Jahanshahloo, M. Soleimani-damaneh and M. Reshadi, On the pareto (dynamically) efficient paths. Int. J. Comput. Math. 63 (2006) 629–633. [Google Scholar]
  • S. Lertworasirikul, P. Charnsethikul and S.C. Fang, Inverse data envelopment analysis model to preserve relative efficiency values: the case of variable returns to scale. Comput. Ind. Eng. 61 (2011) 1017–1023. [Google Scholar]
  • H.T. Lin, An efficiency-driven approach for setting revenue target. Decis. Support Syst. 49 (2010) 311–317. [Google Scholar]
  • J. Nemoto and M. Goto, Dynamic data envelopment analysis: modeling intertemporal behavior of a firm in the presence of productive inefficiencies. Econ. Lett. 64 (1999) 51–56. [Google Scholar]
  • J.K. Sengupta, Dynamics of data envelopment analysis: theory of systems efficiency. J. Oper. Res. Soc. 47 (1996) 14–21. [Google Scholar]
  • M. Soleimani-Damaneh, An enumerative algorithm for solving nonconvex dynamic DEA models. Optim. Lett. 7 (2013) 101–115. [CrossRef] [Google Scholar]
  • T. Sueyoshi and K. Sekitani, Returns to scale in dynamic DEA. Eur. J. Oper. Res. 16 (2005) 536–544. [Google Scholar]
  • K. Tone and M. Tsutsui, Ddynamic DEA: a slacks-based measure approach. Omega 38 (2010) 145–156. [Google Scholar]
  • K. Tone and M. Tsutsui, Dynamic DEA with network structure: a slacksbased measure approach. Omega 42 (2014) 124–131. [Google Scholar]
  • Q.L. Wei, J.Z. Zhang and X.S. Zhang, An inverse DEA model for inputs/outputs estimate. Eur. J. Oper. Res. 121 (2000) 151–163. [Google Scholar]
  • H. Yan, Q.L. Wei and G. Hao, DEA models for resource reallocation and production input/output estimation. Eur. J. Oper. Res. 136 (2002) 19–31. [Google Scholar]
  • X. Zhang and J. Cui, A project evaluation system in the state economic information system of china: an operation research practice in public sectore. Int. Trans. Oper. 6 (1999) 441–452. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.