Free Access
RAIRO-Oper. Res.
Volume 53, Number 5, November-December 2019
Page(s) 1819 - 1841
Published online 15 October 2019
  • F. Sperandio, C. Gomes, J. Borges, A.C. Brito and B. Almada-Lobo, An intelligent decision support system for the operating theater: a case study. IEEE Trans. Autom. Sci. Eng. 11 (2014) 265–273. [Google Scholar]
  • Y. Wang, J. Tang, Z. Pan and C. Yan, Particle swarm optimization-based planning and scheduling for a laminar-flow operating room with downstream resources. Soft Comput. 19 (2015) 2913–2926. [Google Scholar]
  • R. Aringhieri, P. Landa, P. Soriano, E. Tànfani and A. Testi, A two level metaheuristic for the operating room scheduling and assignment problem. Comput. Oper. Res. 54 (2015) 21–34. [Google Scholar]
  • C. Van Riet and E. Demeulemeester, Trade-offs in operating room planning for electives and emergencies: a review. Oper. Res. Health Care 7 (2015) 52–69. [Google Scholar]
  • S. Zhu, W. Fan, S. Yang, J. Pei and P.M. Pardalos, Operating room planning and surgical case scheduling: a review of literature. J. Comb. Optim. 1–49 (2018). [Google Scholar]
  • D. Min and Y. Yih, An elective surgery scheduling problem considering patient priority. Comput. Oper. Res. 37 (2010) 1091–1099. [Google Scholar]
  • B. Addis, G. Carello, A. Grosso and E. Tànfani, Operating room scheduling and rescheduling: a rolling horizon approach. Flexible Serv. Manuf. J. 28 (2016) 206–232. [CrossRef] [Google Scholar]
  • M. Samudra, C. Van Riet, E. Demeulemeester, B. Cardoen, N. Vansteenkiste and F.E. Rademakers, Scheduling operating rooms: achievements, challenges and pitfalls. J. Scheduling 19 (2016) 493–525. [CrossRef] [Google Scholar]
  • M. Lamiri, X. Xie, A. Dolgui and F. Grimaud, A stochastic model for operating room planning with elective and emergency demand for surgery. Eur. J. Oper. Res. 185 (2008) 1026–1037. [Google Scholar]
  • Y. Ferrand, M. Magazine and U. Rao, Comparing two operating-room-allocation policies for elective and emergency surgeries. In: Proceedings of the 2010 Winter Simulation Conference. IEEE (2010) 2364–2374. [Google Scholar]
  • B. Cardoen, E. Demeulemeester and J. Beliën, Operating room planning and scheduling: a literature review. Eur. J. Oper. Res. 201 (2010) 921–932. [Google Scholar]
  • F. Guerriero and R. Guido, Operational research in the management of the operating theatre: a survey. Health Care Manage. Sci. 14 (2011) 89–114. [CrossRef] [Google Scholar]
  • D. Min and Y. Yih, Managing a patient waiting list with time-dependent priority and adverse events. RAIRO: OR 48 (2014) 53–74. [CrossRef] [Google Scholar]
  • V.-A. Truong, Optimal advance scheduling. Manage. Sci. 61 (2015) 1584–1597. [Google Scholar]
  • H. Saadouli, B. Jerbi, A. Dammak, L. Masmoudi and A. Bouaziz, A stochastic optimization and simulation approach for scheduling operating rooms and recovery beds in an orthopedic surgery department. Comput. Ind. Eng. 80 (2015) 72–79. [Google Scholar]
  • I. Marques and M.E. Captivo, Different stakeholders’ perspectives for a surgical case assignment problem: deterministic and robust approaches. Eur. J. Oper. Res. 261 (2017) 260–278. [Google Scholar]
  • R.L. Burdett and E. Kozan, An integrated approach for scheduling health care activities in a hospital. Eur. J. Oper. Res. 264 (2018) 756–773. [Google Scholar]
  • G. Latorre-Núñez, A. Lüer-Villagra, V. Marianov, C. Obreque, F. Ramis and L. Neriz, Scheduling operating rooms with consideration of all resources, post anesthesia beds and emergency surgeries. Comput. Ind. Eng. 97 (2016) 248–257. [Google Scholar]
  • M. Heydari and A. Soudi, Predictive/reactive planning and scheduling of a surgical suite with emergency patient arrival. J. Med. Syst. 40 (2016) 30. [Google Scholar]
  • Y. Wang, J. Tang and R.Y. Fung, A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk. Int. J. Prod. Econ. 158 (2014) 28–36. [Google Scholar]
  • S.H. Hashemi Doulabi, L.-M. Rousseau and G. Pesant, A constraint-programming-based branch-and-price-and-cut approach for operating room planning and scheduling. INFORMS J. Comput. 28 (2016) 432–448. [Google Scholar]
  • P. Landa, R. Aringhieri, P. Soriano, E. Tànfani and A. Testi, A hybrid optimization algorithm for surgeries scheduling. Oper. Res. Health Care 8 (2016) 103–114. [Google Scholar]
  • S. Neyshabouri and B.P. Berg, Two-stage robust optimization approach to elective surgery and downstream capacity planning. Eur. J. Oper. Res. 260 (2017) 21–40. [Google Scholar]
  • J. Patrick, M.L. Puterman and M. Queyranne, Dynamic multipriority patient scheduling for a diagnostic resource. Oper. Res. 56 (2008) 1507–1525. [Google Scholar]
  • M.E. Zonderland, R.J. Boucherie, N. Litvak and C.L. Vleggeert-Lankamp, Planning and scheduling of semi-urgent surgeries. Health Care Manage. Sci. 13 (2010) 256–267. [CrossRef] [Google Scholar]
  • N. Hosseini and K. Taaffe, Evaluation of optimal scheduling policy for accommodating elective and non-elective surgery via simulation. In: Proceedings of the 2014 Winter Simulation Conference. IEEE Press (2014) 1377–1386. [Google Scholar]
  • D. Astaraky and J. Patrick, A simulation based approximate dynamic programming approach to multi-class, multi-resource surgical scheduling. Eur. J. Oper. Res. 245 (2015) 309–319. [Google Scholar]
  • A. Kolobov, Mausam and D.S. Weld, A theory of goal-oriented MDPs with dead ends. In: Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence. UAI’12 (2012) 438–447. [Google Scholar]
  • A. Kolobov, Mausam and D.S. Weld, Stochastic shortest path MDPs with dead ends. In: ICAPS Heuristics and Search for Domain Independent Planning (HSDIP) Workshop (2012). [Google Scholar]
  • M. Heng and J.G. Wright, Dedicated operating room for emergency surgery improves access and efficiency. Can. J. Surgery 56 (2013) 167. [CrossRef] [Google Scholar]
  • A. Leppäniemi and I. Jousela, A traffic-light coding system to organize emergency surgery across surgical disciplines. Br. J. Surgery 101 (2014) e134–e140. [CrossRef] [Google Scholar]
  • I. Adan, J. Bekkers, N. Dellaert, J. Jeunet and J. Vissers, Improving operational effectiveness of tactical master plans for emergency and elective patients under stochastic demand and capacitated resources. Eur. J. Oper. Res. 213 (2011) 290–308. [Google Scholar]
  • J.T. van Essen, E.W. Hans, J.L. Hurink and A. Oversberg, Minimizing the waiting time for emergency surgery. Oper. Res. Health Care 1 (2012) 34–44. [Google Scholar]
  • J.-S. Tancrez, B. Roland, J.-P. Cordier and F. Riane, Assessing the impact of stochasticity for operating theater sizing. Decis. Support Syst. 55 (2013) 616–628. [Google Scholar]
  • A. Testi, E. Tanfani, R. Valente, G. Ansaldo and G. Torre, Prioritizing surgical waiting lists. J. Eval. Clin. Pract. 14 (2008) 59–64. [CrossRef] [PubMed] [Google Scholar]
  • R. Valente, A. Testi, E. Tanfani, M. Fato, I. Porro, M. Santo, G. Santori, G. Torre and G. Ansaldo, A model to prioritize access to elective surgery on the basis of clinical urgency and waiting time. BMC Health Serv. Res. 9 (2009) 1. [CrossRef] [PubMed] [Google Scholar]
  • D. Min and Y. Yih, Scheduling elective surgery under uncertainty and downstream capacity constraints. Eur. J. Oper. Res. 206 (2010) 642–652. [Google Scholar]
  • A. Riise, C. Mannino and E.K. Burke, Modelling and solving generalised operational surgery scheduling problems. Comput. Oper. Res. 66 (2016) 1–11. [Google Scholar]
  • P. Punnakitikashem, J.M. Rosenberger and D.B. Behan, Stochastic programming for nurse assignment. Comput. Optim. App. 40 (2008) 321–349. [CrossRef] [Google Scholar]
  • M. Holte and C. Mannino, The implementor/adversary algorithm for the cyclic and robust scheduling problem in health-care. Eur. J. Oper. Res. 226 (2013) 551–559. [Google Scholar]
  • A.G. Barto, S.J. Bradtke and S.P. Singh, Learning to act using real-time dynamic programming. Artif. Intell. 72 (1995) 81–138. [Google Scholar]
  • B. Bonet and H. Geffner, Labeled RTDP: improving the convergence of real-time dynamic programming. In: Proceedings of Thirteenth International Conference on Automated Planning and Scheduling 3 (2003) 12–21. [Google Scholar]
  • H.B. McMahan, M. Likhachev and G.J. Gordon, Bounded real-time dynamic programming: RTDP with monotone upper bounds and performance guarantees. In: Proceedings of the 22nd International Conference on Machine Learning. ACM (2005) 569–576. [Google Scholar]
  • T. Smith and R. Simmons, Focused real-time dynamic programming for MDPs: squeezing more out of a heuristic. In: Proceedings of the 21st National Conference on Artificial Intelligence. AAAI’06 2 (2006) 1227–1232. [Google Scholar]
  • S. Sanner, R. Goetschalckx, K. Driessens and G. Shani, Bayesian real-time dynamic programming. Proceedings of the 21st International Joint Conference on Artifical Intelligence. IJCAI’09 (2009) 1784–1789. [Google Scholar]
  • J. Zhang, M. Dridi and A. El Moudni, A stochastic shortest-path MDP model with dead ends for operating rooms planning. In: 2017 23rd International Conference on Automation and Computing (ICAC). IEEE (2017) 1–6. [Google Scholar]
  • D.P. Strum, J.H. May, A.R. Sampson, L.G. Vargas and W.E. Spangler, Estimating times of surgeries with two component procedures: comparison of the lognormal and normal models. Anesthesiol. J. Am. Soc. Anesthesiologists 98 (2003) 232–240. [Google Scholar]
  • G. Xiao, W. van Jaarsveld, M. Dong and J. van de Klundert, Stochastic programming analysis and solutions to schedule overcrowded operating rooms in china. Comput. Oper. Res. 74 (2016) 78–91. [Google Scholar]
  • Mausam and A. Kolobov, Planning with Markov decision processes: an AI perspective. Synth. Lect. Artif. Intel. Mach. Learn. 6 (2012) 1–210. [CrossRef] [Google Scholar]
  • M. Lamiri, X. Xie and S. Zhang, Column generation approach to operating theater planning with elective and emergency patients. IIE Trans. 40 (2008) 838–852. [Google Scholar]
  • L. Koppka, L. Wiesche, M. Schacht and B. Werners, Optimal distribution of operating hours over operating rooms using probabilities. Eur. J. Oper. Res. 267 (2018) 1156–1171. [Google Scholar]
  • M. Olivares, C. Terwiesch and L. Cassorla, Structural estimation of the newsvendor model: an application to reserving operating room time. Manage. Sci. 54 (2008) 41–55. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.