Free Access
Issue
RAIRO-Oper. Res.
Volume 53, Number 5, November-December 2019
Page(s) 1709 - 1720
DOI https://doi.org/10.1051/ro/2018096
Published online 09 October 2019
  • R. Aggarwal, S.P. Singh and P.K. Kapur, Integrated dynamic vendor selection and order allocation problem for the time dependent and stochastic data. Benchmarking An Int. J. 25 (2018) 777–796. [CrossRef] [Google Scholar]
  • A. Azadeh and S.M. Alem, A flexible deterministic, stochastic and fuzzy Data Envelopment Analysis approach for supply chain risk and vendor selection problem: Simulation analysis. Expert Syst. Appl. 37 (2010) 7438–7448. [Google Scholar]
  • M. Biehl, A. Ghosh and B. Hammer, Dynamics and generalization ability of LVQ algorithms. J. Mach. Learn. Res. 8 (2007) 323–360. [Google Scholar]
  • G. Büyüközkan and G. Çifçi, A novel fuzzy multi-criteria decision framework for sustainable supplier selection with incomplete information. Comput. Ind. 62 (2011) 164–174. [Google Scholar]
  • F. Çebi and D. Bayraktar, An integrated approach for supplier selection. Logist. Inf. Manag. 16 (2003) 395–400. [CrossRef] [Google Scholar]
  • J. Chai, J.N.K. Liu and E.W.T. Ngai, Application of decision-making techniques in supplier selection: A systematic review of literature. Expert Syst. Appl. 40 (2013) 3872–3885. [Google Scholar]
  • V. Chaudhary, R. Kulshrestha and S. Routroy, State-of-the-art literature review on inventory models for perishable products. J. Adv. Manag. Res. 15 (2018) 306–346. [CrossRef] [Google Scholar]
  • Y.J. Chen, Structured methodology for supplier selection and evaluation in a supply chain. Inf. Sci. (NY) 181 (2011) 1651–1670. [Google Scholar]
  • L. Cheng, E. Subrahmanian and A.W. Westerberg, Design and planning under uncertainty: issues on problem formulation and solution. Comput. Chem. Eng. 27 (2003) 781–801. [Google Scholar]
  • S. De Kumar and S.S. Sana, Two-layer supply chain model for Cauchy type Stochastic demand under fuzzy environment. Int. J. Intell. Comput. Cybern. 11 (2018) 285–308. [CrossRef] [Google Scholar]
  • L. Duan and J.A. Ventura, A dynamic supplier selection and inventory management model in a serial supply chain with a novel supplier price break scheme and flexible time periods. Eur. J. Oper. Res. 272 (2019) 979–998. [Google Scholar]
  • M. Dursun and E.E. Karsak, A QFD-based fuzzy MCDM approach for supplier selection. Appl. Math. Model. 37 (2013) 5864–5875. [Google Scholar]
  • C. Gencer and D. Gürpinar, Analytic network process in supplier selection: A case study in an electronic firm. Appl. Math. Model. 31 (2007) 2475–2486. [Google Scholar]
  • S.H. Ghodsypour and C. O’brien, The total cost of logistics in supplier selection, under conditions of multiple sourcing, multiple criteria and capacity constraint. Int. J. Prod. Econ. 73 (2001) 15–27. [Google Scholar]
  • W. Ho, X. Xu and P.K. Dey, Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. Eur. J. Oper. Res. 202 (2010) 16–24. [Google Scholar]
  • S. Karsoliya, Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture. Int. J. Eng. Trends Technol. 3 (2012) 714–717. [Google Scholar]
  • T. Kohonen, Self-Organizing Maps. Springer, Berlin (1995). [CrossRef] [Google Scholar]
  • R. Kouwenberg, Scenario generation and stochastic programming models for asset liability management. Eur. J. Oper. Res. 134 (2001) 279–292. [Google Scholar]
  • R.J. Kuo, Y.C. Wang and F.C. Tien, Integration of artificial neural network and MADA methods for green supplier selection. J. Clean. Prod. 18 (2010) 1161–1170. [Google Scholar]
  • M. Kurimo, Using self-organizing maps and learning vector quantization for mixture density hidden Markov models. CiteSeer (1997). [Google Scholar]
  • Z. Liao and J. Rittscher, A multi-objective supplier selection model under stochastic demand conditions. Int. J. Prod. Econ. 105 (2007) 150–159. [Google Scholar]
  • S. Ljubojević, D. Pamučar, D. Jovanović and V. Vešović, Outsourcing transport service: a fuzzy multi-criteria methodology for provider selection based on comparison of the real and ideal parameters of providers. Oper. Res. Int. J. 19 (2019) 399–433. [CrossRef] [Google Scholar]
  • A. Mendoza and J.A. Ventura, Modeling actual transportation costs in supplier selection and order quantity allocation decisions. Oper. Res. 13 (2013) 5–25. [Google Scholar]
  • N.M. Modak, Exploring Omni-channel supply chain under price and delivery time sensitive stochastic demand. Sup. Chain. For. Int. J. 18 (2017) 218–230. [CrossRef] [Google Scholar]
  • N.M. Modak and P. Kelle, Managing a dual-channel supply chain under price and delivery-time dependent stochastic demand. Eur. J. Oper. Res. 272 (2019) 147–161. [Google Scholar]
  • R.L. Nydick and R.P. Hill, Using the analytic hierarchy process to structure the supplier selection procedure. J. Supply Chain Manag. 28 (1992) 31. [Google Scholar]
  • G. Panchal, A. Ganatra, Y.P. Kosta and D. Panchal, Behaviour analysis of multilayer perceptronswith multiple hidden neurons and hidden layers. Int. J. Comput. Theory Eng. 3 (2011) 332–337. [CrossRef] [Google Scholar]
  • T.C. Poon, K.L. Choy, C.K. Cheng, S.I. Lao and H.Y. Lam, Effective selection and allocation of material handling equipment for stochastic production material demand problems using genetic algorithm. Expert Syst. Appl. 38 (2011) 12497–12505. [Google Scholar]
  • H. Pujara and K. Prasad, Image segmentation using learning vector quantization of artificial neural network. Int. J. Adv. Res. Artif. Intell. 2 (2013) 51–55. [CrossRef] [Google Scholar]
  • R. Ramanathan, Supplier selection problem: integrating DEA with the approaches of total cost of ownership and AHP. Supply Chain Manag. Int. J. 12 (2007) 258–261. [CrossRef] [Google Scholar]
  • R. Farzipoor Saen, Suppliers selection in the presence of both cardinal and ordinal data. Eur. J. Oper. Res. 183 (2007) 741–747. [Google Scholar]
  • N.V. Sahinidis, Optimization under uncertainty: state-of-the-art and opportunities. Comput. Chem. Eng. 28 (2004) 971–983. [Google Scholar]
  • M. Sakawa, I. Nishizaki and Y. Uemura, A decentralized two-level transportation problem in a housing material manufacturer: Interactive fuzzy programming approach. Eur. J. Oper. Res. 141 (2002) 167–185. [Google Scholar]
  • H. Shin, D.A. Collier and D. Wilson, Supply management orientation and supplier/buyer performance. J. Oper. Manag. 18 (2000) 317–333. [CrossRef] [Google Scholar]
  • H. Stadtler, Supply chain management and advanced planning – basics, overview and challenges. Eur. J. Oper. Res. 163 (2005) 575–588. [Google Scholar]
  • D. Stathakis, How many hidden layers and nodes?. Int. J. Remote Sens. 30 (2009) 2133–2147. [Google Scholar]
  • A.A. Taleizadeh, S.T. Akhavan Niaki and F. Barzinpour, Multiple-buyer multiple-vendor multi-product multi-constraint supply chain problem with stochastic demand and variable lead-time: a harmony search algorithm. Appl. Math. Comput. 217 (2011) 9234–9253. [Google Scholar]
  • S.-C. Ting and D.I. Cho, An integrated approach for supplier selection and purchasing decisions. Supply Chain Manag. Int. J. 13 (2008) 116–127. [CrossRef] [Google Scholar]
  • S. Türk, E. Özcan and R. John, Multi-objective optimisation in inventory planning with supplier selection. Expert Syst. Appl. 78 (2017) 51–63. [Google Scholar]
  • T. Villmann, A. Bohnsack and M. Kaden, Can learning vector quantization be an alternative to SVM and deep learning?-recent trends and advanced variants of learning vector quantization for classification learning. J. Artif. Intell. Soft Comput. Res. 7 (2017) 65–81. [CrossRef] [Google Scholar]
  • A. Witoelar, M. Biehl and B. Hammer, Learning vector Quantization: generalization ability and dynamics of competing prototypes, In Dagstuhl Seminar Proceedings, Schloss Dagstuhl-Leibniz-Zentrum fur Informatik (2007). [Google Scholar]
  • J. Wu, LVQ neural network based classification decision approach to mechanism type in conceptual design. Artif. Intell. Comput. Intell. 7004 (2011) 378–384. [CrossRef] [Google Scholar]
  • P.C. Yang, H.M. Wee, S. Pai and Y.F. Tseng, Solving a stochastic demand multi-product supplier selection model with service level and budget constraints using Genetic Algorithm. Expert Syst. Appl. 38 (2011) 14773–14777. [Google Scholar]
  • Z. Qu, H. Raff and N. Schmitt, Incentives through Inventory Control in Supply Chains. Int. J. Ind. Organ. 59 (2018) 486–513. [Google Scholar]
  • J.L. Zhang and M.Y. Zhang, Supplier selection and purchase problem with fixed cost and constrained order quantities under stochastic demand. Int. J. Prod. Econ. 129 (2011) 1–7. [Google Scholar]
  • A. Zouggari and L. Benyoucef, Simulation based fuzzy TOPSIS approach for group multi-criteria supplier selection problem. Eng. Appl. Artif. Intell. 25 (2012) 507–519. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.